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Abstract: Using the maximal principle we prove a new fixed
point theorem.
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Since recent years many authors have used the maximal prin-
ciple to prove fixed point theorems, for example [1],(2]),(3).

In this paper, using that idea we prove a nex fixed point
theorem and show some applications.

Let X be a Banach space, D a subset of X. By conv D we de-
note the convex hull of D. Let P be & binary relation on D. We
pay that P is reflexive if P(x,x) for all x€D, P is closed if
the set {(x,y)€ DxD:P(x,y)} is closed on Dx D. The function h:
sconv D—> R is said to be uniformly convex if it is convex and

for each &> O there exists a d > 0 such that:
nEE) < 1 (a(x) + n(y)) -

for all x,yeconv D, lIx-yl > & . If S is a subset of D, (h/S)
denotes the restriction of h on S, R(h/S) denotes the renge of
(n/s).
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Theorem: Let D be a closed subset of a Banach space X, P
a reflexive closed relation on D,h:conv D —> R+ a uniformly con-
vex continuous bounded function attaining its minimum X, € D, Let
£:D —> D be a map such that:

1) if xeD and P(xo,x), then P(xo,f(x)),

2) if x,ye€D, B(x,y) and h(x(x+y))Z h(x),
then P(£(x),2(y)) md h(F(£(x)+£(y))Z h(2(x)).
Then £ has a fixed point.

Proof: Let 221 be the family of all nonempty subsets S of
D containing X, and satisfying the following conditions:

a) if x,yeS, h(x)< h(y), then P(x,y) and h(x) <h(f(x)) £
£ h(y) and h(£(x)) = h(y) if and only if £(x) = y3

b) 1f x,5€5, h(x)2h(y), then h(x) £ h(}(x+y)),

¢) 1if a&R,, h(x )< a< sup {h(x) | xeS}% and

+l
a¢R(h|S), then there exists an x€S such that h(x)< a<h(f(x)).

Obviously, {x,j < 4 , thus W+ 4.

Lemma 1: If S € 7 , then n(x,)#*h(x,) for all x,,x,€ S
and X, ¥ X,.

Proof: Suppose that there are x;,x€ 8, Xy#Xx, and h(x1)=
= h(x,), then by b) and by uniform convexity of h we have:
n(xy)< h(3(x; + x,))¢3(h(x)) + h(x,)) => B(xy) > h(xy),

a contradiction, This finishes the proof of Lemma 1.

Lemma 2: If Se 7 , (x )es, h(:%)'l‘ a, then (x)) 1s &
Cauchy sequence and moreover, if x€S, h(x) = &, then x = lim x .
Proof: Suppose that (xn) is not a Cauchy sequence, then

there exists an ¢ > 0 and a subsequence (xni) such that:

Il X, - X, I ¢ for i+j. By the uniform convexity of h there
i J

exists & o > O such that:
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B(x, )& h(%(xni+ xni+1))£%<h<xni> +hx, ) -

Thus h(x )Zh(x, ) +2d = h(x,) + 21d” for all i.
444 ny 1

This contradicts the boundedness of h. Now, let x€S and h(x) =
= a, If x4+1lim X then there is an © > 0 and n, such that:
I x, -xlz¢% for all n>n . Then there is a 0 > 0 such that:
1
n(x,) £ h(3(x, + ))& 5(h(x,) + (=) -,

h(x)zh(xn) + 2d° for all nzng.

This contradicts the assumption h(x) = 1lim h(xn) and the proof

of Lemma 2 is complete.

Lemma 3. Let S ¢ )L and x €S be such that h(x°)< h(x) <
< sup {h(x){xe S3, then £(x)eSs.

Proof: Suppose that £(x)& S. We claim that h(f(x)) éR(hlS).
In fact, if h(f(x)) = h(y) for some ye€ S, then h(x)< h(y) and
¥4 2(x); then by a) h(f(x))< h(y), a contradiction. This shows
that h(£(x)) ¢ R(h|S)) eand h(£(x))< sup L1h(x)|x€ S3. Now by o)
there exists & z€ S such that h(z)< h(£(x))< h(£(z)) but by Lem-
wa 1) and by &) it is impossible. That proves that f(x)e S and

ends the proof of Lemma 3.

Lemma 4. Let S € 7%V , x¢D, h(x°)<h(i)éh(u) for some
u€ S. Suppose that there exists a sequence (xn)gs such that
lim x, = x;h(xn)’fh(x), then x6 S.

Proof: If h(x)é4¢ R(h|S), then h(x)< h(u). In fact if h(x)=
= n(u) then by Lemma 2, u = 1im x, = x€ S, a contradiction. By
the condition c) there is & ze S such that h(z)< h(x)< h(£(z)).
Then there is an integer n, such that h(z)<h(xn°)<h(t(z)).

This contradicts the condition a)., This shows h(x)e€ R(h|S) and
h(x) = h(y) for some y, y&€ S. By Lemma 2) y = 1lim X, = X€S,
This ends the proof of Lemma 4.
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Lemma 5. Let 83 € ¥ , ye S, y4x,; then either y = £(z)
for a £€S, shyory = n%:l_..-w £(z,)3 h(£(2,))Th(y) for & sequence
(z)es.

Proof, Put M_ = sup {n(x)Ixe S3h(x)< h(y)} .

1) It l, = h(y), then there is a (sn)_gs such that
h(zn)'t‘ h(y). By the condition a) we have h(zn)< h(:t(zn)) <
&n(z, 4)<u(y). Thus h(£(2,))?n(y). By Lemma 3) £(z )€ S for ell
n and by Lemma 2) y = lim t(zn).

2) It l[,<h(y), then by c) there is a &S such that h(z)<

=< 1( + h(y))<h(£(z)) £ h(y). By Lemma 3) £(z)€ S and by Lemma 4
204,

£(z) = y. Of course y#z. This completes the proof of Lemma 5,

Lemma 6. Let 8445, 6 7 eand suppose that for each x€ S,
there is @ ue S, such that h(x)< h(u). Then 8,<38,.

Proof: Suppose that S, S,, then S;\ 8;NS,4p. Let T€s5,\
N8;N8,. By assumption there is a u€sS, such that h(u)Zh(3).
Put A = {x€8,N 5,1 Yy6S,y5 h(y)<h(x) = y& S,%. 0f course A+¢
since x € A. It is cleer that h(x) < h(X) for all x& A, Put M, =
= sup {h(x) | xe A} < h(T).

1) It LI R(h | A), then M, = h(y)< h(X) for some y € A. By
Lemma 3 £(y)€ S;N\S,; h(y)<h(£(y)) and if z€S,, n(z)<h(2(y)),
then h(z) £h(y). Thus z€ A. Therefore f(y)e A, & contradiction.

2) If M,4¢R(h|A), then there is an (x )< 4, h(x )T N,. By
Lemma 4) lim x, = x€8,N8,. It is clear that xCA. It contra-
dicts the fact h(x) = M, $R(hlA). This shows that S,\S,N8, = §
and 5,S S,.

Lemma 7. S'= U4iSis e M3 NU.

Proof: It is easy to verify that S satisfies all conditi-

ons a),b),c).

Now we return to the proof of the theorem. Put
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M = sup {n(x)|xeS}. If M&R(h|S), then there is a sequence
(x,)€ 5§, ﬁ(xn)fl. By Lemme 2 there is an T = lim x and h(¥) =
= M. Put § = 5 Uizl It 1s obvious that § satisfies the condi-
tion o).

Now we verify that T also satisfies the cond:l.ti;ns a),b),
too. Let xc§, h(x)< h(X), then xeT and there exists an m, such
thet h(x)<h(x,) for ell n>n . Since T & W , we have P(x,x,)
and h(x)£h(f(x))<h(x,);h(x)< h(;—(x+xn)) for all n>n,. Since
P is closed and h is continuous, it follows that P(x,X),h(x) <
< B(£(x))< lim h(x;) = h(Z) and h(x) & lim h(H(x+x,)) =
= h(%(x+‘x’)). This shows that T € /L = T <5 and T¢B. This con-
tradicts the fact M = h(X)4¢ R(h|S). Then there is & u €S such
that h(u) = M. Put ¥ = 3 Uif(u)}. Of course ™ satisfies the con-
dition ¢). Let x€3, h(x)< h(f(u)), then x¢B. If x = x,, then
of course P(x,,u) and h(x,) 4 h(¥(x +2(u)))& (h(x,)+n(£(u))) =>
=% h(f(u))= h(x,) and by assumption 1) we have P(xo,f(n)).

If x4x , then either x = f(z) for & 265 or x = lim 2(z)),
h(£(z)) T h(x) for a sequence (z,)SS.

1) Let x = £(z) for a '2€ 8, x4z, then h(z)< h(x)£ h(u).
By the conditions a),b) we have P(z,u) and h(%(zﬂx))z h(z). By
assumption 2) it follows that P(x,f(u)) and g(h(f(u)) + h(x)) =
Z n(F(x+2())) z B(x) => h(2(u)) Z h(x).

2) If x = lim £(2, ):h(£(z,))% h(x) for & sequence (z,)c g,
then P(zn,u) and h( (%(u+zn))zh(zn). By assumption 2) we have
P(£(z.),2(u)) and F(h(£(w)) + h(£(2;))) Zh(F(L(w) + £(z)) Z
Zh(f(zn)). Since P is closed and h is continuous, it follows
that: P(x,f(u)) and F(h(f(w)) + h(x))Z h(F(£(u) + x))Z h(x) =>
= h(£(u))Z h(x).

This proves that P(x,f(u)), h(%(f(u) + x)) Zh(x), h(£(u)) =
Zn(x) for all x&S, especially for x = u.
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Now let x6 ¥, n(x)<h(f(u)). Then x <8, If x4u, then h(x)<
< h(u). Since 8 & WL , we have h(£(x))>h(x), h(f(x))£h(u)
# h(f(u)). This proves that S satisfies the conditions a),b),too,
and § € WL . Therefore §c§ = £(u)€S and n(£(u)) = h(u). By
Lemma 1) f(u) = u. This completes the proof of the theorem. For

the sake of completeness we include the following

Lemme 8, Let X be a uniformly convex Banach space, D a con-
vex bounded subset of X, then the function h(x) = x 2 iy uni-
formly convex, continuous and bounded on D.

Proof: The boundedness and the continuity of h are obvi-
ous.

Now without loss of generality we can suppose that D is con-
tained in the unit ball B, (0) of X. Suppose that h is not uni-
formly oconvex, then there exist. an € > O and subsequences
(x,)» (y,)€D such that: I 3(x,+y M2z 3Ax 02 + 1y 12 - L for
ell n = 1,2,... . We can suppose that & = lim lx Il lim iy = b,
Put Ay = Uy Nix, D", then 1im A = A = ba™'.

1) Let A< 1, then llF(x +y )0 & Uz N + Ny, 1) =
= ;-(14' Az N, By assumption it follows that:

S CEE L PA LV PICRTR LPAE ISP WLy P L8

Taking limit we have & contradiction: 3(1-2)2< 0.

2) Let A= 1. We can suppose that lx - Ayalz %- & for
all n, Then Rx N = A,y \> } & . Of course
M=, x, = Wy, Ty = A xy -2y > ix D e >
7% ¢ . By the uniform convexity of X there exists a o> 0 such

-

that Il (2hx 0)™ (x ~A 3 )R < 1 .‘.{.
By assumption it follows that:
- 14 aea2) nx s i ) e Ayl Ux 4
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+ (1 =23 hy, M2 IO - ix gl + (1 =% Ny 012,

Then O0< az< (1 _0/)2.2’ a contradiction. This proves that h is

uniformly convex.

Corollary 1. Let 0€D be a bounded closed subset of & uni-
formly convex Banach space, P a reflexive closed relation on D.
Let £:D—> D be a map such that:

1) if xeD, P(0,x), then P(0,f(x))

2) 1if x,yeD;P(x,y) and I%(!+y)“ z Iz,
then P(2(x),2(y)) snd Ug(2(x)+2(y) I = le(0l.
Then £ has a fixed point.

Now if the relation P is defined by P(x,y) for all x,yé&D,

then we have:

Corollary 2. Let D be a closed subset of a Banach space,
h: conv D —->R+ & uniformly convex continuous bounded function
attaining its minimum at x,€ D. Suppose that £:D—>» D is a map
such that 1f x,y¢ D, h(3(x+y))z h(x), then h(F(t(x) + £(y))) z
Z h(£(x)). Then £ has a fixed point.

If the relation P on D is defined by: P(x,y) if and only i
h(Ax + (1=-A)y)Zh(x) for all A& [0,1] then we have:

Corollary 3. Let D, h be as in Corollary 2 and £:D —> D
map such that: if x,ye D, h({(1 =A)x +Ay) Zh(x), then
h((1 =A)(x) + A£(y))Zzh(£(x)) for all A€ [0,1], Then f haa
a fixed point.

All notions concerning Banach lattices used here are stan-

dard, we refer the reader for instance to [6].

Corollary 4. Let X be a uniformly convex Banach lattice,
OeD a closed, bounded subset of the positive cone ct ot x. L
£:D—» D be a map such that: if x,yeéD, x<y, then £(x) £ f£(y).
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Then f has a fixed point.

Proof: It is sufficient to note that if x,y¢D and x<y,
then lIx !l £ N yl.

Let X be a Banach space. Lg([o,‘ll) denotes the Lebesgue spa-
ce of all strongly measurable functions x:[0,1]1 — X such that:

1
1 24,2
= I t dt Q0 -
l\x\lL2 ( fo I x(t)€at)* <
Lemma 9. Let X be a uniformly convex Banach lattice, D =
= {xaI%(\'.O,ﬂ): Ix(£)Iz£K for all tel0,11%
for some positive number K, then the function h(x) = llxl\%z is

uniformly convex on D.
Proof: Let ¢ be a given positive x;umbor, x,y€D such that
llx-yIlL2> & . Put I =[0,1334 ={tcT, Ix(t)-y(t)yzg€d-

men [1x(0)-y(9%at £ [ Mx(o-y(ol%at + [ (07 & 2a<

< ) + 3 e? = wwz, el

By Lemma 8, there exists a J > O such that:

A=)+ (DN £ Hx(012 + Uy(0)12) - for 11 tca.
It follows that:

NEGIE,) £ § UEG0 g (lZas + [, DRy ()1Pat ¢

2% [, Wx(I2 + Iy(0)N2 - Mat + Iy AZEOIZ + Ay (01Z)as &

e{,(ux\\ia + \\yui) -5 - o2

This ends the proof of Lemma 9.
Now we consider the Cauchy problem of differential equati-

on in Banach lattice X:

x = £(t,x)
) {x (t,x

x(0) = x,
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where £:[0,1] x X—> X satisfies the Carathéodory conditions,
i.e.:

1) £(t,») is continuous for a.e., te[0,1],

2) f£(.,x) is strong measurable for every x€X.

We say that (I) has a solution, if there exists a continmu-
ous function x:[0,11 —= X such that: x(t) = x, + f: 2(s,x(8))ds
for all tel0,1].

Corollary 5. Let X be a uniformly convex Banach lattice,
£:[0,1] x X—> X satisfies the Carathéodory conditions, and:

1) there is a function (.-"(t)G.I..l (L0,11) sush that .
l2(t,x) |l 2@3(t) for all te [0,113x€X,

2) 04£f(t,x)<«f(t,y) if 0&x £y, te[0,1].
Then for each ;oec+ the problem (I) has a solution.

Proof. Put D s-(xeLg([O,ﬂ):x(t)ZO and llx(t)nxéllxoﬂ +
+ y‘;‘ B (t)at for ell t€[0,11% , Pp(x)(t) = x, +
+ j'o* t(s,x(s))ds for xeD, t€[0,1]. One can verify that P,:
:D —> D and Fy(x)£ Po(y) if x,7€D3x4y. Now we define a rela-
tion P on D such that P(x,y) if and only if x4&y. Put h(x) =
= x“iz. By Lemma 9, h is & uniformly convex continous bounded
function on D20. If x,yeX, x4y, then %(x+y)Zx and
ﬂ%(x+y)llzz 1xl2. Therefore if x,y€D, x<y, then Ff(x)é Ff(y),
FEL(X) + Fyp(y))Z Fp(x) and (F(Ry(x) + Pp(y)2Z NP (x) W2,
By the theorem F, has a fixed point X€D. It is easy Yo see that
% is & solution of (I).
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