

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 26,2 (1985)

A FIXED POINT THEOREM LE VAN HOT

 $\underline{\mbox{Abstract:}}$ Using the maximal principle we prove a new fixed point theorem.

Key words: Banach space, fixed point theorem, uniformly convex function.

Classification: Primary: 47H10 Secondary: 47H15, 47H17

Since recent years many authors have used the maximal principle to prove fixed point theorems, for example [1],[2],[3].

In this paper, using that idea we prove a nex fixed point theorem and show some applications.

Let X be a Banach space, D a subset of X. By conv D we denote the convex hull of D. Let P be a binary relation on D. We say that P is reflexive if P(x,x) for all $x \in D$, P is closed if the set $\{(x,y) \in D_XD: P(x,y)\}$ is closed on $D \times D$. The function h: :conv $D \longrightarrow R$ is said to be uniformly convex if it is convex and for each $\epsilon > 0$ there exists a d' > 0 such that:

$$h(\frac{x+y}{2}) \leq \frac{1}{2} (h(x) + h(y)) - \sigma'$$

for all $x,y \in \text{conv D}$, $||x-y|| > \varepsilon$. If S is a subset of D, (h/S) denotes the restriction of h on S, R(h/S) denotes the range of (h/S).

Theorem: Let D be a closed subset of a Banach space X, P a reflexive closed relation on D,h:conv D \rightarrow R₊ a uniformly convex continuous bounded function attaining its minimum $\mathbf{x}_0 \in D$. Let $\mathbf{f}: D \rightarrow D$ be a map such that:

- 1) if $x \in D$ and $P(x_0,x)$, then $P(x_0,f(x))$,
- 2) if $x,y \in D$, P(x,y) and $h(\frac{1}{2}(x+y)) \ge h(x)$, then P(f(x),f(y)) and $h(\frac{1}{2}(f(x)+f(y)) \ge h(f(x))$. Then f has a fixed point.

Proof: Let ${\mathfrak M}$ be the family of all nonempty subsets S of D containing x_0 and satisfying the following conditions:

- a) if $x,y \in S$, h(x) < h(y), then P(x,y) and $h(x) < h(f(x)) \le \le h(y)$ and h(f(x)) = h(y) if and only if f(x) = y;
 - b) if $x,y \in S$, $h(x) \leq h(y)$, then $h(x) \leq h(\frac{1}{2}(x+y))$,
- c) if $a \in R_+$, $h(x_0) < a < \sup \{h(x) \mid x \in S\}$ and $a \notin R(h|S)$, then there exists an $x \in S$ such that h(x) < a < h(f(x)). Obviously, $\{x_0\} \in \mathcal{M}$, thus $\mathcal{M} \neq \emptyset$.

Lemma 1: If $S \in \mathcal{M}$, then $h(x_1) + h(x_2)$ for all $x_1, x_2 \in S$ and $x_1 + x_2$.

Proof: Suppose that there are $x_1, x_2 \in S$, $x_1 + x_2$ and $h(x_1) = h(x_2)$, then by b) and by uniform convexity of h we have: $h(x_1) < h(\frac{1}{2}(x_1 + x_2)) < \frac{1}{2}(h(x_1) + h(x_2)) \Longrightarrow h(x_2) > h(x_1)$, a contradiction. This finishes the proof of Lemma 1.

Lemma 2: If $S \in \mathcal{M}$, $(x_n) \subseteq S$, $h(x_n) \uparrow a$, then (x_n) is a Cauchy sequence and moreover, if $x \in S$, h(x) = a, then $x = \lim_{n \to \infty} x_n$.

Proof: Suppose that (x_n) is not a Cauchy sequence, then there exists an $\varepsilon > 0$ and a subsequence (x_{n_i}) such that: $\|x_{n_i} - x_{n_j}\| \ge \varepsilon$ for $i \ne j$. By the uniform convexity of h there exists a 0 > 0 such that:

 $h(x_{n_i}) \leq h(\frac{1}{2}(x_{n_i} + x_{n_{i+1}})) \leq \frac{1}{2}(h(x_{n_i}) + h(x_{n_{i+1}})) - o^{\epsilon}.$

Thus $h(x_{n_{1}+1}) \ge h(x_{n_{1}}) + 2\sigma \ge h(x_{1}) + 2i\sigma$ for all i.

This contradicts the boundedness of h. Now, let $x \in S$ and h(x) = a. If $x \ne \lim_n x_n$, then there is an c > 0 and n_o such that: $\|x_n - x\| \ge c$ for all $n > n_o$. Then there is a o > 0 such that: $h(x_n) \le h(\frac{1}{2}(x_n + x)) \le \frac{1}{2}(h(x_n) + h(x)) - o ,$

 $h(x) \ge h(x_n) + 2\sigma$ for all $n \ge n_0$.

This contradicts the assumption $h(x) = \lim h(x_n)$ and the proof of Lemma 2 is complete.

Lemma 3. Let S $\in \mathcal{M}$ and $x \in S$ be such that $h(x_0) < h(x) < < \sup \{h(x) | x \in S\}$, then $f(x) \in S$.

Proof: Suppose that $f(x) \notin S$. We claim that $h(f(x)) \notin R(h|S)$. In fact, if h(f(x)) = h(y) for some $y \in S$, then h(x) < h(y) and $y \neq f(x)$; then by a) h(f(x)) < h(y), a contradiction. This shows that $h(f(x)) \notin R(h|S)$) and $h(f(x)) < \sup \{h(x) | x \in S\}$. Now by c) there exists a $z \in S$ such that h(z) < h(f(x)) < h(f(z)) but by Lemma 1) and by a) it is impossible. That proves that $f(x) \in S$ and ends the proof of Lemma 3.

Lemma 4. Let $S \in \mathcal{M} \setminus x \in D$, $h(x_0) < h(x) \le h(u)$ for some $u \in S$. Suppose that there exists a sequence $(x_n) \subseteq S$ such that $\lim x_n = x_1 h(x_n) \uparrow h(x)$, then $x \in S$.

Proof: If $h(x) \notin R(h|S)$, then h(x) < h(u). In fact if h(x) = h(u) then by Lemma 2, $u = \lim_n x_n = x \in S$, a contradiction. By the condition c) there is a $z \in S$ such that h(z) < h(x) < h(f(z)). Then there is an integer n_0 such that $h(z) < h(x_{n_0}) < h(f(z))$. This contradicts the condition a). This shows $h(x) \in R(h|S)$ and h(x) = h(y) for some y, $y \in S$. By Lemma 2) $y = \lim_n x_n = x \in S$. This ends the proof of Lemma 4.

Lemma 5. Let $S \in \mathcal{M}$, $y \in S$, $y \neq x_0$; then either y = f(z) for a $z \in S$, $z \neq y$ or $y = \lim_{m \to \infty} f(z_n)$; $h(f(z_n)) \uparrow h(y)$ for a sequence $(z_n) \subseteq S$.

Proof. Put $M_y = \sup \{h(x) | x \in S; h(x) < h(y)\}$.

- 1) If $M_y = h(y)$, then there is a $(z_n) \subseteq S$ such that $h(z_n) \uparrow h(y)$. By the condition a) we have $h(z_n) < h(f(z_n)) \le h(z_{n+1}) < h(y)$. Thus $h(f(z_n)) \uparrow h(y)$. By Lemma 3) $f(z_n) \in S$ for all n and by Lemma 2) $y = \lim_{n \to \infty} f(z_n)$.
- 2) If $M_y < h(y)$, then by c) there is a $z \in S$ such that $h(z) < \frac{1}{2}(M_y + h(y)) < h(f(z)) \le h(y)$. By Lemma 3) $f(z) \in S$ and by Lemma 1 f(z) = y. Of course $y \ne z$. This completes the proof of Lemma 5,

Lemma 6. Let $S_1, S_2 \in \mathcal{M}$ and suppose that for each $x \in S_1$ there is a $u \in S_2$ such that $h(x) \leq h(u)$. Then $S_1 \subseteq S_2$.

Proof: Suppose that $S_1 \not= S_2$, then $S_1 \setminus S_1 \cap S_2 \not= \emptyset$. Let $\overline{x} \in S_1 \setminus S_1 \cap S_2$. By assumption there is a $u \in S_2$ such that $h(u) \ge h(\overline{x})$. Put $A = \{x \in S_1 \cap S_2 : \forall y \in S_1; h(y) < h(x) \implies y \in S_2\}$. Of course $A \not= \emptyset$ since $x_0 \in A$. It is clear that $h(x) < h(\overline{x})$ for all $x \in A$. Put $M_A = \sup \{h(x) \mid x \in A\} \ne h(\overline{x})$.

- 1) If $M_A \in R(h \mid A)$, then $M_A = h(y) < h(\overline{x})$ for some $y \in A$. By Lemma 3 $f(y) \in S_1 \cap S_2$; h(y) < h(f(y)) and if $z \in S_1$, h(z) < h(f(y)), then $h(z) \leq h(y)$. Thus $z \in A$. Therefore $f(y) \in A$, a contradiction.
- 2) If $M_A \notin R(h|A)$, then there is an $(x_n) \subseteq A$, $h(x_n) \uparrow M_A$. By Lemma 4) $\lim x_n = x \in S_1 \cap S_2$. It is clear that $x \in A$. It contradicts the fact $h(x) = M_A \notin R(h|A)$. This shows that $S_1 \setminus S_1 \cap S_2 = \emptyset$ and $S_1 \subseteq S_2$.

Lemma 7. 3 = Uisis & m 3 & m.

Proof: It is easy to verify that \overline{S} satisfies all conditions a),b),c).

Now we return to the proof of the theorem. Put

 $M = \sup \{h(x) | x \in \overline{S} \}$. If $M \notin R(h|\overline{S})$, then there is a sequence $(x_n) \subseteq \overline{S}$, $h(x_n) \uparrow M$. By Lemma 2 there is an $\overline{x} = \lim x_n$ and $h(\overline{x}) = M$. Put $\overline{S} = \overline{S} \cup \{\overline{x}\}$. It is obvious that \overline{S} satisfies the condition c).

Now we verify that \widetilde{S} also satisfies the conditions a),b), too. Let $x \in \widetilde{S}$, $h(x) < h(\overline{x})$, then $x \in \overline{S}$ and there exists an n_0 such that $h(x) < h(x_n)$ for all $n > n_0$. Since $\overline{S} \in \mathcal{M}$, we have $P(x,x_n)$ and $h(x) \ne h(f(x)) \ne h(x_n), h(x) \ne h(\frac{1}{2}(x+x_n))$ for all $n > n_0$. Since P is closed and h is continuous, it follows that $P(x,\overline{x}), h(x) < \langle h(f(x)) < \lim h(x_n) = h(\overline{x}) \text{ and } h(x) \ne \lim h(\frac{1}{2}(x+x_n)) = h(\frac{1}{2}(x+\overline{x}))$. This shows that $\widetilde{S} \in \mathcal{M} \implies \widetilde{S} \in \overline{S}$ and $\overline{x} \in \overline{S}$. This contradicts the fact $M = h(\overline{x}) \notin R(h|\overline{S})$. Then there is a $u \in \overline{S}$ such that h(u) = M. Put $\widetilde{S} = \overline{S} \cup \{f(u)\}$. Of course \widetilde{S} satisfies the condition c). Let $x \in \widetilde{S}$, h(x) < h(f(u)), then $x \in \overline{S}$. If $x = x_0$, then of course $P(x_0, u)$ and $h(x_0) \ne h(\frac{1}{2}(x_0 + f(u))) \ne \frac{1}{2}(h(x_0) + h(f(u))) \implies h(f(u)) \ge h(x_0)$ and by assumption 1) we have $P(x_0, f(u))$.

If $x \neq x_0$, then either x = f(z) for a $z \in \overline{S}$ or $x = \lim f(z_n)$, $h(f(z_n)) \uparrow h(x)$ for a sequence $(z_n) \subseteq \overline{S}$.

- 1) Let x = f(z) for a $z \in \overline{S}$, x + z, then $h(z) < h(x) \le h(u)$. By the conditions a),b) we have P(z,u) and $h(\frac{1}{2}(z+u)) \ge h(z)$. By assumption 2) it follows that P(x,f(u)) and $\frac{1}{2}(h(f(u)) + h(x)) \ge Zh(\frac{1}{2}(x+f(u))) \ge h(x) \Longrightarrow h(f(u)) \ge h(x)$.
- 2) If $x = \lim f(z_n): h(f(z_n)) \uparrow h(x)$ for a sequence $(z_n) \subseteq \overline{S}$, then $P(z_n, u)$ and $h((\frac{1}{2}(u+z_n)) \ge h(z_n)$. By assumption 2) we have $P(f(z_n), f(u))$ and $\frac{1}{2}(h(f(u)) + h(f(z_n))) \ge h(\frac{1}{2}(f(u) + f(z_n)) \ge h(f(z_n))$. Since P is closed and h is continuous, it follows that: P(x, f(u)) and $\frac{1}{2}(h(f(u)) + h(x)) \ge h(\frac{1}{2}(f(u) + x)) \ge h(x) \Longrightarrow h(f(u)) \ge h(x)$.

This proves that P(x,f(u)), $h(\frac{1}{2}(f(u) + x)) \ge h(x)$, $h(f(u)) \ge 2h(x)$ for all $x \in \overline{S}$, especially for x = u.

Now let $x \in \widetilde{S}$, h(x) < h(f(u)). Then $x \in \overline{S}$. If $x \neq u$, then h(x) < < h(u). Since $\overline{S} \in \mathcal{M}$, we have h(f(x)) > h(x), $h(f(x)) \leq h(u) \leq \leq h(f(u))$. This proves that \widetilde{S} satisfies the conditions a),b),too, and $\widetilde{S} \in \mathcal{M}$. Therefore $\widetilde{S} \subseteq \overline{S} \implies f(u) \in \overline{S}$ and h(f(u)) = h(u). By Lemma 1) f(u) = u. This completes the proof of the theorem. For the sake of completeness we include the following

Lemma 8. Let X be a uniformly convex Banach space, D a convex bounded subset of X, then the function $h(x) = x^2$ is uniformly convex, continuous and bounded on D.

Proof: The boundedness and the continuity of h are obvi-

Now without loss of generality we can suppose that D is contained in the unit ball $B_1(0)$ of X. Suppose that h is not uniformly convex, then there exist an $\mathfrak{E} > 0$ and subsequences (\mathbf{x}_n) , $(\mathbf{y}_n) \in \mathbf{D}$ such that: $\|\frac{1}{2}(\mathbf{x}_n + \mathbf{y}_n)\|^2 \ge \frac{1}{2}(\|\mathbf{x}_n\|^2 + \|\mathbf{y}_n\|^2) - \frac{1}{n}$ for all $n = 1, 2, \ldots$. We can suppose that $\mathbf{a} = \lim \|\mathbf{x}_n\| \ge \lim \|\mathbf{y}_n\| = \mathbf{b}$. Put $\lambda_n = \|\mathbf{y}_n\|(\|\mathbf{x}_n\|)^{-1}$, then $\lim \lambda_n = \lambda = \mathbf{ba}^{-1}$.

1) Let $\mathcal{A} < 1$, then $\|\frac{1}{2}(\mathbf{x_n} + \mathbf{y_n})\| \le \frac{1}{2}(\|\mathbf{x_n}\| + \|\mathbf{y_n}\|) = \frac{1}{2}(1 + \lambda_n)\|\mathbf{x_n}\|$. By assumption it follows that:

$$-\frac{1}{n} + \frac{1}{2}(1 + \lambda_n)^2 \|x_n\|^2 \le \|\frac{1}{2}(x_n + y_n)\|^2 \le \frac{1}{4}(1 + \lambda_n)^2 \|x_n\|^2.$$
Taking limit we have a contradiction: $\frac{1}{4}(1 - \lambda)^2 \le 0$.

2) Let $\lambda = 1$. We can suppose that $\|\mathbf{x}_n - \lambda_n \mathbf{y}_n\| \ge \frac{1}{2} \varepsilon$ for all n. Then $\|\mathbf{x}_n\| = \|\lambda_n \mathbf{y}_n\| > \frac{1}{4} \varepsilon$. Of course $\|(\|\mathbf{x}_n\|)^{-1}\mathbf{x}_n - (\|\mathbf{y}_n\|)^{-1}\mathbf{y}_n\| = (\|\mathbf{x}_n\|)^{-1}\|\mathbf{x}_n - \lambda_n \mathbf{y}_n\| > (2\|\mathbf{x}_n\|)^{-1}.\varepsilon > > \frac{1}{2} \varepsilon$. By the uniform convexity of X there exists a $\sigma > 0$ such that $\|(2\|\mathbf{x}_n\|)^{-1}(\mathbf{x}_n - \lambda_n \mathbf{y}_n)\| < 1 - \sigma$. By assumption it follows that:

$$-\frac{1}{n} + \frac{1}{2}(1 + \lambda_n^2) \|x_n\|^2 \le (\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\| + \frac{1}{2}(1 + \lambda_n^2)\|x_n\|^2 \le (\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\| + \frac{1}{2}(1 + \lambda_n^2)\|x_n\|^2 \le (\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\|^2 + \frac{1}{2}(1 + \lambda_n^2)\|x_n\|^2 \le (\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\|^2 + \frac{1}{2}(1 + \lambda_n^2)\|x_n\|^2 \le (\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\|^2 + \frac{1}{2}(\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)^2 + \frac{1}{2}(\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\|^2 + \frac{1}{2}(\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)\| \|x_n\|^2 + \frac{1}{2}(\|(2\|x_n\|)^{-1}(x_n + \lambda_n y_n)^2 + \frac{1}{2}(\|(2\|x_n\|)^2 + \frac{1}{2}(\|x_n\|)^2 + \frac{1}{2}(\|(2\|x_n\|)^2 + \frac{1}{2}(\|x_n\|)^2 + \frac{1}{2}(\|x_n\|)^2 + \frac{1}{2}(\|(2\|x_n\|)^2 + \frac{1}{2}(\|x_n\|)^2 + \frac{1}{$$

+ $(1 - \lambda_n) \frac{1}{2} \|y_n\|^2 \le [(1 - \delta) \|x_n\| + (1 - \lambda_n) \frac{1}{2} \|y_n\|^2$. Then $0 < a^2 < (1 - \delta)^2 a^2$, a contradiction. This proves that h is uniformly convex.

Corollary 1. Let $0 \in D$ be a bounded closed subset of a uniformly convex Banach space, P a reflexive closed relation on D. Let $f:D \longrightarrow D$ be a map such that:

- 1) if $x \in D$, P(0,x), then P(0,f(x))
- 2) if $x,y \in D$; P(x,y) and $\left\|\frac{1}{2}(x+y)\right\| \ge \|x\|$, then P(f(x),f(y)) and $\left\|\frac{1}{2}(f(x)+f(y))\right\| \ge \|f(x)\|$. Then f has a fixed point.

Now if the relation P is defined by P(x,y) for all $x,y\in D$, then we have:

Corollary 2. Let D be a closed subset of a Banach space, h: conv D \longrightarrow R₊ a uniformly convex continuous bounded function attaining its minimum at $x_0 \in D$. Suppose that $f:D \longrightarrow D$ is a map such that if $x,y \in D$, $h(\frac{1}{2}(x+y)) \ge h(x)$, then $h(\frac{1}{2}(f(x) + f(y))) \ge h(f(x))$. Then f has a fixed point.

If the relation P on D is defined by: P(x,y) if and only i $h(\lambda x + (1-\lambda)y) \ge h(x)$ for all $\lambda \in [0,1]$ then we have:

Corollary 3. Let D, h be as in Corollary 2 and $f:D \to D$ map such that: if $x,y \in D$, $h((1-\lambda)x + \lambda y) \ge h(x)$, then $h((1-\lambda)f(x) + \lambda f(y)) \ge h(f(x))$ for all $\lambda \in [0,1]$. Then f has a fixed point.

All notions concerning Banach lattices used here are standard, we refer the reader for instance to [6].

Corollary 4. Let X be a uniformly convex Banach lattice, $0 \le D$ a closed, bounded subset of the positive cone C^+ of X. Let $f:D \longrightarrow D$ be a map such that: if $x,y \in D$, $x \le y$, then $f(x) \le f(y)$.

Then f has a fixed point.

Proof: It is sufficient to note that if $x,y \in D$ and $x \leq y$, then $||x|| \leq ||y||$.

Let X be a Banach space. $L_2^X([0,1])$ denotes the Lebesgue space of all strongly measurable functions $x:[0,1] \to X$ such that:

$$\|x\|_{L_2} = (\int_0^1 \|x(t)\|^2 dt)^{\frac{1}{2}} < \infty$$

Lemma 9. Let X be a uniformly convex Banach lattice, D = $= \{x \in L_2^X([0,1]): \|x(t)\|_X \le K \text{ for all } t \in [0,1] \}$

for some positive number K, then the function $h(x) = ||x||_{L_2}^2$ is uniformly convex on D.

Proof: Let & be a given positive number, $x,y \in D$ such that $\|x-y\|_{L_2} > \&$. Put $I = [0,1]; A = \{t \in I, \|x(t)-y(t)\|_{X} \ge \frac{1}{2} \&$.

Then
$$\int_0^1 \|\mathbf{x}(t) - \mathbf{y}(t)\|^2 dt \le \int_A \|\mathbf{x}(t) - \mathbf{y}(t)\|^2 dt + \int_{I \setminus A} (4)^{-1} \cdot \varepsilon^2 dt < < 4K^2 \text{ (A)} + \frac{1}{4} \varepsilon^2 \Longrightarrow \text{ (A)} \ge \frac{3}{16} \varepsilon^2.$$

By Lemma 8, there exists a d > 0 such that:

$$\|\frac{1}{2}(x(t)+y(t))\|^2 \leq \frac{1}{2}(\|x(t)\|^2 + \|y(t)\|^2) - \delta' \quad \text{for all $t \in A$.}$$

It follows that:

$$\begin{split} &\|\frac{1}{2}(\mathbf{x}+\mathbf{y})\|_{\mathbf{L}_{2}}^{2} \leq \int_{A} \|\frac{1}{2}(\mathbf{x}(t)+\mathbf{y}(t))\|^{2} \mathrm{d}t + \int_{\mathbf{I} \setminus A} \|\frac{1}{2}(\mathbf{x}(t)+\mathbf{y}(t))\|^{2} \mathrm{d}t \leq \\ & \leq \frac{1}{2} \int_{A} (\|\mathbf{x}(t)\|^{2} + \|\mathbf{y}(t)\|^{2} - \sigma) \mathrm{d}t + \int_{\mathbf{I} \setminus A} \frac{1}{2} (\|\mathbf{x}(t)\|^{2} + \|\mathbf{y}(t)\|^{2}) \mathrm{d}t \leq \\ & \leq \frac{1}{2} (\|\mathbf{x}\|_{\mathbf{L}_{2}}^{2} + \|\mathbf{y}\|_{\mathbf{L}_{2}}^{2}) - \frac{3}{16} \cdot \varepsilon^{2}. \end{split}$$

This ends the proof of Lemma 9.

Now we consider the Cauchy problem of differential equation in Banach lattice X:

(I)
$$\begin{cases} \dot{x} = f(t,x) \\ x(0) = x_0 \end{cases}$$

where $f:[0,1] \times X \longrightarrow X$ satisfies the Carathéodory conditions, i.e.:

- 1) $f(t, \cdot)$ is continuous for a.e. $t \in [0, 1]$,
- 2) f(.,x) is strong measurable for every x 6 X.

We say that (I) has a solution, if there exists a continuous function $x:[0,1] \longrightarrow X$ such that: $x(t) = x_0 + \int_0^t f(s,x(s)) ds$ for all $t \in [0,1]$.

Corollary 5. Let X be a uniformly convex Banach lattice, $f:[0,1] \times X \longrightarrow X$ satisfies the Carathéodory conditions, and:

- 1) there is a function $\beta(t) \in L_1([0,1])$ such that $\|f(t,x)\| \leq \beta(t)$ for all $t \in [0,1], x \in X$,
- 2) $0 \le f(t,x) \le f(t,y)$ if $0 \le x \le y$; $t \in [0,1]$. Then for each $x \in C^+$ the problem (I) has a solution.

Proof. Put $D = \{x \in L_2^X([0,1]) : x(t) \ge 0 \text{ and } \|x(t)\|_{X} \le \|x_0\| + \int_0^1 \beta(t) dt \text{ for all } t \in [0,1] \}$, $F_f(x)(t) = x_0 + \int_0^t f(s,x(s)) ds \text{ for } x \in D$, $t \in [0,1]$. One can verify that F_f : $:D \to D$ and $F_f(x) \le F_f(y)$ if $x,y \in D; x \le y$. Now we define a relation P on D such that P(x,y) if and only if $x \le y$. Put $h(x) = \|x\|_{L_2}^2$. By Lemma 9, h is a uniformly convex continous bounded function on $D \ni 0$. If $x,y \in X$, $x \le y$, then $\frac{1}{2}(x+y) \ge x$ and $\|\frac{1}{2}(x+y)\|^2 \ge \|x\|^2$. Therefore if $x,y \in D$, $x \le y$, then $F_f(x) \le F_f(y)$, $\frac{1}{2}(F_f(x) + F_f(y)) \ge F_f(x)$ and $\|\frac{1}{2}(F_f(x) + F_f(y))\|^2 \ge \|F_f(x)\|^2$. By the theorem F_f has a fixed point $\widehat{x} \in D$. It is easy to see that \widehat{x} is a solution of (I).

References

[1] H. BRÉZIS, F. BROWDER: A general ordering principle in nonlinear functional analysis, Advances in Math. 21 (1976), 355-364.

- [2] F. BRØNSTED: Fixed points and partial orders, Proc. Amer.
 Math. Soc. 60(1978), 365-366.
- [3] J. CARISTI: Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
- [4] I. EKELAND: Nonconvex minimization problems, Bull. Amer.
 Math. Soc. (New Series) 1(1979), 443-474.
- [5] B. FUCHSTEINER: Iterations and fixed points, Pacific J. Math. 68(1977), 73-79.
- [6] H. SCHAEFER: Banach lattices and positive operators, Springer-Verlag, New York (1974).

Math. Dept. of Economical Institute, Hanoi, Vietnam

(Oblatum 28.5. 1984)