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ARMA MODELS WITH NONSTATIONARY WHITE NOISE
T. CIPRA, J. ANDEL

Abstract: The stationarity of ARMA (p,q) processes is in-
vestigated when the corresponding white noime is nonstationary
with a general covariance structure. The considered ARMA Proces-
ses are generatsd from initial random variables 11 ,...,X.u(p Q)

A »

(i.e. they start in a given time point denoted as t = 1) and in
this framework the processes b SPTRYS ,I.l of the finite length and

the processes 11.12,... of the infinite length are distinguish-
ed. In the latter case with the infinite length the paper confi-
nes itself to ARMA processes with so called “almost whide noise"™.

Key words: Nonstationary white noise, ARMA process, stati-
omﬂy. almost white noise. ’ !

Clessification: 62M10, 60G10, 60G20

1. Introduction. The linear models with nomstationary whi-
te noise have been studied in several works recently. E.G., Nie-
mi [5] dealt with stationarity and some statistical properties
of ARMA processes in which the white noise {& t‘i could have
nonconstant bounded variances (i.e. E €y =0, O<mévar € <M
for some constants m and M, E S4Ey = 0 for t #u). Statisti-
cal treatment of AR processes of this type is suggested in {81,

If the nonstationary zero mean white noise may have a ge-
neral coveriance structure E €€, ,, the situation is more com-
plicated, of course, and many open problems appear in this fra-
mework., E.g. it is interesting to investigate under which con-
ditions the linear process using such nonstationary white noise
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is stationary. The following example shows that the existence
of a stationary process of this type is peasible.

Bxample. Let 2 be a random variable with E€ = O and
var € = 627 0. Let us define eBt =g, e”ﬂ = g, 63“2 =
= - ¢ for all t. The process {eti has the nonstationary cove-

2
riance structure since E €4 €549 = 6 %EB ©3441 E3442 =
- - 62. On the other hand, MA(3) process {Iti defined as X, =
= 8y + €4 4+ €, , is stationary since I, = ¢ for all %,

In this paper, the stationarity of such processes is inves-
tigated which are generated from initial random variables 11,...
“"xnax(p,q)' Moreover, they can have a finite length (see Sec-
tion 3) or they can be infinite (see Section 4). In the latter
case with the infinite length we confine the general nonstatio-
nary white noise to so called almost white noise introduced in
[71. However, at first it is necessany to derive the conditions
of stationarity of the process ARMA generated from initial ran-
dom variables in the classicel case with a stationary white noi-
se. It is done in Section 2 generalizing And¥l s results [1]
derived for the autoregressive case. The stationarity always
means the weak stationarity in this paper.

2., ARMA processes generated from initial random variables

and stationary white noise. Let X;,...,X. (r = max(p,q)) be
random variables with zero mean values and a variance matrix V

and ®g 440005 Sqp (8 = r - q) be random variables with zero me-

an values, Let random variables xrﬂ seee .x, be defined by means

of the formula

(1) xt = th-1+no'+ .pxt-p+ Gt"' b1 et_1+00l+ bq et‘q'
r+1£t47,
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where a4,... ) byses.,b,  are given numbers. Moreover, let the

following assumptions be ‘flulfilled:

(2) ver e, = 62>0, s+l t<T,

(3) cov(eyy8,) =0, s+14 t<usT

(4) cov(Xy, ¢,) =0, 14t&r, s+1£u<l, t<u,
(5) cov(X;, e,) = dgf;u) 62, stl4du<£tgr,

(k)
3

where d » KZ 0, 0% J< k+q, are constants uniquely determined

bysess,b, Buch that

by the numbers 815000,8 a

(6) dgk)s 1, kZzo0,
d§°)= by, 1£ j<a, )

p’

(k) (k) (k)
Lpriee1™ Sgaia1t 477 Spppetecet dn Cppqiqt o X

(k) (k)
+ 05 Xy otesot °p It+1_p, kZO0

(cik) » kZ0, 1=1< p are other constants also determined unique-

1y by 84,...,8 b1,...,bq). The system (1)-(5) can be consider-

p’
ed as the system of prescriptions which ane uses generating the

gliven process., Although it may look complicated it has simple

forms in special cases (see Remark 2).

Remark 1. The constents cik) and d(k) can be calculated re-
cursively from (1). It is not difficult to show that

c§_°) =8, 1£14p,
o) o o{ka) y (k=g 423gpa,
cl(,k) csk'”a

d§k) = a1, 032k,

K k=1 k=1

RCIN IO

alk) o lE=1) c1(k"1)bj_k, k+1 & J € kg1,

k) k-1)
dk+q = °1 ch

If a_40 and b_#0 then the previous sequence Xysee0,Xp forms
so called process ARMA(p,q) of the finite length geonerated from
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the initial random variables I,,... .Ir and the stationary white

noise,

Remark 2. Let us consider some special cases of the previ-
ous model:

(1) AR(p): the variables I,....,Ip. e,p+1,.... €y are gi-
ven fulfilling (2)-(4) (the assumption (5) has no sense in this
case) so that the situation is equivalent to the one considered
in [1] for the autoregressive case;

(11) MA(q): the variables x,.....xq. €qse0ey CSp are given
fulfilling (2)-(4) end

oov(xt. et) - 62.

cov(Xy, e,) = bt_u62, 1suct<q;

(1ii) ARMA(1,1): the variables Xiy €peeey GT are given
fulfilling (2)-(4) and

cov(Xy, €) = 62,

One can prove the following extension of (4) and (5):

Lemma 1, It holds
(7 oov(xt. eu)- 0, 1€t £T, st1&u <, t<u,
(8) cov(Xy, €)= ati"W 62, 14t41, sr14usr, tzu.
Proof. The formula (7) is obvious. As the formula (8) is
concerned, it is obvious for u>r since then one can write
(t-u) (t-u) (t-u)
(9) xt- e+ dg Ty qteeat dt+q-u L a* Xyqteeot
(t-u)
Lyep

Generally (B) can be proved by means of the induction with re-
spect to t. For t<r (8) follows directly from the aasumption
(5). Let (8) hold for some tZr. We shall show that then it
holds also for t+1.
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If r<ustsl them cov(X,,q, &) = a{¥11-We 2 aocording to

the previous discussion. Therefore let s+1< u<r, Then accord-
ing to the induction assumption
0ov(Xy 14 €)= cov( 64,4, €y)+ byoov( 24y £, )4e0et

+ chov( €t+1-q' e )+ Hoov(xt, eu)+...+apcov(xt+1 )

“Pne“
-oov(et+1 ,eu)+ b,oov(et.eu)h..-o- bqoov(etﬂ_q,en) +

(t-u) x2 (t+1=p-u) . 2
+oagds " 8%t ‘pdtﬂ-p-u e,

where possibly d{)= 0 for k<0. Thanks to the definitien of the
coefficients dgk) and to the properties of et we can further

write

coV(Xy q08,)= CoV(€s 1 n s Byg) ¥ DIooV(Ey g yoCryr)teee

eset chov(et+r+2_q_u. €r+1 )+ .1 “v(xt+r+1 -u? Eﬂ‘ ) teoot
+ 800v(Xy, o by Ers?

(t+1-u) 2
= coV(Xy iz ur 1) = dtwrg 60

where the last equality follows from the discussion in the be-
ginning of the proof (if t+r+2-u>T then we can imagine that we
have infinite sequence 65_,_1....,5!. ©pyqseeee in our disposal).

Lemma 2, The sequence X,;,...,Xy is stationary if and only
ir
(10) var(Xyyeee,X,) = var(X,,ece,Xpyq)e

Proof. Let (10) hold. We shall show by means of the induc-
tion that then
(1) var(X;,e..,X,) = var(xz,...,xnﬂ). r<£h<7T-1
(hence the stationarity will follow for h = T-1), The case h=r
corresponds directly to (10). Let (11) hold for some r<h<£7T-2,
Then (11) will be proved for h+l if we show that
(12) cov(l’hn ,IJ) = oov(x‘“z.xjﬂ). 1£3<h,
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We have due to (1)
cov(xk+1,xj)- a1cev(xk.13)+...+ apcov(lk+1_p,xd) +
+ cov(‘c:h+1 .xj)+ b1°°"(€hox;1)*""" chov(ehﬂ_q,xd),
oov(Xk+2,IJ+1) = a1oov(Ik+1,IJ+1)+...+ apcov(xk*z_p!xj+1)+
+ cov(eh+2,xj+1)+ b1cov(€h*1.xi+1)+...+ chov(€h+2_q,xj+1).
Pirst we shall prove (12) for 1£ J<h. According to Lemma 1 it
holds
(13) cov(ﬁk,xj)- cov(ek"‘1 ,xjﬂ), htl=-q£k£h+l, 1€ J£h,
Further it holds directly according to the induction assumption
(14) cov(xk.xd)- cov(Xy 4 ,xjﬂ), h#l-p£k<h, 1£j%h,
Prom (13) and (14) it follows (12) for 1£ j£h, For j=h+1 we can
make use of the fact that
(15) cov(e.k,xh+1)t cov(ek,xh+2), h+1-q £ k£ h+1
(see again Lemma 1) and
(16) cov(xk,xh,n)- cov(Ik+1 ,Ih+2), h+l-p£k£h
(see (12) proved for 1< j<h). From (15) and (16) it follows (12)
for j= h+l., It concludes the proof since the inverse implicati-

on is obvious.

Let us introduce the following three matrices of the type

TrRYT
o 1 O coe 0
o o 1 a0 o
M= .

o 1

[« o) ap ap__1...82 31
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0 SR
0 ece O
A= | ’
0 eee 00 )
0 0 .. 0 BE(I+bYe..4bD)
70 e 00 AN
1 : \
\
0 «e. 0 O |-
Z =| 0 ... 0 &%, >
2 (1)
0 «.. 0 6 (bq_1+ v.357)
' 2 (1) (g~1)
0 see 0 65(by+bydy “4esot bdo )

where in the last row of M there are the coefficients ap,...
eve 8y preceded by r-p zeros if r>p and similarly for the last

column of Z.

Lemma 3. The sequence 11,...,XT is stationary if and only
if the matrix V = var(x1,....xr) satisfies the equation
(17) V=M + M2 +2M +A.

Proof. One can write

12 11 (o)
. - u e + .
- 3 X 0
X X Crert Py Eptecetbobr g/

The variance matrices of the random vectors on both sides of

this equation must be equel so that
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T.r(xzpoac .1”1) = m’ + MNZ + Z'I' "‘A

(the covariance matrix 2 can be calculated due to Lemma 1),

Now the assertion of Lemma 3 is obvious according to Lemma 2.

Let us consider an ARMA process of the fomm
(18) Y= &)Y, j+.c0+ 8 Ye pt B4F Dy Sy qteeet bq €iq?
-0<t <00,
where <, is a stationaty white noise with the variance 62.
The well known condition of stationarity of (18) has the form:

8ll roots of the polynomial

1
(19) 2P~ a2 ', .- e

are less than one in the absolute value (let us refer to it as
to the condition of AR-regularity).

If the process !t is stationary then it is not difficult
to show that the equality (17) in which xt is replaced by Yt
must hold. From this fact several conclusions can be drawn.
Pirstly, the autocovariances of the stationary ARMA(p,q) pro-
cess X;,...,Xp of the finite length are equal to the correspon-
ding autocovariances of the stationary ARMA(p,q) process (18).
Purther under the condition of AR-regularity the equation (17)
has the unique solution of the form

(20) v -:‘Eo MMz + 2M° + A ME

(the convergence of the infinite sum in (20) follows from Per-
ron’s formula and from the fact that the matrix M has r-p zero
eigenvalues and the remaining p eigenvalues are the rooty of
the polynomial (19), see [1], Section XIII.1, for the autoreg-
ressive case). The solution (20) is positive definite since due
to its uniqueness it must be V = var(Y,,...,Y,) and
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m(!1.....!r) is positive definite (the process Y, is non-de-
terministic and therefore all finite variance matrices of it

are regular).

Remark 3. In the autoregressive case the explicit ferm of
the inverse matrix V” expressed by means of the numbers 845000

is given in [1], Section XIII.2., On the other hand, the

see 98
P
formula (20) can be recommended thanks to the rapid convergence

of the infinite sum in it.

Pinally one can extend all preceding considerations to the
case of ARMA process 11 .x2.... 0f the infinite length. If the as-
sumptions (2)-(5) hold for the infinite sequence Ege1r Egeprece
and the initial random variables Xyye..,X, conclusions of this
section stay valid for 11 ,12,... .

3. ARMA processes of finite length generated from initial
random variables and nonstationary white noise. Now we shall de-

al with the process ARMA of the finite length when the zero mean
sequence <., a+1< t 4T, loses the properties of the statiomary
white noise for r<+t <7, Therefore let the assumptions (2) and
(3) be replaced by

(21) var £, =62>0, s+14t<r,

(22) oov( ey, €,)= 0, s+l £t &r, t<u<l,
(23) E = var( @©ppyseees Bp) 18 reguler.

Theorem 4. Let the assumptions (4),(5),(21)-(23) be valid.
Further let the variance matrix V of (X,,... ,xr)' be the soluti-
on of (17). Then the sequence Xysee.Xp generated according to

(1) 1is stationary if and only if €,.44..., € 18 the stationa-
ry white noise.
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Remark 4. In the autoregressive case (q=0) the assumpti-
ons (5),(21) and (22) are omitted.

Proof. If ©,.9se.ey €y 15 the stationary white noise then
the sequence x,,...,x! is stationary according to Lemma 3.

On the contrary let 11,...,1,1. be stationary. Then we want
to show that
(24) B =671,

'where I is the unit matrix. There exists & lower triengular mat-
rix F = (fij) with positive numbers on its diagonal such that
E = 6°Pr°

pince E is positive definite (so called Cholesky decomposition).
Let us define the random variables ’érﬂ"“' ZT by means of the
formula

~ ' e | -’
(25) (6H1,ou.. ET) =F (er+1""' F’T) .

Then var( ’é"ﬂ-‘l""’ €T) = 62 I so that the sequence ©,.q,ee0
cees By Eppqreces €qp forms e stationary white noise. Therefo-
re the sequence xs+1 seee ,Ir, 'i’r+1 sese "i’T generated by means of
(1) replacing €,,qseees ©p bY CARTTIT %’T is stationary ac-
cording to Lemma 3.

We shall prove that P = I (then (24) will hold). Pirst we
can write

X +b1€+...+b6

x qCr+1=g* 81Xptecot 8 X

r+1° “r+1 r+1-p

= L1 8qt Dy Eptecet Doy gt BKptecet 8 p
~ ~
Xr+1- r+1+ b1 6r+ooo+ bq€N1_q+ a1xr+...+ Bpxﬂ-‘_po
Hence it holds obviously var X .- var X, 4= 3, 6% - 62. Since
var X 4= var X = var ilrﬂ it must be f,,= 1 (consequently it
-~ ~
is €r+1- 6“1 and er- xr+1)o
Further it is
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(V) s alv) (1) (1)
Xpp® Erapt 41 7 Epyqt G 7 Spteeet Aoy Cnyq gt 0 Xptees

(1) 2 (y 5 (1)
eoet Cp X g pm Top ot (fpg+ 4777) Bt dp e kLt

(1) (1 (1)
+ dq+1 €r+1_q+ °1 xr+-.¢+ cp xr+1_p,
% (Dz (M (1) (1)
Trop= Bpt 41 TBpygt 43 T0ptecet dgyq Cppqogt O Xpteee
+ c(1)x
S8 p “r+l-p.

Hence 1t holds cov(Xp,pXpyq) = cov(E s X pyq)=(tyy+ af1)) 62 -
- 62 2 1,62, Since cov(X ,p.Xpyq)= COV(X g K=

-~

= cov( e .
variances of xr+2 and ’fp+2 one will find analogously that f22-

~
Ir)- cov(X . 5 ’Ir+1) it must be f,,= O. Comparing the

= 1 ete. (it is possible to proceed by means of the imduction).

One of the practical interpretations of Theorem 4 is the
following: when we generate an ARMA process on the computer by
means of (1) under the condition of AR-regularity using initial
random variables with the variance matrix (20) we cannot obtain
the stationary process if the random shocks gemnerated by the com=

puter do not form a white noise.

4., ARMA processes of infinite lesgth generated from initial
random variaebles and nonstationary white noise. It is interest-

ing from the theoretical point of view to generalize the consi-
derations from Section 3 to ARMA processes X, 1Xpreee of the in-
finite length. In order that the previous methodology could be

used we confine ourselves to such nonstationary white noise pro-

cess < €.4p1+++ Which was called by Tjéstheim and Thomas

r+1?
[7) almost white noise. It means that there exists a (stationa~-

ry) white noise ’51*1, ’5&2"" (i.e. E 'é't- 0, vo.r’ét- 62> o,
cov( %, €)= 0 for t+u) such that ¢,= BT, t= r+1,r2,...,

where B is a linear bounded operator with a bounded inverse B'1
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defined on Hilbert space H generated in the usual way by the pro-

-
cess €r+2"“ .

On the basis of the general theory given in [2] one can ob-

-
Cre1r

tain various necessary and sufficient conditions for the process
€419 Epgprece wi th zero mean values to be the almost white noi-
ge, e.g.

(I) there exist constents k, and k, such that it holds for

en arbitrary natural n and erbitrary numbers ’f1 secesy T
< 2 > 2,
(26)  kq =y AYIECZ Ay Cry)E 2,}:47 3

or another condition is following

(II) the infinite matrix (so called Gramm matrix)
(¢4P)] A = (cov( ?‘a:-r;)' €r+k))' Jok = 1,200

forms the bounded linear operator with the bounded inverse in

the space 12.

The simple example of the almost white noise is the process
of uncorrelated random variables with zero means and variances
lying between two positive constants (i.e., 0<m< var €4 £ M) men-
tioned in Section 1. The verification of the condition (I) is
trivial in this case. More complicated example is the zero mean
Process €..1s €pupses sSuch that the variance matrix of each
of its finite parts has all eigenvalues lying between two posi-
tive co,nstanta O<m< M., Then according to [6, 1£.2,1] it is

Bt 'Y;l=' m‘mina,j ’f; £ . Z Z 717J°°V(5r+1'5r+3)

= Wmax:,zs‘l 73‘"1 4 Y5
where A (resp. A___) is the minimel (resp. maximel) eigen-
min max

value of var( €

filled.

r10°°°0 ?ar*_“) so that the condition (I) is ful-
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Tjéstheim and Thomas [ 7] showed that the almost white noise
is the special case of so called UBLS (uniformly bounded linear-
ly stationary) processes which present the natural generalizati-
on of the stationary processes (see also [41). These authors al-
80 give some simple examples of the almost white noise processes.
According to [3] the operator from the definition of the almost
white noise can be determined by means of the infinite lower tri-
anguler matrix B = (bid) such that

(28) A =62 BB,
the process %’rﬂ' €r+2"“ defined explicitly by means of

P
Ere1 = P19 Cppq

(29) 4 ~
Eri2 = Ppq €pyq + Dy Bro,

is the corresponding stationary white noise with the variance 6’2.

Now Theorem 4 can be generalized in the following way.

Theorem 5. Let Pt Ss+2.... be & zero meen process such
that the assumptions (5),(21) and
(30) cov( ey, €,)=0, s+14 t&r, t<u,
(31) cov(Xy, €)= 0, 1£t<r, s+l <y, t<u
are fulfilled and €ri1s Epgprene is the almost white noise. Fur-
ther let the variance matrix V of (Xy,...,X.) " be the solution
of (17). Then the sequence XysX5,00. generated according to (1)
is stationary if and only if €gi1r Ggqpreee is the stationary
white noise,

Proof is analogous to the one of Theorem 4 using (29) in-
stead of (25).
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