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GROUP DISTANCES OF LATIN SQUARES
Ales DRAPAL and Tomas KEPKA

Abstract: Some results concerning the distances between
the tables of finite groups and latin squares are proved.
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For an integer nZ 2, let gdist(n) denote the least nom-zero
number of changes in the Cayley table of an n-elememt group te
obtain another latin square. These numbers play an important r6-
le in the problem concerning the largest possible number of as-
sociative triples of elements in finite non-associative quasi~
groups (see [2]). The purpose of this short note is to develop
a technique which might be useful in finding some lower bounds
for the numbers gdist(n).

1., Preliminaries. Throughout this note, the terminology,
notation, etc., of [3] is used.

Recall that R denotes the category of reduced partial grou-
poids and 7 the full subcategory of R consisting of reduced
balanced cancellative partial groupoids.

A homomorphism f of a partial groupoid K into a partial
groupoid L is called complete if for all (x,y) € M(L) such that
X,y,xy € £(K) there exists a pair (a,b) ¢ M(K) with f(a) = x amd
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£(b) = y (then f£(ab) = xy). Obvisudbly, every strong homomorphism
is complete.

A partial groupeid L is called a (complete, strong) partial
subgroupoid of a partial groupoid K if LS K and this inclusion
is a (complete, strong) homomorphism.

Let K€ R . We shall say that K is trivial if card B(K) =
= oard C(K) = card D(K) &« 1, In this case, 1£card K<3 and
card K = 3, provided K is balanced. A homomorphism f of K into
LeR 1is called trivial if £[K] is a trivial partial groupoid.
In this case, f[K] is & strong partial subgroupoid of L, provid-
ed L is balanced.

Let K6 R and d€K. Put r(d) = r(K,d) = card i(a,b,0);
a,b,66K, &b = ¢, def{a,b,0}} . Since K is reduced, r(d)=1.

Let K,Le R . VWe shall say that K is an immediate (strong-
1ly) open extension of L if L is a (strong) complete partial sub-
groupoid of K and r(K,d) = 1 for every de K - L. Further, we shall
say that K is an (strongly) open extension of L if there exists a
finite sequence K°QI1S ...;xn such that n=1, xo =L, K, =K
end K; 4 1s an immediate (strongly) open extension of K; for each
. 0£i<n,

A partial groupeid K € 7 is called (strongly) open if it is
non~-trivial and it is a (strongly) open extension of & trivial
partial subgroupoid L & 7.

1.1, Lemms, Let K¢ T and let a,b,c0€K be such that ab = c.
Then L = {a,b,0} is a three-element strong partial subgroupoid
of K and L is a trivial partial groupoid.

Proof. Obvious.

1.2, Lemma, Let K ¢ ° be such that m(K) &3. Then:
(1) r(a) = 1 for at least one aé& A(K).
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(1i1) K is strongly open, provided it is non-trivial.

Proof. Easy.

1.3. Lemma, Let K & I Dbe such that m(K) = 4. Then exact-
ly one of the following three cases takes place:
(1) r(a) = 1 for at least one a ¢ A(K) and K is strongly epen.
(11) r(a)Z 2 for every a€ A(K), r(d) = 1 for at lest ome d€D(R),
K is open and K is not strongly open.
(111) r(a)Z 2 for every a€ A(K), r(d)Z 2 for every d63(K), K
is not open and H(K) is & cyoclic group of order 2,

Proof. Easy.

1.4, Lemma, Let K,L ¢ T be such that K is sn open extem-
sion of L and let £ be a homomorphism of L into a division grou-
poid G. Then f can be extemded to & homemorphism of K imto @.

Proof. We can assume that K is an immediate open extension

of L. However, then the result is clear.

1.5. Lemma. Let K ¢ T be open and let G be & non-trivial
division groupoid. Then there exists at least one non-trivial he-
momorphism of K into G,

Proof. If m(K) = 2 then the result is obvious. Suppose that
m(K) Z 3. Then there is a strong partial subgroupoid L of K such
that m(L) = 2 and K is an open extension of L. Now, the result

follows from 1.4.

1,6, Lemma, Let F be a homemorphism of a partisl groupeid
K into & group G and let (a,b)¢ M(X). Then there exists a home-
morphism g of K into G such that g(a) = g(b) = g(ab) = 1. Nere-
over, g is non-trivial, provided f is so.
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Proof. Put g(o) = £(a)~12(e), &(a) = £(a)2(b)~! and g(e) =
= 2(a)"12¢0)2(p)~! for a1l c€B(K), d€ C(K) and ee D(K).

1.7, Lemma, Let £ be & non-trivial homomorphism of & par-
tial groupeid K € 7 into a group G and let H be & normal sub-
group of G, Then there exists either a non-trivial homomorphism
of K into H or a non-trivial homomorphism of K into G/H.

Proof. With respect to 1.6 , we can assume thet 1 is con-
tained in all the sets £(B(K)), £(C(K)), £(D(K)). Denote by g
the natural homomorphism of G onto G/H. If gf is a trivial homo-
morphism then f£(K)< H.

1.8, Leomma. Let K € 7 and G be & group. Then there exists
a non-trivial homomorphism of K into G iff there exists a non-
trivial homomorphism of H(K) into G.

Proof. Choose x = (a,b) € M(K) and consider the congruence
s =8 by [3, Lemma 2,2), the natural homomorphism q of K onto
L = K/s, the isomorphism h of G(L) onto H(K) by [3, Lemma 5.2]
and the modificative homomorphism g of L into G(L) by [3, Propo-
sition 3.1]. Now, let £ be & non-trivial homomorphism of K into
G. With regerd to 1.6, we can assume that £(a) = f£f(b) = 1, Then
sSker £, and hence £ = kq, k being a non-trivial homomorphism
of L into G. We have k = pg for & homomorphism p of G(L) into G
and ph’1 is a non-trivial homomorphism of H(K) into G. Converse-
1y, let k be a non-trivial homomorphism of H(K) into G. Put £ =
= khgq. Then £ is & homomorphism of K into G and £(a) = £(b) =
= £(ab) = 1, On the other hand, the group k(H(K)) is generated
by £(K) and it is non-trivial. Consequently, f is non-trivial.

1.9. Lemma, Let K € T be non-trivial, ab = ¢ for some
a,b,c€K and let G be a non~-trivial division groupoid. Suppose
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that either r(a) = r(b) = 1 or r(a) = r(¢c) = 1 or r(b) = r(c) =
= 1, Then there exists at least one non-trivial homomorphism of
K into Go

Proof. It is divided into several parts.
(i) r(a) = r(b) = r(c) = 1. Let x,ye G be such that x4y. Defi-
ne & mapping £ of K into G by £(u) = £(v) = x, f(w) = xx, £(a) =
= £(b) = y and f(¢) = yy for all ue B(K), ve C(K), we D(K), usa,
v+b and w¥ d. Then f is a non-trivial homomorphism of K into G.
(11) =r(a) = r(b) = 1 and r(c)= 2. Let x,yc G be such that xy.
There exists z€ G such that yz = xx. Now, define f by f£(u) = £(v)s
=x, £(w) = xx, £(a) =y, £(b) = z for all ueB(K), veC(K) and
weD(K), u+a, v4b,
(i1i) r(a) = r(c) = 1 and r(b)Z 2, Let x,y€ G, x+y. Define £
by £(u) = £(v) = x, f(w) = xx, f(a) = y and £(c) = yx for all
ueB(K), ve C(K) and we D(K), u+a, w#o,
(iv) r(b) = r(c) = 1 and r(a)Z 2., In this case, we can proceed
similarly as in (iii).

2, Homomorphisms into groups. Let G be a non-trivial group.
A partial groupoid K is said to be G-flat (or only flat) if every
homomorphism of K into G is trivial.

Let nZ2 be an integer. We denote by z(n) = z(G,n) the mi-
nimum of all m(K) where K ¢ T is flat and there exists a non-
trivial homomorphism of K into an n-element group.

2.1, Lemma, Let K ¢ T Dbe flat,
(1) If £ is & homomorphism of K into L € T then £[K] is flat.
(11) K is not open.
(i11) If K is an open extension of L ¢ J° then L is flat.

Prog‘. Use 1.4 and 1.5-
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2,2, Lemma. Suppose that G is a torsionfree group and let
E & J be such that H(K) is & torsion group. Then K is flat.

Proof. This follows immediately from 1.8.

2.3. Lemma. Let K € 7 be non-trivial and flat and let
a,b,0 €K be such that ab = ¢, Then either r(a)Z 2, r(b)>2 or

r(a)Z 2, r{e)Z2 or r(b)22, r(e)Zz 2.

Proof. This follows immediately from 1.9.

2.4, Proposition. Let nZ2 be an integer and let K€ 7' be
a partial groupoid such that m(K) = z(n). Suppose that there ex-
ists a non-trivial homomorphism f of K into an n-element group H.

Then r(a)Z 2 for every acK.

Proof. Assume, on the contrary, that r(a) = 1 for some a€K.
There are three different elements x,y,z€ K such that xy = z and
a €1x,7,z%. Now, with respect to 2.3, the following cases can ari-
se:

(1) r(x) =1, r(y)Z2 and r(z)Z2. Put L = K - {x%. Then L ¢ ¥,
L is a strong partial subgroupoid of K, m(L) = m(K) - 1, K is an
open extension of L and L is flat. According to 1.7, we can sssu-
me that 1¢ £(B(L))n £(C(L)) n £(D(L)). Since f£|L is trivial, f(L)=
= 1, Then £(x) = £(x)1 = £(x)f(y) = f(xy) = £(2) = 1 and £ 1is tri-
vial, a contradiction.

(11) r(x)z 2, r(y) = 1 and r(z)Z 2. We can proceed similarly as
in (1).

(141) =r(x)2 2, r(y)Z2 and r(z) = 1. Again, we can proceed simi-
larly as in (1) (in this case, L = K - {z} is a complete partial
subgroupoid of K).

2.5. Lemma., Suppose that G is a torsionfree group. Then

42 z(n)<2n for every nZ 2,
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Proof. By 2.1(ii) and 1.2(ii), m(K) 24 for every non-tri-
vial flat partial groupoid K &€ 7" . Hence 4< s(n). Purther, con-
sider the partial groupoid Z = Z(n, o) defined in [4, § 7]. Then
m(Z) = 2n and H(Z) is a cyclic group of erder n. Consequently,

Z is flat by 2.2 and z(n)<2n,

2,6, Proposition. Suppese that G is a torsionfree group.
Then for every nZ 2, z(n) = 4 iff n is even.

Proef. Pirst, let z(n) = 4. Then there are X € 7 and a
group H such that K is flat, m(K) = 4, H contains just n elements
and there exists a nom-trivial hemomorphism of K intc H., The par-
tial groupoid K is not epen, and so H(K) is a two-element group
by 1.3(i1i). By 1.8, there is a non~trivial hemomorphism of H(K)
into H, In particular, n is even. Now, let n be even. Then we can

proceed conversely.

2.7. Proposition. Let nZ3 be odd. Then z(n) is equal to
the minimum of all s(p), p being a prime dividing n.

Proof. The result follows from 1.7 and the fact that n is
prime, provided there is a simple group ef order n.

3. Homomorphisms into erdered partial groupoids. In this

section, let @ be a cancellative reduced partial groupoid line-
arly ordered by an ordering <€ , i.e. £ is a limear ordering de-
fined on G and ab<cd whenever (a,b), (c,d) €M(G), a<ec and <4,

3.1, Lemma. Let I = (K(o),K(k)) be a couple of finite
simple companions. Then every homomorphism of K(o ) into G is
trivial.

Proof. Let £ be a homomorphism of K = K( 0) into G. There
is an element x § £(B(K)) msuch that y& x for anv y¢ £(D(K)). Put
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¥ = {(a,b) g M(K)3 f(8ob) = x} and define a relation r on ¥ by
((a,b),(c,d))c r 122 £(a) = £(c) and £(b) = £(d). Since G is
cancellative, each of the two equalities implies the other. Ob-
vieusly, r is an equivalence and we denote by l1,...,lk the bdblocks
of r. Without loss of generality, we can assume that f(s1)< t(n2)<
<ess<t(a), (8;,b;)e N;. Now, we are going to prove that N, is
an admissible subset of M(K) in the sense of [4, § 51. Let
(a,b)6 Ny. Put P = {(u,v) e M(K)} f(uxv) = x, £(u) = 2(a)}, Q =

= {(u,v)c M(K)3 f(uxv) = x, £(v) = £(b)}. The rest of the proof
is divided into several parts.

(1) If (u,v)e P and uxv = uow then f(uow) = x, (u,w) €N,
Conversely, if (u,w)e Ny and uow = ux*v then (u,v) € P, Hence we
have injective mappings of P into ll.‘ and of l!.l into P, so that
card P = card N,.

(11) Similarly as in (i) we cen show that card Q = card N,.

(111) Let (u,v)e Q. We have uxv = wov = uogzg, £(a)f(b) = x =

= f(uxv) = f(uoz) = £(u)t(z), so that (u,z)e N and f£(a) 4 f(u).
On the other hand, x = £(a)f(b)££(u)f(v), since £(b) = £(v), hen-
ce x = £(u)f(v) = f(uov), f(u) = £(a) and (u,v) €N,. We have pro-
ved that Q< Ny. Now, it is easy to see that Q<P.

(iv) By (1),(11) and (i1ii), we have P = Q = N,. Consequently, N,
is an admissible subset of M(K). Since the couple I is simple,

¥, = M(K) and £ is triviel.

3.2, Corollary. Let K 6 T be & primary groupoid and let G

be a linearly ordered non-trivial group. Then K is G-flat.

4, The main result

4.1, Proposition. Let G be a linearly ordered non-trivial
group. Then, for every nZ 2, z(G,n)< gdist(n).
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Proof. The result is an immediate consequence of 3.2 and
{3, Propoai tiomn 7.5].

4.2, Proposition. Let G be & linearly ordered nom-trivial
group and nZ 2 and integer, Then there is & prime p dividing n
such that z(G,p)< gdist(n).

Proof. The result follows from 4,1 and 2.7.
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