

Werk

Label: Article **Jahr:** 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

26,2 (1985)

GROUP DISTANCES OF LATIN SQUARES Aleš DRÁPAL and Tomáš KEPKA

Abstract: Some results concerning the distances between the tables of finite groups and latin squares are proved.

Key words: Group, latin square.

Classification: 05B15

For an integer $n \ge 2$, let gdist(n) denote the least non-zero number of changes in the Cayley table of an n-element group to obtain another latin square. These numbers play an important rôle in the problem concerning the largest possible number of associative triples of elements in finite non-associative quasi-groups (see [2]). The purpose of this short note is to develop a technique which might be useful in finding some lower bounds for the numbers gdist(n).

1. <u>Preliminaries</u>. Throughout this note, the terminology, notation, etc., of [3] is used.

Recall that \Re denotes the category of reduced partial groupoids and T the full subcategory of \Re consisting of reduced balanced cancellative partial groupoids.

A homomorphism f of a partial groupoid K into a partial groupoid L is called complete if for all $(x,y) \in M(L)$ such that $x,y,xy \in f(K)$ there exists a pair $(a,b) \in M(K)$ with f(a) = x and

f(b) = y (then f(ab) = xy). Obvisubly, every strong homomorphism
is complete.

A partial groupoid L is called a (complete, strong) partial subgroupoid of a partial groupoid K if LCK and this inclusion is a (complete, strong) homomorphism.

Let $K \in \mathcal{R}$. We shall say that K is trivial if card B(K) = = card C(K) = card D(K) + 1. In this case, $1 \neq$ card $K \leq 3$ and card K = 3, provided K is balanced. A homomorphism f of K into $L \in \mathcal{R}$ is called trivial if f(K) is a trivial partial groupoid. In this case, f(K) is a strong partial subgroupoid of L, provided L is balanced.

Let $K \in \mathcal{R}$ and $d \in K$. Put r(d) = r(K,d) = card f(a,b,c);a,b,c $\in K$, ab = c, $d \in \{a,b,c\}\}$. Since K is reduced, $r(d) \ge 1$.

Let $K, L \in \Re$. We shall say that K is an immediate (strongly) open extension of L if L is a (strong) complete partial subgroupoid of K and r(K,d) = 1 for every $d \in K - L$. Further, we shall say that K is an (strongly) open extension of L if there exists a finite sequence $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ such that $n \ge 1$, $K_0 = L$, $K_n = K$ and K_{i+1} is an immediate (strongly) open extension of K_i for each $0 \le 1 \le n$.

A partial groupoid $K \in \mathcal{T}$ is called (strongly) open if it is non-trivial and it is a (strongly) open extension of a trivial partial subgroupoid $L \in \mathcal{T}$.

1.1. Lemma. Let $K \in \mathcal{T}'$ and let $a,b,c \in K$ be such that ab=c. Then $L = \{a,b,c\}$ is a three-element strong partial subgroupoid of K and L is a trivial partial groupoid.

Proof. Obvious.

1.2. Lemma. Let K e T be such that m(K) 43. Then:
(i) r(a) = 1 for at least one a \(\) A(K).

(ii) K is strongly open, provided it is non-trivial.

Proof. Easy.

- 1.3. Lemma. Let $K \in \mathcal{T}$ be such that m(K) = 4. Then exactly one of the following three cases takes place:
- (i) r(a) = 1 for at least one a cA(K) and K is strongly epen.
- (ii) $r(a) \ge 2$ for every $a \in A(K)$, r(d) = 1 for at lest one $d \in D(R)$, K is open and K is not strongly open.
- (iii) $r(a) \ge 2$ for every $a \in A(K)$, $r(d) \ge 2$ for every $d \in B(K)$, K is not open and H(K) is a cyclic group of order 2.

Proof. Easy.

1.4. Lemma. Let $K, L \in \mathcal{T}$ be such that K is an open extension of L and let f be a homomorphism of L into a division groupoid G. Then f can be extended to a homomorphism of K into G.

<u>Proof.</u> We can assume that K is an immediate open extension of L. However, then the result is clear.

1.5. Lemma. Let $K \in \mathcal{J}'$ be open and let G be a non-trivial division groupoid. Then there exists at least one non-trivial hemomorphism of K into G.

<u>Proof.</u> If m(K) = 2 then the result is obvious. Suppose that $m(K) \ge 3$. Then there is a strong partial subgroupoid L of K such that m(L) = 2 and K is an open extension of L. Now, the result follows from 1.4.

1.6. Lemma. Let F be a homemorphism of a partial groupeid K into a group G and let $(a,b) \in M(K)$. Then there exists a homemorphism g of K into G such that g(a) = g(b) = g(ab) = 1. Moreover, g is non-trivial, provided f is so.

<u>Proof.</u> Put $g(e) = f(a)^{-1}f(e)$, $g(d) = f(d)f(b)^{-1}$ and $g(e) = f(a)^{-1}f(e)f(b)^{-1}$ for all $e \in B(K)$, $d \in C(K)$ and $e \in D(K)$.

1.7. Lemma. Let f be a non-trivial homomorphism of a partial groupeid $K \in \mathcal{T}'$ into a group G and let H be a normal subgroup of G. Then there exists either a non-trivial homomorphism of K into H or a non-trivial homomorphism of K into G/H.

<u>Proof.</u> With respect to 1.6, we can assume that 1 is contained in all the sets f(B(K)), f(C(K)), f(D(K)). Denote by g the natural homomorphism of G onto G/H. If gf is a trivial homomorphism then $f(K) \subseteq H$.

1.8. Lemma. Let $K \in \mathcal{T}$ and G be a group. Then there exists a non-trivial homomorphism of K into G iff there exists a non-trivial homomorphism of H(K) into G.

<u>Proof.</u> Choose $x = (a,b) \in M(K)$ and consider the congruence $s = s_x$ by [3, Lemma 2.2], the natural homomorphism q of K onto L = K/s, the isomorphism h of G(L) onto H(K) by [3, Lemma 5.2] and the modificative homomorphism g of L into G(L) by [3, Proposition 3.1]. Now, let f be a non-trivial homomorphism of K into G. With regard to 1.6, we can assume that f(a) = f(b) = 1. Then $s \subseteq \ker f$, and hence f = kq, k being a non-trivial homomorphism of L into G. We have k = pg for a homomorphism p of G(L) into G and ph^{-1} is a non-trivial homomorphism of H(K) into G. Conversely, let k be a non-trivial homomorphism of H(K) into G. Put f = kpq. Then f is a homomorphism of K into G and f(a) = f(b) = f(ab) = 1. On the other hand, the group k(H(K)) is generated by f(K) and it is non-trivial. Consequently, f is non-trivial.

1.9. Lemma. Let $K \in \mathcal{T}$ be non-trivial, ab = c for some a,b,c $\in K$ and let G be a non-trivial division groupoid. Suppose

that either r(a) = r(b) = 1 or r(a) = r(c) = 1 or r(b) = r(c) = 1. Then there exists at least one non-trivial homomorphism of K into G.

Proof. It is divided into several parts.

- (i) r(a) = r(b) = r(c) = 1. Let $x,y \in G$ be such that $x \neq y$. Define a mapping f of K into G by f(u) = f(v) = x, f(w) = xx, f(a) = f(b) = y and f(c) = yy for all $u \in B(K)$, $v \in C(K)$, $w \in D(K)$, $u \neq a$, $v \neq b$ and $w \neq d$. Then f is a non-trivial homomorphism of K into G.

 (ii) r(a) = r(b) = 1 and $r(c) \geq 2$. Let $x,y \in G$ be such that $x \neq y$. There exists $z \in G$ such that yz = xx. Now, define f by f(u) = f(v) = x, f(w) = xx, f(a) = y, f(b) = z for all $u \in B(K)$, $v \in G(K)$ and $w \in D(K)$, $u \neq a$, $v \neq b$.
- (iii) r(a) = r(c) = 1 and $r(b) \ge 2$. Let $x,y \in G$, $x \ne y$. Define f by f(u) = f(v) = x, f(w) = xx, f(a) = y and f(c) = yx for all $u \in B(K)$, $v \in C(K)$ and $w \in D(K)$, $u \ne a$, $w \ne c$.
- (iv) r(b) = r(c) = 1 and $r(a) \ge 2$. In this case, we can proceed similarly as in (iii).
- 2. Homomorphisms into groups. Let G be a non-trivial group.
 A partial groupoid K is said to be G-flat (or only flat) if every homomorphism of K into G is trivial.

Let $n \ge 2$ be an integer. We denote by z(n) = z(G,n) the minimum of all m(K) where $K \in \mathcal{T}$ is flat and there exists a non-trivial homomorphism of K into an n-element group.

- 2.1. Lemma. Let K & T be flat.
- (i) If f is a homomorphism of K into $L \in \mathcal{T}$ then f[K] is flat.
- (ii) K is not open.
- (iii) If K is an open extension of L & T then L is flat.

Proof. Use 1.4 and 1.5.

2.2. Lemma. Suppose that G is a torsionfree group and let $K \in \mathcal{T}$ be such that H(K) is a torsion group. Then K is flat.

Proof. This follows immediately from 1.8.

2.3. Lemma. Let $K \in \mathcal{T}$ be non-trivial and flat and let $a,b,c \in K$ be such that ab = c. Then either $r(a) \ge 2$, $r(b) \ge 2$ or $r(a) \ge 2$, $r(c) \ge 2$ or $r(b) \ge 2$, $r(c) \ge 2$.

Proof. This follows immediately from 1.9.

2.4. <u>Proposition</u>. Let $n \ge 2$ be an integer and let $K \in \mathcal{T}$ be a partial groupoid such that m(K) = z(n). Suppose that there exists a non-trivial homomorphism f of K into an n-element group H. Then $r(a) \ge 2$ for every $a \in K$.

<u>Proof.</u> Assume, on the contrary, that r(a) = 1 for some $a \in K$. There are three different elements $x,y,z \in K$ such that xy = z and $a \in \{x,y,z\}$. Now, with respect to 2.3, the following cases can arise:

- (i) r(x) = 1, $r(y) \ge 2$ and $r(z) \ge 2$. Put $L = K \{x\}$. Then $L \in \mathcal{T}$, L is a strong partial subgroupoid of K, m(L) = m(K) 1, K is an open extension of L and L is flat. According to 1.7, we can assume that $1 \in f(B(L)) \cap f(C(L)) \cap f(D(L))$. Since f(L) is trivial, f(L) = 1. Then f(x) = f(x)1 = f(x)f(y) = f(xy) = f(z) = 1 and f is trivial, a contradiction.
- (ii) $r(x) \ge 2$, r(y) = 1 and $r(z) \ge 2$. We can proceed similarly as in (i).
- (iii) $r(x) \ge 2$, $r(y) \ge 2$ and r(z) = 1. Again, we can proceed similarly as in (i) (in this case, $L = K \{z\}$ is a complete partial subgroupoid of K).
- 2.5. Lemma. Suppose that G is a torsionfree group. Then $4 \le z(n) \le 2n$ for every $n \ge 2$.

<u>Proof.</u> By 2.1(ii) and 1.2(ii), $m(K) \ge 4$ for every non-trivial flat partial groupoid $K \in \mathcal{T}$. Hence $4 \le n(X)$. Further, consider the partial groupoid X = X(n, x) defined in [4, § 7]. Then m(X) = 2n and m(X) is a cyclic group of order n. Consequently, m(X) = 2n and m(X) = 2n and m(X) = 2n.

2.6. <u>Proposition</u>. Suppose that G is a torsionfree group. Then for every $n \ge 2$, z(n) = 4 iff n is even.

<u>Proof.</u> First, let s(n) = 4. Then there are $K \in \mathcal{T}$ and a group H such that K is flat, m(K) = 4, H contains just n elements and there exists a non-trivial homomorphism of K into H. The partial groupoid K is not open, and so H(K) is a two-element group by 1.3(iii). By 1.8, there is a non-trivial homomorphism of H(K) into H. In particular, n is even. How, let n be even. Then we can proceed conversely.

2.7. Proposition. Let n Z 3 be odd. Then z(n) is equal to the minimum of all z(p), p being a prime dividing n.

<u>Proof.</u> The result follows from 1.7 and the fact that n is prime, provided there is a simple group of order n.

- 3. Homomorphisms into ordered partial groupoids. In this section, let G be a cancellative reduced partial groupoid linearly ordered by an ordering \leq , i.e. \leq is a linear ordering defined on G and ab \leq od whenever (a,b), $(c,d) \in M(G)$, $a \leq c$ and $b \leq d$.
- 3.1. Lemma. Let I = (K(o), K(*)) be a couple of finite simple companions. Then every homomorphism of K(o) into G is trivial.

<u>Proof.</u> Let f be a homomorphism of K = K(o) into G. There is an element $x \in f(B(K))$ such that $y \le x$ for any $y \in f(D(K))$. Put

 $N = \{(a,b) \in M(K); f(a \circ b) = x\}$ and define a relation r on N by $((a,b),(c,d)) \in r$ iff f(a) = f(c) and f(b) = f(d). Since G is cancellative, each of the two equalities implies the other. Obviously, r is an equivalence and we denote by N_1, \ldots, N_k the blocks of r. Without loss of generality, we can assume that $f(a_1) < f(a_2) < < \ldots < f(a_k)$, $(a_1,b_1) \in N_1$. Now, we are going to prove that N_1 is an admissible subset of M(K) in the sense of $[4, \S 5]$. Let $(a,b) \in N_1$. Put $P = \{(u,v) \in M(K); f(u \times v) = x, f(u) = f(x)\}$, $Q = \{(u,v) \in M(K); f(u \times v) = x, f(v) = f(b)\}$. The rest of the proof is divided into several parts.

- (i) If $(u,v) \in P$ and $u \times v = u \circ w$ then $f(u \circ w) = x$, $(u,w) \in N_1$. Conversely, if $(u,w) \in N_1$ and $u \circ w = u \times v$ then $(u,v) \in P$. Hence we have injective mappings of P into N_1 and of N_1 into P, so that card $P = card N_1$.
- (iii) Similarly as in (i) we can show that card $Q = \operatorname{card} N_1$. (iii) Let $(u,v) \in Q$. We have $u \times v = w \circ v = u \circ z$, $f(a)f(b) = x = f(u \times v) = f(u \circ z) = f(u)f(z)$, so that $(u,z) \in \mathbb{N}$ and $f(a) \leq f(u)$. On the other hand, $x = f(a)f(b) \leq f(u)f(v)$, since f(b) = f(v), hence $x = f(u)f(v) = f(u \circ v)$, f(u) = f(a) and $(u,v) \in \mathbb{N}_1$. We have proved that $Q \subseteq \mathbb{N}_1$. Now, it is easy to see that $Q \subseteq P$.
- (iv) By (i),(ii) and (iii), we have $P = Q = N_1$. Consequently, N_1 is an admissible subset of M(K). Since the couple I is simple, $N_1 = M(K)$ and f is trivial.
- 3.2. Corollary. Let K $\in \mathcal{T}$ be a primary groupoid and let G be a linearly ordered non-trivial group. Then K is G-flat.

4. The main result

4.1. <u>Proposition</u>. Let G be a linearly ordered non-trivial group. Then, for every $n \ge 2$, $z(G,n) \le z(G,n) \le$

<u>Proof.</u> The result is an immediate consequence of 3.2 and [3, Proposition 7.5].

4.2. <u>Proposition</u>. Let G be a linearly ordered non-trivial group and $n \ge 2$ and integer. Then there is a prime p dividing n such that $z(G,p) \le gdist(n)$.

Proof. The result follows from 4.1 and 2.7.

References

- [1] J. DÉNES and A.D. KEEDWELL: Latin Squares and Their Applications, Akadémiai Kiadó, Budapest, 1974.
- [2] A. DRÁPAL: On quasigroups rich in associative triples, Discrete Math. 44(1983), 251-165.
- [3] A. DRÁPAL and T. KEPKA: Group modifications of some partial groupoids, Annals of Discr. Math. 18(1983), 319-332.
- [4] A. DRÁPAL and T. KEPKA: Exchangeable partial groupoids I, Acta Univ. Carolinae 24(1983), 57-72.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 00 Praha 8, Czechoslovskia

(Oblatum 8.10. 1984)

