

Werk

Label: Article Jahr: 1985

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0026|log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 26.2 (1985)

SOME CLASS OF UNIFORMLY NON-SQUARE ORLICZ-BOCHNER SPACES H. HUDZIK

Abstract: It is proved that if X is a uniformly nen-square normed space, Φ is a uniformly convex Orlicz function satisfying the respective condition Δ_2 and ω is a non-negative and 6-finite measure, then the Orlicz-Bochner space $L^{\Phi}(\omega, \mathbf{I})$ is uniformly non-square. It is proved also that the assumptions e-bout X and partially about Φ are necessary.

Key words and phrases: Orlicz function, Orlicz-Rockner spaces, uniformly non-square normed spaces, condition Δ_2 .

Classification: 46B30

0. Introduction. (T, Σ , μ) is a measure space with non-negative and \emptyset -finite measure, R denotes the real line, $R_+ = [0,+\infty)$, (I, $\mathbb{I} \cdot \mathbb{I}$) is a normed space. We assume for simplicity that all atoms are of measure one. A mapping $\Phi: \mathbb{R} \longrightarrow \mathbb{R}_+$ is called an Orlicz function if it is convex, even, and vanishing only at zero. By $F(\mu, \mathbb{I})$ we denote the space of all equivalence classes of strongly Σ -measurable functions $f: \mathbb{T} \longrightarrow \mathbb{I}$.

Let Φ be an Orlicz function. We define on $F(\mu,X)$ the convex modular I (for definition see [9]) by

$$I(t) = \int_{T} \Phi(\Pi t(t)\Pi) d\mu.$$

The Orlicz-Bochner space Lo(u, I) is defined by

 $L^{\underline{0}}(\mu, \mathbb{I}) = \{f \in \mathbb{F}(\mu, \mathbb{I}) : I(kf) < \infty \text{ for some } k > 0\}.$

This space is a normed space under the so-called Luxenburg nerm

 $|f|_{\hat{\Phi}} = \inf\{r > 0: I(x/r) \le 1\}$.

We say an Orlicz function Φ is uniformly convex (see [8]) if for every $a \in (0,1)$ there exists $p(a) \in (0,1)$ such that

$$\Phi\left(\frac{\mathbf{u}+\mathbf{a}\mathbf{u}}{2}\right) \leq \frac{1-\mathbf{p}(\mathbf{a})}{2} \left\{\Phi\left(\mathbf{u}\right) + \Phi\left(\mathbf{a}\mathbf{u}\right)\right\}$$

for every $u \in R$. If φ is a uniformly convex Orlics function, then the inequality

$$\Phi\left(\frac{\mathbf{u}+\mathbf{b}\mathbf{u}}{2}\right) \leq \frac{1-\mathbf{p}(\mathbf{a})}{2} \left\{\Phi\left(\mathbf{u}\right) + \Phi\left(\mathbf{b}\mathbf{u}\right)\right\}$$

holds for all $u \in \mathbb{R}$ and $0 \le b \le a$ (see [1]).

A normed space (X, | | |) is called uniformly non-square if there exists $\varepsilon > 0$ such that for every x,y ε I satisfying max (|x|,|y|) ≤ 1 we have min (| $\frac{x+y}{2}$ |,| $\frac{x-y}{2}$ |) $\leq 1 - \varepsilon$ (see [5]).

1. Results

Theorem 1.1. Let $\tilde{\Phi}$ be a uniformly convex Orlies function satisfying the respective condition Δ_2 , i.e. there exists a constant K,a>0 such that the inequality $\tilde{\Phi}(2u) \leq K \tilde{\Phi}(u)$ holds:

- (i) for all $u \in R$ if μ is an infinite measure that is not purely atomic,
- (ii) for $u \in R$ satisfying $|u| \ge a$ if μ is an atomless and finite measure,
- (iii) for $u \in \mathbb{R}$ satisfying $|u| \neq a$ if μ is a purely atomic measure.

Let X be a uniformly non-square normed space. Then the Orlics-Bochner space $L^{\frac{1}{2}}(\mu,X)$ is uniformly non-square.

Proof. It follows from the respective condition Δ_2 for Φ that for every $\varepsilon \in (0,1)$ there exists $\sigma'(\varepsilon) \in (0,1)$ such that for every $f \in L^{\Phi}(\mu,X)$ the inequality $I(f) \neq 1 - \varepsilon$ implies $I(f) \neq 1 - \varepsilon$

- d(E) (see [3],[6],[8]).

Pirst, we shall prove the inequality

for all $x,y \in X$ (with an absolute constant $\infty \in (0,1)$). Let $\varepsilon > 0$ be the ε in the definition of X being uniformly non-square and let $x,y \in X$. We have

$$\min (\lfloor \frac{x+y}{2} \rfloor, \lfloor \frac{x-y}{2} \rfloor) \leq (1-\varepsilon) \max (\lfloor x \rfloor, \lfloor y \rfloor).$$

Without loss of generality we may assume that $\|y\| \le \|x\|$ and $\|x+y\| \le \|x-y\|$. Thus, we have $\|x+y\| \le 2(1-\epsilon) \|x\|$. We shall consider two cases.

I. $\|x\| \le \|y\|/\sqrt{1-\varepsilon}$. Then, we have

$$\begin{split} \Phi(\|\frac{\mathbf{x}+\mathbf{y}}{2}\|) & \leq \Phi((1-\varepsilon)\|\mathbf{x}\|) \leq \Phi(\sqrt{1-\varepsilon}\frac{\|\mathbf{x}\|+\|\mathbf{y}\|}{2}) \leq \\ & \leq \frac{\sqrt{1-\varepsilon}}{2} \{\Phi(\|\mathbf{x}\|) + \Phi(\|\mathbf{y}\|) \ . \end{split}$$

II. $\|y\| \le \sqrt{1-\epsilon} \|x\|$. Then, by uniform convexity of Φ , we have

$$\Phi(\lVert \frac{\mathbf{x}+\mathbf{y}}{2} \rVert) \leq \Phi \cdot \{\frac{\lVert \mathbf{x} \rVert + \lVert \mathbf{y} \rVert}{2} \} \succeq \frac{1-p(\sqrt{1-\epsilon})}{2} \{ \Phi(\lVert \mathbf{x} \rVert) + \Phi(\lVert \mathbf{y} \rVert) \ .$$

Denoting $6 = \max (\sqrt{1-\epsilon}, 1-p(\sqrt{1-\epsilon}))$ and applying the triangle inequality for the norm $\|\cdot\|$ and convexity of Φ to the term $\Phi(\|\frac{x-y}{2}\|)$, we get the inequality (1) with $\alpha = (\alpha + 1)/2$.

Now, let $f,g\in L^{\frac{\Lambda}{2}}(\mu,X)$ and max $(\|f\|_{\frac{\Lambda}{2}},\|g\|_{\frac{\Lambda}{2}})\leq 1$. Then max $(I(f),I(g))\leq 1$. Applying the inequality (1), we have for any tell

$$\Phi(\|\frac{f(t) + g(t)}{2}\|) + \Phi(\|\frac{f(t) - g(t)}{2}\|) \le \alpha \{\Phi(\|f(t)\|) + \Phi(\|g(t)\|) .$$

Integrating this inequality both-side over T, we get

$$I(\frac{f+g}{2}) + I(\frac{f-g}{2}) \leq \infty (I(f) + I(g)) \leq 2\infty.$$

Thus, we have

min
$$(I[\frac{I+g}{2}), I(\frac{I-g}{2})) \leq \infty$$
.

Hence, we obtain

min
$$(\|\frac{f+g}{2}\|_{\tilde{\Phi}}, \|\frac{f-g}{2}\|_{\tilde{\Phi}}) \le 1 - d'(1 - \infty),$$

and the preef is finished.

Theorem 1.2. If the Orlics-Bechner space $L^{\bar{Q}}(\mu, X)$ is uniformly non-square, then $\bar{\Phi}$ is an Orlics function satisfying the respective condition Δ_2 and X is a uniformly non-square normed space.

Proof. If Φ does not satisfy the respective condition Δ_2 , then the space $L^{\Phi}(\mu, X)$ contains an isometric copy of 1^{∞} (see e.g. [3],[4],[7] and[11]) and so $L^{\Phi}(\mu, X)$ is not a uniformly non-square, because 1^{∞} is not, too (see [2]).

If I is not uniformly non-square, then for every $\epsilon>0$ there exist x,y \in I such that max (|x|,|y|) \leq 1 and min (|x+y|,|x-y|) > >2(1 - ϵ). Let $u_0>0$ and $A \in \Sigma$ be such that $\Phi(u_0) \mu(A) + 1$, and let

$$f = u_o x \eta_A$$
, $g = u_o y \eta_A$.

We have max $(\|f\|_{\hat{\Phi}}, \|g\|_{\hat{\Phi}}) \le 1$ and min $(\|f+g\|_{\hat{\Phi}}, \|f-g\|_{\hat{\Phi}}) > 2(1 - \epsilon)$. Thus, the space $L^{\hat{\Phi}}(\omega, X)$ is not uniformly non-square.

Remarks. Theorem 1.1 and inequality (1) are some generalizations of Theorem 15 [10] and of Lemma 14 [10], respectively, in the case n=2. Note that the method of the proof of the inequality (1) is new.

An example of uniformly convex Orlics function is $\Phi_0(u) = |u|^p$, where $1 . Then <math>p(a) = 1-2^{1-p}$ (1+a^p). Moreover, if Φ and Ψ are two Orlics functions and if at least one of them

is uniformly convex, then the Orlicz functions $\Phi \circ \Psi$ and $\Phi \circ \Psi$ are also uniformly convex (see [3]). The function $\Phi \circ \Psi$ may be uniformly convex even if no function Φ , Ψ is uniformly convex.

Question. Does Theorem 1.1 hold under the weaker assumption $\Phi(u/2) \le \sigma \Phi(u)/2$ for all $u \in \mathbb{R}$ with an absolute constant $\sigma \in (0,1)$ instead of the assumption of uniform convexity of Φ ?

This weaker condition is necessary in order that $L^{\Phi}(\mu, \mathbb{I})$ be uniformly non-square.

References

- L1] AKIMOVIČ B.A.: On uniformly convex and uniformly smooth Orlies spaces, Teor. Funkcii Funkcional. Anal. i Prilozen. 15(1972), 114-120 (Russian).
- [2] GIESY D.F.: On convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125(1966), 114-146.
- [3] HUDZIK H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm, Commentationes Math.23(1983),21-32.
- [4] HUDZIK H.: On some equivalent conditions in Musielak-Orlicz spaces, ibidem 23.2(1984), 57-64.
- [5] JAMES R.C.: Uniformly non-square Banach spaces, Annals of Math. 80(1964), 542-550.
- [6] KAMINSKA A.: On uniform convexity of Orlics spaces, Indagationes Math. 44(1)(1982), 27-36.
- [7] KAMINSKA A.: Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. 30, No. 7-8(1982), 347-352.
- [8] LUXEMBURG W.A.J.: Banach function spaces, Thesis, Delft 1955.
- [9] MUSIELAK J.: Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag Berlin Heidelberg New York Tokyo 1983.
- [10] SMITH M.A. and TURETT B.: Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257(1980), 105-118.

[11] TURETT B.: Rotundity of Orlicz spaces, Proc. Koninkl. Nederl. Akad. Wet. Amsterdam A 79(4)(1976), 462-468.

Institute of Mathematics A. Mickiewicz University, Poznań, Poland

(Oblatum 23.11. 1984)