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Abstract: We shall construct a thin-tall space X satis-
fying the following: Whenever {M,H’: covers the set of all iso~

lated points of X and |M| = |N| = w,, then |MaN| = @,, too.
This in turn implies that there are nonhomeomorphic thin-tall
spaces, since not all thin-tall spaces have the above property.
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First, let us recollect the basic notions.

All spaces are assumed to be Boolean, i.e, compact, Haus-
dorff and zero-dimensional.

A space is called scattered if each nonempty subspace has
an isolated point. If X is a scattered space, denote X = Xo,
Xd = GO‘ x/,_, for a 1imit ordinal « , Xdﬂ = the set of all
non-isolated points of X, . The Cantor-Bendixson height of a
scattered space X, ht(X) = min {et:X = @},

The compactness of X implies that ht(x) is always a succe-
ssor ordinal and Xy, yy_q is finite. For « < ht(X), denote
At(X ) =X~ X +1¢ the set of all isolated points of X, . The

ol
width of a scattered space X, wd(X), is then sup {l1At(X ),



scattered, ht(X) = @, + 1, wa(X) = @, lx‘ﬁl =1,

Indeed, there is a Boolean counterpart to the notions just
mentioned. A Boolean algebra B is superatomic provided that
each homomorphic imege of  has atoms; denote }o =8, Ju=
= /3\{0:. Jrﬂ for a limit ordinel o , let }oc+1 be the ideal
generated by jJ  and the set of all atoms of ﬁ/gw . Then

ht(B) = min {oc: } = Bt and wa(PH) = sup 1las(B/y |-
toC < ht(7 )}, where At(ﬂ?’/}d‘ ) is the set of all atoms of
"B/?ac « A superatomic Boolean algebra (abbr, sBA) is called
thin-tall, if ite height is @, and its width equals w .

The classical result of Mazurkiewicz and Sierpinski [MS]
says that any two countable superatomic BA s are isomorphic
provided that they have the same height.

The things are different in the case of thin-tall sBA ‘s.
It was the second euthor of the present paper, who showed in
[W] that there are nonisomorphic thin-tall sBA ‘s under the as-
sumption of CH. For this purpose, he constructed a thin-tall
space X such that each autohomeomorphism of X moves countebly
many points at most. Though the existence of this kind of spa~
ces is still open in ZFC, the different approach enabled us to

remove CH from the main result,

Theorem 1., There are nonhomeomorphic thin-tall spaces.

Here we shall adopt the different way of reasoning. The
rcado'r can recognize that the basic idea goes back to Luzin
[{L]. Instead of counting homeomorphisms, we derive Theorem 1
from the forthcoming

Theorem 2, There is a thin-tall space X satisfying the
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following: If MUN = At(X) and |¥| = |[F| = @, then |Nn¥| =
= @y, too.

Indeed, if Y is an arbitrary thin-tell space, then the
quotient space T = ¥Yx£{0,1}/~ , where x~ y for x4y only if

x = (z,0), y = (z,1) and {2} = , is thin-tall, too, never-

Ya)1
theless T does not have the property described in Theorem 2:
Consider M = At(Y)>‘< 0%, N = At(¥)x 11%.

Theorem 1 bein\s proved, it remains to prove Theorem 2.

We shell apply the standard trick. Instead of looking for
the space X we shall find a gBA 53 such that X will be its Sto-
ne space. And rather ‘than to construct the whole of B , we '
shall determine the set of its generators, which is often cal-
led a representation sequence, Since we may w.l.0.3Z. assume
that 75 is a subalgebra of P(w), the representation sequence
is the family

(R, gt &< @0 < wte P(w)
satisfying (0) - (3) below.
(0) R ={n% for all n< W}
o,n
(1) Rd,n"\Ro(,m = @ for each ¢ < @, n<mM< @ .
Denote yo =0, Ju= /chJac}ﬂ for a 1limit o« < ¢,, and
. < c
Fusr = Feuicw: (3P elwl*) He Jor h
(2) Por each (3< o« < @, and for each n,m &€ & , either
Rg,nRem € J8 T Rpn =R, ne Fos
(3) for each 3< ¢ < w, and for each m ¢ @,
l{new:R,  -R € Y}l =@

The reader is invited to check that any thin-tall sBA
P e P(w) is generated by a suitable family {Rd'n: € < @,
n < w? satisfying (0) - (3), and vice versa, any family
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iR, g X< @0 < @i satisfying (0) ~ (3) generates a subd-
algebra of P(co) which is superatomic and thin-tall.

Let a thin-tell sBA B ¢ P (w) be generated by{R‘.n:

1 k< Wyen < w% . The forthcoming desoription of the Stone
space of B is also very simple and the reader can verify it
after a moment of reflection: For o« < Wyy B < @ denote

‘ ycg,n the filter on co generated by {Rac.n -QQe€F §. Then
S3t(5) is homeomorphic to the quotient space 3w/~  , where

the equivalence relation ~~ ig defined as follows: For p,q €

6 pfw, p~qift (p 2 foc’n if and only if g aﬁ'n for each
o< Wy, n< & ). Similar desoription is used in [R1.

We shall construct the desired representing sequence by an
induction to @,;. According to the previous, the sequence must
satisty (0) - (3), but we shall want it to satisfy more. The
first additional requirement is of the technical nature.

(4) Por each o« < @, and for each n,m < &,

1{p < sR .= Rd.me J5}l< €.

The possibility to pass with the transfinite induction
through is the statement of our first lemma. To make the life
easier, if (k) is any of our conditions and if y < @,, then
the condition obtained by substituting 7~ in each occurence of

>, in (k) will be denoted by (K)y o

Lemma 1. Let 7 < e, let {R, 1« < ¥ , n< @} satis
= oy1
2y (0)y = (4)y . Then there is a family {R  nil < &3 such that
(0)yyy = (4)yyq bolds.
O Case y=o+ 1,
Choose an arbitrary partition {Z :m < w3} of w such that
each Z is infinite and enumerate $R :k < w} the met {R o
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: {5<c(.,n< w3, Denote 8 m=R n- u{n gt B<x&icen&
%Ry 4 - R n € dsd =U{Rk<nt. Define thmn?

= U1 3 o :lGZ i We have to verify theat this works.

(0)3“’1 is oclear, (1) e follows by the fact that -(R
i1n < W} is pairwise disjoint, consequently -(S B < w§ 1-.
and by the disjointness of {z m< w3

Let us verify (2)7,_'_,. According to our dofinition, Rd "=
’

-sd‘ s}d .1;heroforol!‘=< -ny.e}“ orR - S

It [5<o(.,n6a) » then for some k <@ , R n'Rkin
503 implies that R{s =
J#d only 1f j<k. By (1).3.— ’ (2)3,- » there is at most one

:l<w mahthntnﬁ.n n"‘voe;ﬂ .'.l'husnﬂ noUAS g

our enumeration. The definition of S

i< w, H-:;s},, ,» because {“nU{s dj<a),j¢33c

53{,,,, N UAS g1i<kd%J3cs R, N UAR, jii<k, 34,3 =
- u&n(,_nnn 'Jx;\<k.1+:l (P which is a ﬁ.nito union of mem-
bers of }B o

Consequently R m S ;(3 for each m < @ such that

(s "
Jo$2, andif J eI but a zk, then Ry nR. <%, , too.
So suppose j & Z and Jo< k. Denote by R the family
{Risiﬁjolu-(nd"i: Jd< o i.éjo&Rd..i - R""Jo‘ }J}. R is

finite, 3‘:"Jo - R""o

NnR egp ; thog R A" Sd.jog(n

- UAR, and if for each R € R 'R(sn"
’

n - Rd.do) v U{R ,ank:

tRe R}, which belongs to }{3 , hence R > R‘b’ m€ },5 »too.

Ir torsononea,npnnk$}ﬂ ,thenby(z).r.
R{S. -7 s}{, « Thence R n(R -R)sR
-R e ?,5 . We have Rp,n“ Ry,n e ?{5 in this case. So (2)1,_”
is satisfied.

n pn
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(3),3,_._1 follows easily by (3) and by the fact that each 2
was chosen to be infinite.

Finally, if n£} and if np’n -R.3€ (},, , then np'n la)
ﬂsc(,.‘) = @ according to the definition of So(.J. ‘Thus for each
n,m < & , the set {3< T’Rp,n - RT-“ e;ﬁ§s{m}u{{3< T

m-A1
1(3J<n) Ry [ - R y€Ppl ={xj v T.L_Jofﬁ< ¥ sRy n - R, 4€
€dn } , which is a finite union of sets, each of them being

finite by (4).3. . Thus (4)7._‘_1 holds, too.

Case 7 is a limit ordinal.
Pick a sequence 7 Ao (£ <w). Por each £ < @, let
{Rﬁsk < w3 be an enumeration of {R(_q,n‘ B<p m<w?b. Let

T UARy 4 A < R &1nkRy, - Ryyom € nt-
- U{RJik<n,3<£3.
Let So,o T’ro.o' then define S"m by an induction as fol-

lows: form < £ < w , let

Sp,m w,a J8(2)4m = u{si.k=1< £ k<13

where g( £) is a natural number such that g(£) 2 £ end for
each n>g(£), R,x:e 'nn 31,1': 5 }71 whenever 1 < £ s, k&1, The

agsumptions (2)1 .(3)7 guarantee the existence of g(L£).

. o0
Finally, let RTO" = L\.Jms"m.

Now we have to verify that (0),‘..,” - (4)7*1 again hold.
But - modulo the more involved nota.tiozi - one can step by step
mimick the corresponding parts from the previous case, so we

leave it to the reader. O

Next comes the essential step of our construction. We
shall find sets "d,n' which will serve as a major tool for the
proof of Theorem 2. Their properties are listed belows
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(5) 4, _¢c

a,n*no(..n for each 14 0¢ < &);, and each n < W;

(6) for each n < < and each 1 £ {3<oc<a)1,

I{Rﬁ,n N U{Ad’mm <wil<w;
(7) for each 1 £ o« < @, and for each m,p < ¢,
[A3,m): B<ck&nsm&la ,nnAoc,nlép“‘: & .

Our eim is to show that there are {Rc< ot < @Wn< wi
’
and {A 114 & < @0 < w3 such that (0) - (7) hold for them.
This will be done in the next two lemmas.

Lemme 2. Let 1 £ 9" < @, and suppose that{Rcc at% < 7
,
n<cw? and {A“‘nﬂ £ <7y ,n <w}l satisty (0)y = (T)y « Then
there is a pairwise disjoint family {A L % such thet
(6),1“_1 and (7)’Zf'+1 hold.

D 1If =1, there is nothing to prove: let {A, nid < w? ve
an arbitrary partition of <« into infinite sets.

So suppose 9 > 1 and let {R 114k <} and A1k cwd
be 33 enumeration of {n&nn £t <y ,n< w?and of {Aec’nﬂ £
4 o < Y sn< @F such that A, = A, n iff R =R, . for each na-
tural k and n, 1 £ < 9", Using an induction, we shall define

sets Pk,m and families ¢€(k) for k < W , m<£k as follows.
€(0) =g, ®, , =8
Suppose ¥(1i) and Pi,m are known for i<k, m£4i. Our in-
ductive assumptions are:
(a) each Pi,m is a finite subset of UL (1) - U ¢(i-1),
(b) each €(i) is tinite,
() €L -1NchL)eir,

mﬂéc‘c«{, n<w3,-

Let Rgc,n = Ryo If there is some R & €(k - 1) with Roc,n -
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-R &gy, , define ¥k) = €(x - 1), By _ = § for sll m£k.

In the opposite case, for each R 6 €(k - 1), !lnll‘.n 6
€ }d by (2)y . We shall find the femily ¢(k) first, snd to
do this, we need an induction again.

Let €, (k) = €(k - 1) U{R.} , further, lot €, (k) =
- “sz,g“ £R< 7&I<k& 3R 6 € (k) with 3/3.3 -ReJpi-
- 2w, T . G, .

Claim, (k) is finite. Indeed, by (4), and by |€(x-1)|¢
<w » ¥yglk) < @ for each s < . Define f3(s) = max{B3<7s
t 3j<o with n(M & Cy(n)}. 1t Ry 3~ Ryt Jn wma
(B *+(¢), then 3 <J by (2) and (3), hence f(3(s)>
> (3(s + 1) it f'(k) and ‘f’_n (k) are nonempty. Therefore
‘C-(k)4=¢ for finitely many indices s only, which proves the
claim.

Tet M, = U (k) - U (k= 1), Lot Zx) '{nﬂ.d 6
€ C€(k): YR e¥(k - 1), n{mnn 53}3,

let I ={L< wiR, & E(X)3.

Yor £ Iwehave A, n M| = by (2),, (5)1 and
(6)7 » Hence we can find sets P, (£ ,m) (L € I, m&k) such that
I2.(£,m)| =k, B(L,m)ch,n M, B(l ,m)nB (L' ,m") =8
whenever (£ ,m)+(.£’,m").

It remains to define P, , = U {R (L,m): £ 6 13, This
ocompletes the inductive definition.

o0
As may be expected, we set A om -h&)ml’k._.

Clearly "J’ anh yom’ = @ for -*-'. We have to verify
' L] ’
(6341 08 (Thp e
Let 1£ 3 <9 end n< @ be arbitrary, we have to check

that _Rp.n I\MLQJ" "‘I’.l 4s finite. It suffices to show that for
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some k < , R, € € (x): Indeed, if nﬂ,n & %(x), then by
Rp,n “mya"r.l e U¥(x)n
nmkgal,b' = U {r‘._: L<km< L}, and the last set is fi-

nite.

(a) and (¢) of our construction,

Let Rp,n = Ry in our enumeration. If for each R & ¥(t - 1),
Rﬁ’nnk € },3 , then R{g,n e ‘fo(t)s %(t) and we are done. If for
some R ¢ €(t - 1), R(z,n -Re¢ ;(5 » pick the first k> max (n,t)+
+ 1 such that ¥(k) +¥€(k - 1). The existence of such a k fol-
lows by (1)7 s (2)1. and (3)7 « The definition of %¥(k) guaran-
tees that Ry, € €; (k) g €(x). Thus (6),, holde.

For (7)7_“. it suffices to show that for each n€m < @ and
for each p < @ , {3 < T:lA ,n"“z-,nl‘p“‘ @ .

Let k = max (p,n,m) + 1 and consider the family €(k - 1).
Since €(k - 1) is finite, by (4), the set "={3 < ¥ : For so-
me R g €(k - 1), R{s.n -R € }p; is finite. We claim that for
each <y , it B ¢, then lAﬂ'nnA?.n] > pe.

Choose such & (3 and let Rﬁ,n = R, in our enumeration.
Since A 4§ M, Ron € €(k’) - €(x" - 1) for some k 'z k, more-
over, k> n implies that: Rﬁ,n € €(x°) then. Now, by the induc-
tive definition, we have IAT’nnAﬁ'nlz P (2 m)| = kZk>p.

The lemma is proved 0O

Lemma 3., Let 1 £ y< @ and 1ot-(R°c.n:cc< 7 m<w}eand
{‘.‘,n“ € < ,n <} satisty (0)y = (7) « Then there are

iR, o<} endis un< @3 such that (0),,q = (T)yyy bold.

0 Applying Lemma 2, we obtain the collection {‘T,n'n <3,

For each o0 < Y, let nd'n =R n -mLao AD".!I' Since (6)T+1

holds, it is clear that {Rc;nz & <, n<w} - when viewed
as a collection of subsets of {n s w :R;’n-tﬂ } rather than of
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w - satisfies (0),3- - (4)3, . Using Lemma 1, find a family
{RT'n:n < @} such that (1)1_._1 - (4)8""'1 holds for -[R“.n:oc <
<y+1,n< w?., We may and shall assume that each R

ai int th .
sjoint wi m\éjw A’B’v'”

Let Ry p = Ry nUdy ne The validity of (O)Y'” = (Thyyq for
(R, o< ?+1, n<w?f and A plex <7+ 1, <wi is

obvious. O

i is

Having established the necessary lemmas, we know that the-
re are {R 1 & < wym<wic Plw) and 4, plem< @

n < wic P(w) satistying (0) - (7): The transfinite induction
was proved to work.

Let B be a subalgebra of P(w) generated by {Rd,n‘ o€ <
<W;,n < W} , X its Stone space. The conditions (0) - (3) meke
X to be thin-tall.

We have already described X as a quotient spece B/~ .
Using this description, denote xd;n the point of X correspond-

ing to ¥ _. Remind that F is the filter on co generated
oly 1

n
by {R(_“n - QQ s« ;oc} . 0f course one identifies @ with the
set of all isolated points of X.

Notice that for each 1 £ X < @, end each n < w , the
set Aoc.n converges tp a point X 0t By (5), Aoc,nsnoc,n' and by
(6), it Q & P, » then Ld.an is finite., Thus A“n - (%Gn - Q)
is finite, but this means that arbitrary neighborhood of x  n
contains all but finitely many points of A ¢, n°

Let M G « be such that |W|= «; =lw - Ml. We nave to

show that |Mn(cw - M| = w,, too.

Suppose not. Then there is some o(, < @y such that for
each ¢ > ¢ and each n < & , xd'rﬁi‘n(w- ¥). Let
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I = {k > oty for some 2 < w, xe(,n‘."

J --id,?oco: for some n < @ , xd.ns(w - )3,

Clearly II| = [J| = w, because [Ml= |l - Ml= w;. Since @

is countable and I as well as J is uncountable, there are some

W, @< @ such that both I = {x & Iix pcHiend IJ° ={x € J:
y

X omw € ( <o - M)} are uncountable.

It ocEI', then x ¢ w-~ M, since o > «_. We have
oy T o

shown that converges to xoc.ﬁ , therefore Aoc.ﬁ N(w =-N)

Aon

must be finite for o« € I, Similarly, Aocﬁ NnM is finite for
,

e« € J°. Thus there are p,q <co such that the set I'" ={x €

ol
A MLl £ q} is uncountable.

el’: IA&_ N(w-Mlé&piaswellas I = {xeJ :IAx'ﬁn

We may w.l.0.g. assume that @ £ m, Now, 1" enda J°° being
uncountable, there is some o< € J'° such that [{e I "z f3 <
<3l = w.

Por e I°°, 3 < we have:

- P4
lAﬂ’nr\Ad’ml .lAa’anAoc.ﬁn(w M| +lAﬂ'-ﬁnL .ﬁnul_

é\Aﬂ’-ﬁn(w-m)\ +lL¢,ﬁan4p+q.

But this contradicts (7).
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