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MULTI-PHASE FREE BOUNDARY PROBLEM FOR THE EQUATIONS
OF MOTION OF GENERAL FLUIDS
Atusi TANI

Abstract The nonstationary multi-phase free boundary problem for the equations
of motion of general fluids is investigated. The proof is given by the
well-known theory of parabolic system in Holder spaces. .
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1. Introduction. There are many famous and interesting problems in hydro-
dynamics, whose outstanding feature is somewhat paradoxical fact that the
boundary of the flow is itself not given. While there is a great variety of
problems with free boundaries, some of which were already investigated in
Newton's day, it seems to the present author that they do study just a little
from both a real physical and a strict mathematical point of view.

The one-phase free boundary problems for incompressible viscous fluids
are discussed by Solonnikov [S] and Beale [1,2] and those for compressible
ones, by Tani [7] and Secchi-Valli [3].

But concerning the multi-phase free boundary problems both for incom-
pressible and compressible viscous fluids there is only one result [8,9], as
far as the author knows until now.

In this paper, we confine ourselves to the multi-phase free boundary
problem for the system of differential equations of motion of compressible
viscous isotropic Newtonian fluids, say general fluids.

Notation. For a domain Q in lls; any non-negative integer n and
ae(0,1), we define:

This paper vas presented in written form on the International
Spring School on Evolution Equations.Dabrichovice by Prague,
May 21-25,1984.
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Using local coordinates, it is not difficult to define such spaces for functions
defined on the boundary of Q. The same notations will be used for the spaces
of vector functions, whose norms are supposed to be equal to the sum of the

norms of all its components. For the Hblder exponent a=1, notations such as
+L
loc
q(p,8) which are defined on (0,=)x(0,=), n-times partially differentiable

IgliLl are used. By ((0,=)x(0,=)), we mean the set of all functions
»

and their n-th order derivatives are locally Lipschitz continuous there.

2. Statement of the problem. It is natural and plausible, to the present
author, that the movement of one fluid acts upon those of others and the move-
ment necessarily accompanies heat change and vice versa, so that we consider
the multi-phase free boundary problem arising from the movement of a finite
number, say n, of nonmiscible general fluids.

Let @, [resp. Ql,nz,'--,ﬂn]. be a bounded or unbounded domain in R3
[resp. ﬂo] with a boundary Tj [resp. rl,rz,---,rn]; the distances between
r. and Fk (j,k=0,1,--~,n;j#k) be supposed to be positive; the exterior
boundary T, be assumed to be rigid. We set

n
wg =9y - i\-J‘nj "
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Q. if there is no ke ces ~-{j
”J - 1 j (1,2, ,n}-{j} such that Qjank,
Q.- ‘ ) a if there are ke€(1,2,:«- ~-{j
j k:Qk q. k 32 ,n}-{j} such that nj:ak.

Denoting by w,.(t), the domain of the fluid at time t which initially occupies
., (j=0,1,+<-,n), then our problem consists of finding the domain w,(t)

and the function (p(J),v(J),B(J)) defined on mj(t) (j=0,1,...,n) ‘satisfying

the system of differential equations:
(21D, @ L, W, ),

W pUN LRy (), ) g p() , (32405)

oMo 0y (D50 . g ( (B gg i)y 41 () (g.y (32,5, () () 5 (5)
in ﬁl(.j) = eer? i xeu, (t), t€(0,T)} (T>0),

the initial conditiops )

) (o(’),v(’),a(’))|t=0=(oé”.vé’),aé’))(x) (x€sy),

the boundary conditions

G I < LD SN ¢ ) M« ) PSRRI ¢ ) T ¢ ) P
& 6 IS T O T PR ¢ T L P
on S(uj’,r(\amj,’.r

for Vj,j'€10,1,-+-,n} (j#j') satisfying dus rndug, 19,

0) _ i S od 0) _ -
4) v =0 (non-slip condition), 9 -Se on rO,T -Fox [o,T],
and the equations

D ,(3=i") (=" -
5) (5¢d F (x,t) =0 on ijlr(\amj"T #9).

Here o(j)=p(j)(x,t) is the density, v(j)=v(j)(x,t)=(v§3),v2(J),Y()))~ is the
velocity of the fluid at time t at the point x=(x1,x2,x3), f(J -f())(x,t)

is a vector of external forces and B(J)=O(J)(x,t) is the absolute temperature.

The pressure p(J), the entropy S(J), the coefficients of viscosity u(J)

and u'(j), and the coefficient of heat conduction K(J) are given functions
of the variables p(J) and O(J) satisfying the conditions u(J), <(J?,
s(g)msm/ae(”) >0, uP w350, v- (3/3x1,3/3xz,3/3x3);[%] (3.
=3t e w3 ry;p ) < (pD e D 00y B)y14 2,0 0) ;1 45 the identity

matrix of order 3;D(j)=D(j)(v(j)) is a matrix with elements D(J)‘ =

3 A » . 2 1
= %(av?)/axk. w3 ax), i,k=1,2,3;1>(”:nm{i”k= p(?%og);amj(:) is the

boundary of wi(t);awj T=((x,t)|xeaw.(t), t€[0,T] };F 3= )(x,t) is such as

3u.|j(t)(\ awj,(t} = (st3 ! F(j=j')(x.n -0):u(j)-n(j)(x,t) is a unit normal
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voctc;;')at x€ Mj (t)n 3wj,(t) pointing into the interior of uj (t) (n(J")_
= -n*’7%).

Throughout this paper we assume that the compatibility conditions are
valid even if they are not written down explicitly.

Our main result is the following:

Theorem. Suppose (i)T,,T_,++,T ecz (0€(0,1)), dis(T,T,) >0 (j,k=0,

1,eee,ms3uk) (8) (87,03 0! ’)e01 a, )xc2+°(“, X cz“"(uj) (<o)<
{'7)(:)<p {‘”, 0<20(j}<s('1)( )<9('7) -0' F(‘”, (‘7) -('7) are constants)

-

(§=0,1,+++,n) (i) FI& B @ =8 x [0,71), p lD"Drf(")l‘Li e (3u0,1,
z‘+ s =1
; . i Fr ;
cee,n) (@) u(J), u'(‘7), ,(3), p"”, s(J)EO‘zZZZ((O,u)x (0,=)), 2u(‘7)+3u’(‘7) >0,

(J) :(j) (.1) 1+a/2

uoy, ( i) (I' T)

Then there mata a um.quc solution - (p(‘” (‘7) ('7)) (§=0,1,+++,m) of (1)~
(5), which belongs to B™**FI)) « cz*"'““/zﬁ(-”) cz*“’“"/z@(ﬂ)) (0<0 (@) ¢
;('7.) ('7) (J)wmtcmt) for some T'e€ (0,T) (§=0,1,++2,n).

>0 (§=0,1,+++,n) (v) 0, ecz‘”"

=constant, 0<g

3. sketch of the proof of Theorem. Since we have already proved in [8] the

analogous theorem for two-phase free boundary problem of general fluids in
detail and the same arguements are applicable in the present case, we give
here only the sketch of the proof of the above theorem.

1°. First of all, we transform the equations (1) by the characteristic trans-
formation l'Ix't :(x,t)>(x,,t.) which is defined by the relation
X, .to 0’70
xax & ] 0 v(j)(x ,T)dr =x(x,,t ;?(j)) (';(J)(X >t )’Hx’t V(j)(X,t))
0 0 0 0’70 0’70 xo,to

into the form
SRR C) DR ¢ ) PG
N AN I

.2 .0) By e ) S0y
A N L ANE) R A R e R N

(), ,()30)
6 -9, P +8 f ,
© 16 ) L
I N ILe) DS ) R ¢) U ¢ PN ¢ Y
B s 3yt T et D e

(3) () s0)y , 51125 g0) FY6)
2 D ...(vY7y:p . (¥V)+ 8 [ REE A A v
) ;) 500 ()

(=0,1,+++,m).
pere 89,800 (xp e =10t 6000 k0, G = axixgo v Fyaxp ™
0.
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- _ =a40)9 9=
70(5)—(vv(j),l'vv(j),z've(j),3) GV, v=0raxg 12300y 5,000 ),

¢y ix with el o oo 39 uq i) (4 ks
D‘;(j)(v ) is a matrix with elements 2( {;(L',kvl + ‘;(J].ivk ) (i,k=1,2,
3) .

Integrating the equations (6)1. we can reduce our problem to the initial-

boundary value problem for the parabolic svstem (6)2 3 with
G j *o $))
3 PR 1| -
] ,fxo,.o) =2, (xo) ex*p[o,lo 7‘;(3.) v (xo,r)d'r]
and with the initial-boundary conditions
) D8 0,0 = v 0 xp on vy Ge1,2,000,m,
5(3) . A3)_(3) Gy, Aa6M_GY
s s L f{) “()("o) i 4()n( )("o) NOWNeD
3j o j it)e 1 ’ . ’
® G vrg | ‘q(J o |
HECINEI R, U50M,0 ) o s,
]q(j)“;pgj)l + [q(j');;‘,‘gj')l $G9

on [3u;n 3u5,]x[0,T]  for Vj,j'€ {0,1,+++,n} (j#j') satisfying
awjn Bwj, #9,

) @20, §@25 on 1y,
5(3) (6))] (3) +(3) 3) 6)) (i) (6)]
where P = [~ +u Y ey T+ 2D S (v ), Fll(xy) =FNY Y (x,,0),
‘ o ;@ 6 0 o 0

“(J)("o) -n(J)(xo.O)-

(6)v(9) can be written in a shorter form
%o W3 'ﬁj)(xo"o'"(j)‘;)"(j) ’/éj)(xo'to"(j)) in Q,l(-j).

6]

)
w =0,
|'t:0 0

W@, (0.3e - e(()O)) on Ty .,
(10)

I I
"(j)("o"o"(j)“’) W3 B(j')(xo.toaw(j');e) MG LD I
—ﬁ-———' 0 '
IQ(])H 3) ("0)| Iq(J 1,0 )(x0)|
= O(xo,to,w(:’),w(]')) on [amjn auj,] x [0,T],
where w(j)-(:r(j)-vgj),6(1)_-95'”), Qlf'j)'"j‘(o’r)’dj)(‘o’to"(j);v) and

!(j)(xo,to,w(n;a) are matrices with elements 2nd and 1st order differential
operators respectively.

2°. We consider a linearlized initial-boundary value problem of (10):
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3 4 QEJ)(" 0.5w@ . /33)(‘ JOVL6 DT QT(J')’

0
(3)
¥ |t0=0 = 0
an WO 0,5 -9 on 1, o,
I I
( 8D (e i) | WD - [ 506 e WG58 \WGY -
q(J)(w(J))n(J)(xo)| q(j')(w(j'))n(j')(xo)

= Nxo'to'"(j)'”(j')) on [awjn Qmj'] x [O,T]_

Here w(J)(j-O 1,+++,n) are assumed to belong to the set

Gp= (@, e w(")yscz*“ L2 @iy exe 1 2y WD) so,
X’ 0 0

]IH(J)" (%%) <M§J), |3$w(3)!(“)6(j) <M§J) (j=0,1,+++,n)}
Xo 1

for any positive number MfJ) and

( "V(J)ll( (J)I(U) )

)

(J) r+|s|=0 to Xy
a positive nunber MgJ) detetmlned later.

We note the two facts:
(a) The system of differential equations (11) is uniformly parabolic in the
sense of Petrowsky (modulo of parabolicity &) for a suitably chosen T.
(b) When we consider the same problem as (11) in Rf E{x0=(x

0,1”‘0,2"‘0,3)l
x0,3 >0}, the complementing condition holds (see [6,8]).

(b) garantees the possibility for the construction of the regularizer of (11)
in the half space Rf, from which, together with the partition of unity,
follows the solvability of auxiliary linearized problem (11):

There exists a unique solution W(J)E C2+° 1+a/2(Q(J)) of (11) satisfying
the estimates o’

W1 @) < 1e U + e er MO mDy a2 o112y,
O

(12) 1 (a s i 3 . ;

p—-c) ,( ) ) & e D) v ¢l cr,m, Dyu®,
Ed

where C(J) and C(J) increase monotonically in T and MiJ) and ng)—>0

as T-bO (j=0,1, '--,n) If we choose the constant M(J) and TO in such a

way that M;J) >C(J) M(J)) +M for any positive number M .nd for such

M(J) [C(J)(TM"( ))Hﬂ (Tulz 1~u/2)_M§J) and Cgl)(TO'“EJ))"SJ)éM'
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by T for simplicity.

=@ ... 4@
then W=(N'") <o W )éC{ro. We denote T,

3°. Next we construct the sequence (wn(ko,to)} of successive approximate
solutions as follows:

w.(x.,t.)=0
070’0 o 0
un(xo,to) is defined as a solution W~ of (11) assuming w= (w BLE I

m), .
wo) "u-le (;T'
Then the result in 2°implies that Yo (m=0,1,2,+++) are well defined and
belong to (;T. Applying the estimates (12) to the equation concerning

W -W , we obtain
m m-1

(13) I”"n = "III-II" -4 Cs(T'MI ’MZ) "lwm-l - wm_zl”
n . n . n :

Clitelll = 3 O B39, = P M), uy = T M)y where Cy»0 as To0.
j=0 q j=0 i=0

Therefore the sequence (wm(xo,to)} converges to w(xo,to) uniformly if we

choose T'€ (0,T] so as to satisfy Cq(T',M,,M,))<1. Then =@, ... vy
0 0

=Wty nm (W w,), v9=cvf, D e ®y), B2 e0y (0= 087,00 05M)),

a(xo,to) -po(xo) exp[-f g Vvdt] is our desired solution of (6)v(9). The

0
uniqueness of the solution follows from the uniqueness of the solution of (10),

which is proved by the fact that two solutions supposed to exist satisfy the
inequality analogous to (13).

4°. The unique solution of the original free boundary problem (1)v(5) can be
obtained by the formulae

6P, v e, 6D w0, v -
X,to . - s
= 1% 26D gty VP ixputg, §D e, 0 Go0,1,000m.

The positivity and boundedness of p and @ are obvious from our construction
method.
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A GENERALIZATION OF THE THEOREM OF MAULDIN
Marek BALCERZAK

Abstract: For a perfect Polish space X and a &-ideal 7
of subsels of X, let £(I..T) denote the family of all real-va-
lued functions on X continuous almost everywhere with respect
toJ. We shall prove that the Baire order of $(X,J) is @, for

a general class of 6-ideals J, thus generalizing the Meuldin’s
result for X = [0,1] and the sets of Lebesgue measure zero for

Key words: Baire classes of funtiions, 6-ideals of sets.
Classificatiocn: 26A21

Let X be a perfect Polish space, We consider & -ideals of
subsets of X. It is assumed that each G'-ideal contains all
singletons {x} and does not contain any nonempty open subset
of X. Por a fixed 6-ideal J, let H(X,J) dencte the family of
all real-valued functions defined on X wkich are continuous al-
most everywhere with respect to J. Suppose that a 6 -ideal 3°
is such that the following conditions hold:

(I) there is & compact subset X, of X which does not be-
long to J 3

(II) for each countable subset A of X, there is & G4 set
belonging to Jo such that ASB.

It is proved that the Baire order of $(X,J) is @, for each
€-ideal J included in J . Meuldin [8] obtained this result in
the case when X is the unit interval and J = J  is the 6'-ideal

- 209 -



of all sets of the Lebesgue measure zero. Our proof is based on
the method presented in [8]. We also use topological properties
concerning 6-ideals (for instance, a generalization of the Can-
tor-Bendixson Theorem is proved). The main result of this note

can be applied to the 6-ideal constructed by Mycielski in [10].

Let X be & set and let § be a family of real-valued func-
tions defined on X. We define q;o = ¢ and, for each ordinal
&> 0, 1et ¢ be the family of all pointwise limits of sequen-
ﬂ'y e Qa, « The first uncountable ordinal will be
denoted by a);. Observe that ‘Pw, - QQ1 +1 and ¢m1 is the

ces taken from

smallest subfamily of RX which contains ® and which is elosed
with respect to pointwise limits of sequences. The Baire order
of § is & first ordinal o« such that § = d ;. Por example,
i2  denotes the family of all real-valued functions defined
on the unit interval, then the Baire order of & is w, [11].

Now, let X be a perfect Polish space. Consider those 6&-i-
deals of subsets of X which contain all singletons {x} and do
not contain any nonempty open subset of X. For & fixed 6 -ideal
J, 1let ®= O (X,J) be the family of.all real-valued functions
on X whose set of points of discontinuity belongs to J. Notice
that the Baire order of §(X,J) is always positive because the
characteristic funotion of any countable dense subset of X be-
longs to $4(X,7)\ Qo(I,J) (we write Q‘(IJ) instead of
($(x,7)), ). The problems connected with the Baire order of
§(X,7) were studied by Mauldin in [6],[71,(8],[9]. It is known
that the order of §(X,7) equals 1 if J denotes the &-ideal of
all sets of the first category [2]). Mauldin in [8] proved that
if X is the unit interval and J denotes the 6-ideal of all

sets of the Lebesgue measure sero. then the order of & (X,7)
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is 0'1. Several generalizations of this result were obtained in
[71. Another generalization will be presented in this paper.

Mauldin in [6] gave the following characterization of the
generalized Baire classes:

Theorem 1. If o is an ordinal, 0< & < w,, then a functi-
on £ is in $(X,J) if and only if there is a function g in the
Baire class ¢ such that the set {x:f(x)+g(x)} is a subset of
an P, set belonging to J.

The Baire order of @ (X,)) treated as a function of J is
monotonic in the following sense: .

Proposition 1, If J and } are 6-ideals of subsets of X
and J ¢ ; s then the order of $(X,}) is not greater than the
order of &(X,]).

Proof. Let o¢ be the order of ¢ (X,7). Observe that it is

enough to demonstrate the inclusion
P41 (XP & B (TP

It ouvieusly holds 1f of = @,. Let & < &,. If £ belongs to
Q‘” (x,3), then, by Theorem 1, there exists a function g in
the Baire class o¢ + 1 such that the set {x:f(x)+g(x)} is a subdb-
set of an ¥y set belonging to } « Of course, g belongs to
Qa.ﬂ (X,J). Then, from the definition of o it follows that g
belongs to Q‘__‘(I,’J). Hence, by Theorem 1, there exists a func-
tion h in the Baire olass o« such that the set {x:g(x)* h(x)}
is a subset of an Py set belonging to J . Since J ¢ ; , the
set {x:£(x)+ h(x)} is & subset of an Py set belonging to p
Hence, by Theorem 1, the function f belongs to Qd(l,;).

The main result of this note is:

Theorem 2. Let ﬁo be a &' -ideal of subsets of X such that
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the following conditions hold:

(I) there is a compact subset X, of X which does not be-
long to 30;

(II) for each countable subset A of X, there is a “d‘ set
B belonging to Jo such that Ac B,
Then the Baire order of $(X,J) is @; for each &-ideal J in-
. 6luded 1n J,.

Remark. Considering X equal to the unit interval and 7, 7,
equal to the G -ideal of sets of the Lebesgue measure zero, we
get the theorem of Mauldin [81].

In virtue of Proposition 1, we shall prove Theorem 2 if we
only verify that the order of §(I,:7°) is ;. The argument of
this fact will be based on the method presented in [8].

The proof of Mauldin begins with a construction of a fami-
ly which consists of perfect sets A such that if an open set V
intersects A, then the set VA A has positive measure. We shsll
generalize that property.

Let } be a 6-ideal of subsets of X.

Definition 1 (compare [4]). A closed nonempty subset A
of X will be called }-gcrfuct if and only if, for each open
set V such that V intersects A, we have VnAi ¢ ; .

Remark. Since g does not contain any nonempty open sub-
set of X, the set X is }-pertoot.

Definition 2 (compare [10]). If A is a subset of X, then
1et AP dencte the set of all points x of X such that, for

each neighbourhood V of x, we have VnA & } o
Let us quote from [10] & few proverties of the operation
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A(}):
(1) AP 1s closed and included in the closure of Aj
(11) (A(}))(}) - ‘(})5
(111) anaPe

Proposition 2, A nonempty subset A of X is 7-pcrfoct it
and only if A = Ag').

Proof. Assume that A is j-perfoet. Then, immediately
from the definitions it follows that Ac A{?). Since A 1s closed,
therefore, by (i), we have A(}) € A. Conversely, assume that A =
= A, Then, by (i), the set A is closed. Let an open set V in-
tersect A. Consider a point which belongs to Vn A. Then it be-
longs to A and from Definition 2 it follows that Vnl ¢ } + Thus
A is }-perfect.

Proposition 3. For each closed subset A of X, there is a
unique decomposition A = BuC into disjoint sets such that B is
empty or } -perfect, and C € 7} .

Proof. ItAe; , then we put B = J, C = A, and A = BuUC
is the required unique decomposition. If A ¢ 7} , then we put
B =4ld), ¢ = ANB. In virtue of (ii1), we have C € } . Since
A ¢ 7} , therefore B ¢ 7| . Hence B is nonempty and it follows
trom (11) that B{#) - B, Thus, in virtue of Proposition 2, the
set B is }-perfect. Now, assume that A = B'UC’ where B', C~
are disjoint, B” 1s f-perfect and C'c¢ }} . If xeB and V is
any neighbourhood of x, then VAB ~ 7 . Hence VAA 4 * and
xe A}, Thue B'c B. If x€C’, then there is a neighbou hood V
of x such that VAnB = ¢ since B', C  are disjoint and B is clo-
sed. Now, VAB = @ implies VNA = VaC® and then Vad ¢ .
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Hence x€C. So, we have B'c B, C'c C. Since BUC = B'UC’ and
BAC = 9 = BN C’, there must be B =B, C = C’,

Remarks. Mertin in [5] explored topologies generated by
the operation of the derived set. Notice that L(;) is such an
operation, Then Auk(}) is a closure operation and it generates
a topology which we denote by J° (comp. L11,[5]1,110]). Prom [5],
Th. 1, it follows that 1f xe AP impltes xc(A~ix})P, then
the derived set of A in the topology 7’ coincides with Lg). Ve
have assumed that {x3} e } for each x€X, therefore the above-
mentioned condition holds. Thus, Proposition 2 means that }- "
perfect sets are identical with perfect sets in the topology 7°.
Proposition 3 is a kind of generalization of the Cantor-Bendix-
son Theorem. Similar results were obtained in [1] (Satz II) and

[4)(Th. 1.3).

Now, suppose that ?Io and xo fulfil all the hypotheses of
Theorem 2. Since X  is closed and X ¢ 70, therefore by Proposi-
tion 3, there is m'.L-pertect set I* < Io. 0f course, Xy, 1is ocom-
pact., Let

I5 =iAnX a8,
Observe that J5 c J, and 3;‘ is a 6 -ideal of subsets of the per-
fect Polish space X, .

Lemme 1 (compere [9], Th. 2). The Baire order of §(X,, 3’:)
is not greater than the Baire order of &(X,J)).

Proof. Suppose that the order of ¢ (X, 3: ) is greater
then the order of & (X,J,). Thus, the order of §(X,J,) equals
a countable ordinal o . Let f belong to P 41(Xep)e Then,
by Theorem 1, there is a function g defined on X, which is in
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the Baire class o¢ + 1, such that the set

A = {x:2(x)+g(x)}
is & subset of a set B which is of type F¢ with respect to 'I*
end belongs to U . Let ?, 2 be extensions of £, g, respective-
1y, to the whole X, such that £(x) = &(x) = O for xe X\ X* , Then
g belongs to the Baire class o+ 1 and we have {x: f(x).*,: g(x)? =
= A. As above, ACB and one can easily check that B is an Fg set
with respect to X, belonging to 'Jo. Thus, by Theorem 1, £ belongs
to & ,q(X, J,). Hence £ 1s in ¢ _(X, J,) by the definition of
o + It can be shown by tranafinite induction that, for all o ,
047y <w,, if a function is in q;,a.,(x, Jo)» then its restricti-
on to X, isin ¢ T(x, ; J: ). Therefore the function f, which
is the restriction of £ to Xy » belongs to & (X, d: )e So, it
follows that & (X, , 33 ) = & _ (X, ,3%). This contradicts
the essumption that the order of ¢, , :7’; ) is greater than oC .

Now, in virt® of Lemma 1, it is enough to prove that the
Baire order of &(X,, J; ) equals @,. Thus, we shall consider
Xe» 33 instead of X, ’Jo, respectively. For simplicity, we shall
preserve the notation X, J °° We shall only add thé assumption
that X is compact. Observe that the condition (II) is still true.

Lemma 2, For each Fy subset D of X such that D ¢ T, there
is a get Do included in D such that Do is Jo-perfect and nowhere

dense in D.

Procf. Let A be a countable subset of D, dense in D, Since
the condition (II) holds, there is a Gy set Be 'Jo such that
AcB. Let E = D\B. The set E is of type Fy , of the first cate-

o0
gory in D, and E & 30. Let E -nL{,I B, where En are closed and
nowhere dense in D. Then there exists E, ¢ Joe In virtue of
o
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Proposition 3, there exists a set D, which 1s contained in E,
o

and (jo-pertoct. The set Do Just fulfils the conclusion.

Lemma 3. For each jo-perrcct set P, for each nonempty
set V open with respect to P, and for each closed set Fo con-
tained in P and nowhere dense in P, there is a set Do included

in V\T, which is Jo-pertect and nowhere dense in P.

Proof. It is enough to apply Lemma 2 to the set D = V\PO.

The following lemma can be proved by using Lemma 3 and re-
peating Mauldin’s comstruotion (see [81, the proof of Lemma 1).

Lemma 4. Let P be an :Jo-perfect set. There is a double
sequence {’nk}‘:,kﬂ of disjoint subsets of P such that

(a) each By is J o~-Perfect and nowhere dense in P3

(b) 1f n is a natural number and V is e nonempty set open
with respect to P, then there is some k such that Fnk is a sub-
set of V,

The next part of the proof of Theorem 2 is analogous to that
of [8]. Instead of the unit interval one considers the space X;
moreover, the notations A(A) = 0, A(A)>0 sre to be replaced
byhe J,, A4 C’o; respectively (here A(A) means the Lebesgue

meeasure of A).

In such a way we obtain the following lemma (compare [8],
Lemma 4):

Lemma 5. There is an Fg v set H included in X and a Borel
measurable function f from H onto the set N' of all irrational
numbers between O and 1, such that if z € N , then ' ({2%) 1is
not a subset of an F~ set belonging to ’Jo.
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The further two theorems play the same role as Theorems 1

The countable product of identical sets which are all eqal

to X will be denoted by Iq’. Assume that x%

the Tychonoff topology. Notice that xm°

is equipped with

forms a Polish space.

Theorem 3. There is a Borel measurable mapping h from X
o,

onto X' ° such that 12 t€X ©, then h™'({t}) is not a subset of
an Fg set belonging to J,.

Proof. Let f be a funotion described in Lemma 5. Sinoce

o,

X ° is a Polish space, there exists a continuous mapping g of X'
@)

onto X © (see [3), p. 353, Th. 1). Consider x,c X end put

e(t(x)) it xeH
(xo,xo.xo,.-.) if xeX\ H.
The mapping h has the required properties.

h(x) =

Theorem 4. There exists a transfinite sequence of "univer-

sal functions® {U_} such that, for each o¢ , 0<k < Wy,

0<ou<ay
we have

(1) U, 4is a Borel measurable function on XxX into the
unit interval I,

(2) if £ is a function in the Baire class o¢ , which mape
I into I, then the set of all x, such that U, (x,y) = £(y) for

each y in X, is not a subset of an Py set belonging to do.

Proef (cf.[111,p.339). Since X is compact and I is separable,
then the space of all continuous functions om X into I with the
topology generated by the uniform convergence is separable (see
[31,p.120,Th.2), Let {S }, .4 be a countable dense subset of this
space. Choose an arbitrary sequence {xf}‘:_‘ of distinct points
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of X, Por (x,y)e IxX, let

{ 8,(y) it x = x

U (x,y) =
i otherwise,

Let h = (h1 ,h2 'h3"") be a mapping described in Theorem 3. For
each ordinmal o« , O £ ot < @y, and for each (x,y)e XxX, let

Ud"" (x,y) = li’:—*%p UOC (hn(x) 1y)¢

If < is a limit ordinel, then let {Tn}:-‘l be an increasing
sequence of ordinals less than o which converges to «< , and
let

U (x,y) = 11:'_::9 Uy n(by(x),y).
Using transfinite induction, one shows that the sequence
{Ud}o“(’«.,1 has properties (1),(2) (see [8], the proof of Th.2).

Now, the last part of the proof of Theorem 2 can be given.
Suppose that the order of & (X, :‘]o) is ov < w,. Let U, be de-
fined as above and let .

n
£(x) -”Einw (1 -9 (x,x))", xeX.

Since 04U (x,x) <1, the equation f(x) = U, (x,x) never holds.
By Theorem 4, (1), the function £ is Borel measurable. So, f be-
longs to & (X, Jo). In virtue of Theorem 1, there is a functi-
on g in the Baire class o¢ such that the set A of all x for
which £(x)# g(x) is a subset of an Fg set belonging to J . In
virtue of Theorem 4, (2), the set B of all x, such that

Uy (x,5) = g(y) for each y in X, 1s not a subset of an Fgy set
belonging to :10. Hence there is a point x, which belongs to

B\ A, Then we have U (xo.y) = g(y) for each y in X, and f(xo) =
= g(xo). In particuler, for y = x,, we obtain f(xo) =U, (xo,xo).

This is a contradiction. The proof of Theorem 2 has been comp-
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Example, Consider X = {0,1}"’° and assume that 0,1}, X
are equipped with the discrete and the Tychonoff topologies,
respectively. The space X is homeomorphic to the Cantor set and
so, X is a compact and perfect Polish space. Mycielski in [10]
defined a 6-ideal 70 of gubsets of X such that the condition
(II) is fulfilled. Since X is compact, the condition (I) also
holds. Hence, by Theorem 2, the Baire order of $ (X,J ) is @4
for each 6-ideal J included in J . Let » be a measure on
10,1} such that »({0}) = »({13) = '/2 and let @ denote the
product measure on X generated by ¥ . Mycielski showed that the-
re exists & decomposition of X into two disjoint sets: one of
them belongs to ’Jo and the other is of the measure M zero and
of the first category. Let¢

U(u_- {A: w(a) = 0},

Since w is a finite regular Borel measure which has no atoms,
the Baire order of & (X, J.) is w, (see [9], Th. 7). According
to Proposition 1, the order of ®(X,J) is @, for each 6-ideal
J inoluded in jé" .

Problems. Can the condition (I) in. Theorem 2 be omitted?
Observe that it is possible if we add the assumption that X is
locally compact, Indeed, then we put as xo a compact set which
is a closure of an open nonempty set. The next question is: does
the converse of_'l‘heorem 2 hold in this case? Saying precisely,
let J be a G-ideal of a locally compact perfect Polish space
X and suppose that the order of $(X,J) is .. We ask whether
a G-ideal 'Jo exists such that J is included in J o and the
condition (II) holds.
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