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LOCAL AND GLOBAL EXISTENCE AND BEHAVIOUR FOR t = o
OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS
Wolf von WAHL »

We will study nonlinear evolution equations u'+Au+M(u) = 0, u(0) =¢,
in a Banach space B, where -A generates an analytic semigroup. Our

main concern is the application of our theory to the Navier-Stokes
equations.

Key words: Differential equations in abstract spaces. Special equa-
tions and problems.

Classification: 34G20 , 35Ql0

§ 1. Local existence
Let -A be the generator of an analytic semigroup e_tA in a Banach
space B. Let A be positive; thus the fractional powers A% can be
defined in the usual way. Let ¢ €ED(A). Let B be reflexive. If the

nonlinearity M is a mapping from D(A) into B fulfilling the Lip-
schitz condition

(1.1) M -M@)] s k@[ @-v)l,

u,v €D(A), ||au||+]|lav||sc

for some p € (0,1), then there is a quantity T(9), +x2T(¢p) >0 with
the following properties: There is a unique u €C1 ([0, T(9)),B) with
u(t) €D(A), Ot <T(9), Au(.) €c°(l0,T(v)),B),

This paper was presented on the International Spring School on
Evolution Equations,Dobf¥fichovice by Prague,May 21-25, 1984
(invited lecture).
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(I.2) u'+Au+M(u) = 0 on [O,T(v)),
u(0) = @,

1im  ||Au(t)] =+w if T(9) < +w.
t4T ()

This result has been stated by Kato [K] . A proof has been given

by the author (not yet published). It rests on the consideration of
the weak derivative of M(u). u has the additional property that

u'(t) ED(A1_°), 0 <t <T(p). For our purposes it is important to study
(I.Z‘.) with initial values from B only (instead of D(A)). The possi-
bility of solving (I.2) with initial values from B depends on the
growth of M. We want to present two theorems:

Theorem I.1: Let 9 € B. For some Pq € (0,1) let M be a mapping from
1-p
D(AR ') into B fulfilling the Lipschitz condition

1-p,| 1-01 1—91
(1.3) IM(w)-M(v)|| s cl (A ul|+|[a viPllu=v]i+ (lulHlvIDlia (u-v)||]

Then there exists a quantity T(9), +o2T(9) >0 with the following

properties: There is unique u €c®([0,T(9)),B) with u(t) D(Al'p‘).
1-p -
1

0<t<T(p), A u€ec®((0,T(9)),B) ,tl‘p‘Al'p u(t) bounded on (O,T),

T’(T«’) lu(o)-vl
t

(I.4) u(t) = e Pg-y ™ (t78)By(y(5)) as,
o}

lim  lu(t)] =+= if T(@) < +w=.
t+T (9)

From (I.4) it follows that u(t) €D(A), O<t <T(9), Aau€c®((0,T(9)),B),
uec' ((0,T(0)),B),

u' +Au+M(u) = 0 on (O,T(9)).
For a proof see [W1, IV].

This theorem already covers some applications to the Navier-
Stokes Equations but we still need a version which turns out to be
somewhat stronger, at least as it concerns the Navier-Stokes Equations.
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It is based on the consideration of the equation (A_du)' +AA'5u +

+ a7 %m@a%a % = 0 or w' +aw+a M%) = 0 for some 8 >0. Solving
the latter equation one can consider the resulting solution w as a
weak solution of u' +Au +M(u) = O and try to improve on the regula-
rity of u. This device was used by Fujita and Kato [FK] to treat
the Navier-Stokes Equations.

1-01
Theorem I.2: Let M be a mapping from D(A ) into B for some
e €(0,1). We set

M) = m@atu),

1—p1+6
u€D(A

hold:

) and assume that the following Lipschitz inequalities

S 1-0}
1A%l s cla  ulPdiaapn),

L \J

P
1v|D-

-8 0, \ 2 s s 1=p4 1
12~ Mu)-M(v))|| s cl(a’ul|+||a’v[[+1) (A Tull+]lA

-HA1 p1(u—v)|] +(HA1-p;u|F +HA1—D:VIF +1)-
188 w1} |
for some § >0 and some p; € (0,1) with
0<1-2p3 56 <1-p].

Then for any ¢ €B there exists a quantity T(9), +~ 2T(9) >0 such
that there is a unique

uec(lo,T(e)),B)

with
- '— - - - -
ut) € n  pa'e' "8, e17e7817e6, (+) bounded on (0,T),T<T(Q),
O<e'<1
- '—
a'"¢""% € c°((0,T(0)),B), O<c’ <1,
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-tA, -4$

t
A 6u(t:) = e a0 -y o (E7S)A
[e]

a2 %mata"%u(s)) as.

If T(9) <+ then

lim  Jlu(t)|| = 1lim ||A5A_6u(t)|| = +e
t4T (o) t1T (o)
or
~ -0 ' -0' = -
w(8,T) = sup ||t1 LR tAu(T)H

0stsT, T+t<T (9)

does not converge uniformly in T € [0,T(¢)) to O for 3 -0,

Proof: We sketch the proof. The details can be found in [W1, Sitze
IV.9, IV.11]. First we observe that t“Aue-tAx—oo for t -0 and for
any a >0. We consider the mapping

e—tA = e-(t_S)AA—GM(A‘Sw(s)) ds

Tw(t) = A @~

OSrt

on the complete metric space

Wy = {wiw ec®(10,71,0(a%)), wio) =20,

wec((,F1,0a'% ")y,

J8met a0 €22 (0,%) ,B),

Ia%wie)l s fa%e™ Pa~Sy)| 4,

+*
, (0,5 )

—_—l et - L R ' - - -
||t1GEA1ew(t)||$2H.16€A1 €e 'AAGQ) N o
L ((0,T))
o<ts"i"}, O<e' <1-§,

endowed with the metric _

8
ug(v.,v,) = sup_ ||A” (v, (t)-v, (£))] +
TV 2" 7 ocesw 1 2

.

+ sup_ 1t? A1 (v, (0)-v,(e))]].
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We want to show that by T the space *ﬂ$ is mapped into itself if
T is sufficiently small and €' =p,. We have

1-6-¢' _1-¢"

It A Tw(t)]|
- = ! —-f—p ! -
T N e T
t -c(t-s) 1-p"
—§=g
+ et s e A sl 2d1a%wis)]l+ ) as,
0 |t-s|

==l {=fep? =
< ”t1 §-¢ A1 §-¢ o tAWI|+

1-6-¢' 1 1
+ ct I — —
o |t"S|1 € 52(1 P §)

ds-

7 T - -
4 sup [Is'T0TE A E TSRO0 1R (1AW () +1) as.
O<sst
t 1 1 1 1 1
Since é |t-s|1_:'. 2(1-p7-8) ds = é 1-5?' 2(1-p%-9) e =
s lt-s| s

<8 we have proved

- c c ; = o -2,
2—3p1—26 s 1—6—91 for small t if ¢ =pq, 1 291

t
1-8-pY 1-pY -
that || t A Tw(t)|| can be bounded in the same way as
1—6—p; 1-pa
It A w(t)||. The contraction property of T is proved in the

same way. The size of T depends on HAGA-GwIIand the smallness of
w(%,0). Thus the last part of Theorem I.2 follows. The regularity
properties of u are standard.

There are results corresponding to the just described ones for
equations u'(t) +A(t)u(t) +M(u(t)) = £(t) if the domain of defini-
tion D(A(t)) of the closed operators A(t) is time independent (for
details see [W1, IV.]). One can also improve on the regularity of u
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in Theorems I.1, I.2 if M is an analytic mapping between suitable
Banach spaces as it is the case for the Navier-Stokes Equations
(for details see [W1, II., IV. and VI.]).

§ 2. Local strong solutions of
the Navier-Stokes Equations

Velocity u and pressure n of a viscous incompressible fluid
under the influence of an external force f are supposed to be deter
minated by the Navier-Stokes Equations

(I1.1) $u -vAu +u:Vu +9r = £,

at
Ve.u = O.

This equation is considered over a cylindrical domain (0,'1‘)!0<:]an+
where 2 is a bounded open set of R"” with smooth boundary. In the
physically relevant case n=3, R is the space domain being filled
out by the fluid. v is the viscosity. The n-vector u-Vu is defined

3u,

n
to have the components I LA e 1s)sn; we prescribe boundary
1

i=1
values: u(t,x) |32 =0, t>0, u(0,x) =¢(x). This problem is subsumed

under the theory of nonlinear evolution equations in the following
way: First (LP(an ™, p>1 (in what follows we omit the exponent n)
is decomposed into the direct sum

tP(a) = Hy,(8) +{¥g|7g eLP(a)},

where H_(Q) is the completion of the divergence free C:(n)-vector
fields with respect to-the LP(@)-norm (see [FM]); H_(Q) is then
reflexive and the "projection" of LtP(2) on H_(Q) is a bounded ope-
rator, which we denote by Pp or simply P. Applying (formally) Pp
to (II.1) and assuming that because of V:-u =0 the equaiity\1=Ppu
holds, we get

= ' +Au+ «Vu) = P
(IZ.2) u' +Au Pp(u u) pf,

u(o) = 0

- 156 =



with A=A =-vP A. W 1 M = . .
. v B e also set M(u) Pp(u Vu)

Because of its mathematical interest we will consider (II.1),
(II.2) in any number of space dimensions. The domain of definition
of A is H2,p(m n§1'p(n) NH (Q). As it has been proved in [W1, Gi1]
A is a positive operator 1npthe Banach space B =H_(2) which gene-
rates an analytic semigroup e-tA with exponential decay. As for the
fractional powers A% it was proved by Giga [Gi2] that

(11.3) D(A“)-n((-A)"‘)nnp(m, Osasi,

with equivalent graph norms; -A is the usual Laplacian with domain
o
of definition H2,p(m nH1'p(n). In particular this means that
a %2a P 1 1
D(A”) = H (Q)an(n),OSasi,utfi;,
%, _0p'P
D(A“P) cHP " (2) with a continuous imbedding.

Here H®'P(R) are the complex interpolation spaces between the
Sobolev spaces Hk'p(ﬂ) =W‘k'p(n) of integer order k. gs,p(n) is the
completion of c:(n) in the norm of Hs'p(n). (II.2) is then considered
as a nonlinear evolution equation in B =Hp(n) to which we want to
apply our results of § 1. Once having solved (II.2) the pressure is
determined by

Vr = (I-Pp)vAu - (I—Pp)u-Vu + (I-Pp)f.

Our results depend on p and we start with

a) p >§. Then the Lipschitz condition (I.1) is fulfilled as can be
easily proved by an application of Sobolev's imbedding Theorems.
Thus (II.2) can be solved locally in t if ¢ €D(A). It will turn out
that for n =3 the exponent p =4§ is important.

b) p>n, say p=n+e. We have the trivial estimate
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M) s cllu-vul| .
LP(

s dlvull , _ llu] .
c® @ hp(ﬁ)

From (II.3) and our assumption p >n it can be derived that

pa'™?) ec' @)

for some p,a € (0,1) (see [W1, VI.]). Thus we have

1_
Ml s clla’Pull flull.

Since there is also a corresponding Lipschitz estimate, we can apply
Theorem I.1 (see [W1, VI.], [W2]).

Thus we get a local strong solution for any ¢ €B=H_(R) if p>n;
since this solution has a bounded C1+u(5)-norm it ig not surprising
that it is classical for O <t <T(¢9) provided f is sufficiently
regular.

c) p=n. We want to apply Theorem I.2. We choose $§ =%. Partial
integration shows that

llu-vul| _ s dlulfy, -
H 1,n(ﬂ) LG(n)
Using Giga's result on the fractional powers of A==An and Sobolev

theorem we arrive at
1

-3 7
lIa, M(u)“Hn(n) s annulﬁn(n).

It is easily shown that also a corresponding Lipschitz condition

holds. Thus we see that with pi =% we have

~

O<1-29;=%=6

therefore Theorem I.2 is applicable and gives a solution of the
integral equatioh
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-3 -tA -3t -(t-s)A_ -1
A “u(t) = e A "o-J e A _“P_(u-Vu) (s) ds +
n n 0o n n
t -(t-s)An
+f e f(s) ds
(o]

on [0,T(9)) for every w €B =Hn(n). This solution can be identified
with the solution constructed in b) on (O0,T(¢)). Thus u is regular,
its degree of reqularity depending on f.

It may be noted that the solutions constructed in a),b),c) are
1+%——e
in D(Ap P ) on (O,T(9)), O<e, since u-Vu depends analytically‘

on the components of u and Vu (for details see [W1, VIJ).

§ 3. Global questions: The connection
between weak solutions and local
strong solutions

It turns out that in § 2, c) the quantity T(9) is finite if u
is not uniformly continuous on [0,T(¢)) as a mapping from [O,T(®))
into Hn(n). Thus in what follows the Hn(n)—norm of u(t) plays a
major role.

As it is well known there is also an access to the Navier-Stokes
equations via the notion of a weak solution.

Definition ITT.1.: Let £ €1?((0,T),H "*2(R)), ¢ €H,(n). An element
wer((0,m,L%(2)) nz?((0,1,8"72(a)), which is weakly contimuous
from [0,T] into L?(f) and which fulfills V-u(t) =0, a.e., is
called a weak solution of (II.1) over (0,T)x% if

T T T
(IIX.1) = f (u,v') dt + v/ (Vu,Vy) dt + f (ueVu,y) dt
(o) (o) (o)

T
= (u(0),v(0)) +s (£,y) dt
o
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o]
for all testing functions ¥ €C' ([0,T],H'"™(2)) with V-y(t) =0 on
[o,T], wv(T) =0.

For a discussion of this definition and the determination of the
pressure v see [L, 1.6]. It goes back to E. Hopf that such a weak
solution exists for all T>0, i.e. on (0,»)xQ; it can be constructed
via Galerkin's approximation procedure, and a weak solution con-
structed in this way has an important additional property, namely:

2 t 2 2 L2
(III.2) [Ju(t)||“+2v s |[Vu(a)||“ do s ||lu(x)||+ 2 S (£(0),u(s)) do,
r r

for almost all r20 and all tzr (.|| is the L2(a)-norm, (.,.) the
L2(n)-scalar product). (III.2) is called "energy inequality". It
does not follow from (III.1) since it is not allowed to insert u
as a testing function. For details see [L, 1.6].

The weak solutions with energy inequality play a distinct rdle
because under some additional assumptions a uniqueness theorem for
them holds, namely:

Theorem III.1: Let ¢,f be as in Definition III.1. Let u,,u, be weak
solutions of (II.1) in the sense of Definition III.1. Let (III.2)
be valid for r=0 and all t, Ost sST. Let one of the ui, i=1,2,

say u' fulfil the condition

1

(111.3) u' €L¥ ((0,T),LF (2))

with n<r <+e, 2 <r' <+o, '%\-+¥=1, or

1

(III.4) u' €c®(lo,T], L (n)).

Then u'(t) =u?(t), OstsT.

The proof of the uniqueness under the condition (III.3) is due to
Serrin [S], under the condition (III.4) to Sohr and von Wahl [SW].

In particular (III.4) means that ¢ EH“(n).
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As for (III.3) the condition n <r could be weakened somewhat:

Theorem III.2: Let ¢ €Hn(R), £€c®([0,T],L™%(a)) for some a € (0,1)
and some § >0. Let u1,u2 be weak solutions in the sense of Defini-
tion III.1. Let u‘| fulfill (IXIX.2) for all r,t, OSrstsT. Let

u? €L((0,T),L”(2)). Then u'(t) =u?(t) for all t €[0,T].

A proof can be found in [SW]. As it was proved in [SW] too any
weak solution u €L”((O T), L"(n)) with ¢,f as in Theorem III.2. ful-
fills (III.2) for all r,t, OSrstsT. Moreover, if u1,u2 are weak
solutions being in L” ((o,T), L (R)) with data ¢,f as in Theorem III.2,
then u (t)-—uz(t). This is an easy consequence of Theorem III.2 and
was proved in [Sw]. Thus L"((O,T),Ln(n)) is a uniqueness class fdr
weak solutions which was previously not known (cf. e.g. [L, 1.61).
It is clear now that any weak solution u with u(t) €L™(2) a.e. and
with (III.2) for almost all r€ (O,T) and all t, rst <T, may be re-
constructed locally in t with the aid of Theorem I.2 and § 2, c).
The result is a generalization of Leray's famous structure theorem.

Theorem III.3: We assume that f €L?((0,=),L™()) and that f €c®([0,T],
n+6(n)) for all T>O with o,6 as in Theorem III.2. Let u be a weak
solution of (II.1) for all T with (III.2) for almost all r 20 and

all t2r. Let u e L2((0,+=)., L"(8)) . Then it follows:

1) On [T°,+~) u is regular, where T° is sufficiently large.

2) [0,T°) = v J, US, where J are pairwise disjoint open intervalls
v=1
on which u is reqular and where S has measure O. S is called the

singular set of u since S nJv =@, v=1,2,... .

Let us make some remarks on the proof: III.3, 1) follows from the
fact that in § 2, c) the quantity T(p) is += if leh (g) s suffi-

ciently small and if £ EL ((0,), L (n)) This is caused by the
exponential decay of the semigroup e n* . As for III.3, 2) this
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assertion follows from reconstructing u(t) on an interval [r,r+e(r)]
with e(r) >0 according to Theorem III.1, (III.4) and § 2, c). Here
r is a point such that u(r) ELn(n) and (III.2) holds for all tzar.

Since Galerkin's approximation procedure gives us a weak solution
with the desired properties if n=3,4 we have proved the existence
of weak solutions with III.3.,1), III.3.,2) in these cases.

For n=3,4 we have

0942 6
(ITII.S5) u(t) €EH '“(Q) cL (Q2) a.e., n=3,

ut) en' 2@ et (@ a.e., n=4.

L]
(III.5) shows that in the case n=3 also § 2, b) may be sufficient
to prove the structure theorem. In fact, for n=3 we do not need
at all the construction of local strong solutions with "bad initial
values". It can be proved that

(II1.6) u-vuer>/4

((0,T)xQ)

for any weak solution. According to Solonnikov's potential theore-
tical estimates for the linear equations u' -vAu+Vn = £, V-u =0 [Sd]
it follows that ueL>4((0,m,82'3/%(a)), providea £ €1’/ ((0,m,
1>/4(a)), 0 €H,(R) + some modest degree of differentiability. Thus
u(t) eHz’SM(n) a.e. and since 5/4 >%‘=1 we can simply apply II.a)
to reconstruct the weak solution locally in t if u fulfils the
energy inequality (III.2). (III.6) was proved in [La], its gene-
ralization to arbitrary n and its consequences were considered in
[w3]. The conditions on f in Theorems III.2, III.3 are partially
caused by our interpretation of "regular", but they are not weakest
possible: We mean by "regular® that u(t) cﬂz’n+6(n) cCHB(E) for
somé B € (0,1). The weak solutions constructed in Theorem III.3
frequently are called turbulent solutions.
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Remark: A weak solution u with u ELr'((o,T),Lr(ﬂ)), :——.+2=1, nsr <+om,
2 <r' s+w», satisfies (III.2) for all r,t, OsrstsT ([S], [sSwW]).

This will be freely used in the sequel.

We now study the regularity of a weak solution u in the sense of
Definition III.1. As it is natural, this question is connected with
the uniqueness of u. Serrin [S] has proved that any weak solution
u €Lt ((0,T),L5(9)) with

2

n
(I11.7) F+; <1,

n<rg+eo, 2<r' g+,

is C2 in x provided f is sufficiently reqular. In fact u is a classi-
cal solution ([W2]).Sohr [So] has weakened Serrin's condition to
2

n
(I11.8) r,+; =1,

n<r<+e, 2<r' <+=, n=3,4,

In the last time some attention has been given to the case r =n,

r' =+o, From the remark at the beginning of this paragraph and Theo-
rem III.1 it follows that uec°([o,'r],L“(n)) is also sufficient for
regularity: The.weak solution then can be reconstructed as a strong
one according to § 2, c) which is regular and for which T(¢) =T
since the uniform continuity of the strong solution on [0,T(9))
follows from the coincidence of this solution with the weak solution
in question. A different proof was given in [W4]. Sohr [Sd) has proved
that certain subclasses of L™((0,T),L"(8)) also imply regularity,
and in [W3] it was proved that the stability of a weak solution in
L”((o0,T) ,L™()) implies its regularity.

If we simply assume that u €L”((0,T),L"(2)) the ‘question whether
if u is, regular or not is still open, but in [SW] the following
weaker theorem was proved:

Theorem III.4: Let u be a weak solution in the sense of Definition ~
III.1. Let
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ueL”((0,T),L(2))nLP((0,+=),L"(9)) for some pz2 and all T,T>O.

Let ¢,f be as in Theorem III.3. Then (according to our Remark above)
the structure theorem holds, and the singular set S can be characte-
rised as follows:

1. S is at most countable,

2. t€S if and only if u is continuous in t from tbe right with
respect to the Ln(n)-norm but discontinuous from the left.

u is continuous in t from the right with respect to the Ln(n)-norm
for any t 20.

The proof rests of course on the reconstruction of u as a strong
solution with the aid of § 2, c), the remark at the beginning of
§ 3 and Theorem IV.1.

In a recent preprint Giga [Gi3] has stated results similar to
Theorem III.3 but as far as it could be seen his methods are diffe-
rent from [SW].

We have not dealt with the case n=2 since it is well knqwn then
that any weak solution is regular and therefore unique.

§ 4. Global questions: The behaviour
of weak solutions for t —»w.

We will be brief at this point and concentrate on the case n=3.
The energy inequality (III.2) suggests very strongly that there
may be some sort of decay for u if the assumptions on f are appro-
priate. It is well known (see [M]) that under a suitable integrability
condition on [[£(t)]| , ., £ (&) , over (0,) any weak solution
L°(R) L7 (R)

over (0,+»)x@ in the sense of Definition III.1 with (III.2) fulfills
the estimate

- 164 =



[lvu ()| s =<
2@ /4

for large t.

Now let g be a c'-function with |g'(t)/g(t)| -0 ,te=,g>0, let u
be a weak solution as above, then

C
g(t)

(IV. 1) ||[vu(t)]| 2 < , t large.
L°(
There is also an additional condition concerning the integrability
of ||g(t)£(t)]l 2 over (0,») which we have omitted here. (IV.1) was
L7 (R)

0 '
proved by Sohr [So]. He first shows that f ||u(cv)||rr do <», t large,
t L .

()
for some r,r' with 3 =n<r<+w, 2<r' <+,
he usesa variant of Solonnikov's estimates [So

—-H
— -
-
=
& w
[
[

T 2 T o
(xv.2) s |l(gu"ll?, dt +s I|Agu|[22 dt
t L™ () t L ()

2 T ~
s ofivgeracen?, +sfeflf, a¥+
L7(a) t L™ (Q)

T ~ r' ~

T e/ llu®ll”,
~ L

+ f ||g'u||22 dt e , t large, t ST <+w,

t L°(q)
In fact for the exponent 2, (IV.2) is easily derived, but under
suitable assumptions (IV.2) also holds for exponents q 22 and in
higher dimensions (with some modifications for the norm of the ini-

tial value); if a term ? llgullz2 at or f |lgu|fl. 4t is added on the
t L (q) t L9(n)
right side then (IV.2) remains valid for exterior domains. For de-

tails see‘[So].
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