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SOME REGULARITY RESULTS FOR QUASI-LINEAR
PARABOLIC SYSTEMS
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Abstract: Regularity results for quasilinear parabolic equations,
and systems recently obtained by Giuquinta,Vivaldi,and this author
are surveyed.The presentation allows immediate extension to
variational inequalities.
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Let @ be a domain in R , T>O , o, = ax[o,T] .
Denote by P ’ P , etc. the usual Lebesgue and Sobolev

spaces. In particular,
2 1,2
v = t((o,71,H "% (2: M) n L“’(QT;RN)

denotes bounded and measurable functions u : Q'l‘ i RN such

that

T 2

Uojlvulx,t) |[“axdt <@

o Q

i / 9 i (] i " 5 5 s
where wgu =\— | T u is the spatial derivative
1 n

of u' and u = (ul,...,uN) .

In this survey we shall be concerned with the regula-

This paper was presented on the International S

pring School on
Evolution Fquations,Dobfichovice by Praque -
(invited lecture). ' Y RSNy EA=E 1iee
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rity of weak solutions u ¢V of quasilinear parabolic
systems

i ik k) _ i .
(0.1) d u- aa(aap 3gu )— £ (-,u,yu) , 1<igN

in the sense that for all ¢ ¢ C:(QT;RF) 1)

(0.2) - utotaxat + [ aks u*o otaxat = | £1(-,u,0u) plaxat .
t Q aB B a Q
T T
We assume that (0.l) is uniformly parabolic in the sense
ik

that the aaﬁ € Lm(QT) satisfy the condition

ik i k 2
(0.3) a s (ot eses > Alg

N

for all ¢ € RN and almost every (x,t) e Qp » with a

uniform constant A >0 . Moreover we suppose that
3 QTx ny><RFXN - RN is a Ccarathéodory function and satis-

fies the growth estimate
2
(0.4) [£(x,t,u,p)| <alp|” +b
a.e. in QTx RNx RHXN , with constants a,be¢ R .

Given a solution u of (0.2) we denote M = |u|co . Finally
remark that by density (0.2) also holds for ¢ in

7 =u 20,11 L2 (e ) n (0,11 1) 2 (e M a 10 )

In the sequel, under suitable conditions relating A , a,
and M , we derive partial regularity in the interior of
QT of weak solutions to (0.1). For diagonal systems

: ik _ ik ik - 1’i.=k) i
(1.e. aaﬂ aap [ , & { 0, i Ak we obtain

1) Repeated Roman indeces by convention are summed from

1 to N , Greek indeces from 1 to n . Moreover, for
brevity

2 -
"t—btw y 0 @ = ® -



H8lder continuity in the interior. From here onwards higher

regularity is obtained in standard manner, cp. [16].

Our presentatioh summarizes results from [12], [13],
[20], [21], [22]. D These results are well-known in the
elliptic (or stationary) case. The difficulty only consists
in conveying the methods.

Therefore in the following we first review elliptic regu-
larity theory for a particularly simple example of a system
of type (0.1). In the second main chapter the parabolic
analogues of fundamental estimates for solutions of elliptic
systems will be derived. Of course, we may concentrate on
those estimates where in the time-dependent case significant

changes have to be made with respect to the stationary case.

Even though our results well confirm the general ex-
pectation that any result for elliptic system of type (0.1)
will (with appropriate modifications) carry over to the
parabolic case there are regularity problems for evolution
equations that possess no stationary equivalent. Thus for
these problems elliptic regularity theory does not provide
any intuition. Some open problems of this kind will be men-
tioned at the end of this paper.

Ll. To motivate what we consider "basic estimates" we con-

2

sider a weak solution u eHl' rwﬁw(Q:RN) ponun = M , of

an elliptic system
(1.1) -aut = £7(-,upu) , 1SiSN,

with quadratic growth with respect to the gradient
2
(1.2) | £(x,u,p)| < alp|® .

Of the numerous results and methods for treating such prob-

D For reference we point out two more recent articles [2],
[23] on regularity theory for parabolic svstems and
inequalities.
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lems we shall indicate a method by Giaquinta-Giusti-Modica
(cp. [7]1, [8]) and the hole-filling technique of Hilde-
brandt-Widman [14]. ’

By definition u weakly solves (1.1) iff

(1.3) I [vuivqp"—fi(x,u,vu) cplldx =0 Ve :H(l)'zn Lm(Q;RN) 6
Q

Step 1 in the elliptic case consists in observing that for
any n ec‘;(ﬂ) the function un is admissible as a testing
function in (1.3).

Step 2: Let m)xoe Q , r>0 satisfy th = BZr(xo) cQ .
Choose 7T e€C_(B, ) satisfying 0<t<1 , r=1 on B
o' 2r 1) r

|| S-:' , and let u = B, B u dx . Inserting
r'“r

¢ = (u-u) 1'2 in (1.3) yields:

Caccioppoli's inequality: Suppose 2aM <A, then 2)
2 -
(1.4) S Jgu|“ax < -52- X [u—ulzdx
B r B,\B
r 2r r

Step 3 simply consists in applying the

Poincaré-Sobolev-inequality: Let 2% - :—:2 <2 , then
+
* = 12 2 {- o® Y*° 2 § 2
(1.5) |u-u|“dx< cr ( |gu|® ax <ecr [ou] “ax.
BZr\ Br 2r\ Br 2r Br

Step 4 combines (1.4), (1.5) to obtain an
Inverse H8lder inequality: Let 2aM < A, then =

+ 2/2%
(1.6) +|vu!2dx < c( § |vu|2 dx) e
B B
r 2r

1l &denotes mean value.

2
) The letter ¢ denotes a generic constant depending only

on the data a,M,A,...
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In Step 5 a yvariant (8, Proposition 1.1, p. 122],
{L1, Proposition 5.1] of "Gehring's lemma" [6] is employed

to derive from (1.6) the

LP-estimate: Let 2aM < A , then u tHiéi(Q;RN) for some

p>2 and

p/2
(1.7) }|VUIpdx < C( Slvulzdx) .
B

T BZr

2

1
Step 6: Let veu +H°’ n Lm(Br;RN) satisfy Av = O . Recall

the Campanato estimate [3] for v
2 2

(1.8 Jlovilax s ¢ [ jpvi%ax , v < x

B B

Q r
and the maximum principle: jyvy_ < pun_ .

ee] 2]

Subtract Av =0 from (1.1) and test with u-v to obtain

(1.9) } 19 (u-v) |2dx$a‘§' |vu|2|u—v|dx

B B
r r
1-2/p 2/p
S CH’ IU—v|2dx> (§ |vu|pdx)
B B
NE r
2
’ - =
<ol ) IVUIzdx) ° § jgulZax
Br BZr

Together, (1.8), (1.9) yield

2
P
(1100 Jlgul?ax < < [(8)° +(r2‘“§ |ou|2ax) p]hvu[zdx.
B B B
Q T r
: 2-n | 2 ; ok
If 1lim inf r lpu|“dx < e, is sufficiently small
r~+o B (x))

the usual iteration procedure [8, Lemma 2.1, p. 86] therefore

<133 -



gives
(L.11) l IVUlzdx < cr
BQ(xo)

for some « >0 . Hence from [18, 3.5.2] we obtain

n-2+2a

partial reqularity: Suppose 2aM <A , then there exists
an open set Q@ c¢ Q such that u is H8lder continuous

on Qo (even Cl’a) , and

(1.12) @y ¢ {x_|lim inf g2 n S |vu|2dx >e }
o o o
r-o Br(xo)

Hence also the (n-2-¢)-dimensional Hausdor £f measure

n-2-
) e(n\no) =0,

for all €<p-2, cp. [8, Theorem 2.1, p. 100].

For diagonal systems like (1.1) complete regularity may
be obtained under the condition aM <A cp. [10], [15],
[25]. If 2aM< A , this fact may be directly inferred
from the above partial regularity result and the following

estimatedue to Giaquinta and Giusti (cp. [10]).

Step 7: For any €,0, R>0 there exists k such that for

some r e]akR.R]
- 2
(1.13) rzn!|vu| dx < e .
r

A different approach to regularity for diagonal systems con-

sists in the hole-filling technique [14].

. Q _ Q. R
Step 8: For x_ €Q , @>0 let G G*( ,xo) be a mollified
Green's function satisfying
1
(L1.14) vaqGde = 5' w dx , vw eHo’z(Q) .
Q Bo(xo)

As Q-0 Y= weakly in Hi'q(ﬂ) , for any q<ﬁ s

where G 1is the Green's function for -A on @
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Harnack ineguality: With constants c;= ci(dist(xo,an))
there holds (Br' Br(xo) etc.):

2-n 2-n .

(L.15) r < c, sup G £c
B

inf G £ c,r

2 3

B

Zr\Br/Z Zr\Br/Z

Moreover, since -4G =0 in B, MN{x,} , for any
1.2 r ‘o
weH '“(B, ) :
() 2r
2

(1.16) | |ve|?jwlaxsc | & lywl Pax+S Vo c%2axs

BZr\ Br B2r\ B!:/2 £ By Br/z

this estimate moreover also holds for G2 , provided o<r/2 ,

Step 9 consists in deriving the following
weighted Caccioppoli inequality: Suppose 2aM < A , then for
any 6>0 , @ <r, T as in Step 2:

§'|u-ﬁ|72dx + ‘ |Vu|2GQ1-2dx
B B
Q 2r
(1.17) ss | V62| 2| u-3] 3 r2ax + <= I |u-gi%x +
B, \ 6r B, \B
2r 2r 'r

r
- lu-a| 2c%ax
r2 B,\ B
r r

which is obtained on inserting ¢ = (u-ﬁ)GQT2 into (1.3).

Conclusion: Estimating the first term on the right of (1.17)
boGxex )

by (1.16) , we may let @ - O . Choosing & = sup

. . . _ BZr\Br/z
and applying estimates (1.l3), (1.5),

from (L.17) we then obtain the following estimate for the

2
function e(r) = | |vu|“G dx :
B

r
(1.18) ¢(c/2) < c le(2r) - a(z/2)] .
Adding c, times the left-hand-side to (1.18) and dividing

by (°L+1) we infer that for some pu <1

@(r/2) < u @(2r)
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i.e. by iteration:

2
Ivulzdx S c elr) ger’®

for some «>0 , uniformly in X, € Q, erdist(xo,oﬂ) with
c depending only on the data and dist(xo,aﬂ) ; i.e. uec®

Higher regularity may now be obtained by standard techniques
[17], [18]. »

2. The results of the preceding section clearly will carry
over to parabolic systems of type (0.1) if Steps 1-9 may be

performed (with appropriate modifications) in this case.

i 2 .
For r >0 introduce Ar= ]-r,o[,Br— Br(o)’ Qr- BrXAr : the

standard parabolic cylinder centered at (0,0) with boundary
aQt= (Br x {OD v Sr . Since we shall only be concerned with
interior regularity for (0.1) and since we are free to shift
the origin in Rn+1, it will suffice to state estimates on
such standard regions Qrc Q indiscriminately denoting the

transposed domain QT by Q .

In the following u will always denote a weak solution of
a system like (0.1), (0.3), (0.4). For éimplicity we con-
sider only the case b =0 . Step 1 is by no means obvious

in the parabolic case, since V # J . An argument as in
[16, Lemma III. 4.1] however shows that testing functions

: 1
like ¢ = u.n-ll_m of - ) may be inserted into (0.2).

Lemma 2.l: u G.Co(]O.T[;I..2 (Q;RN)) , and for any function

loc
©, n+l + . : q
necC (R ) vanishing in a neighborhood of sr there

holds:

L 2 e 3 : k . :
5 I 1u)? nax + § [a;’;oaulopu n-£(+,u,9u) u’ nldxat
Brx{o} Q

b 11\ denotes the characteristic function of a set A .
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(2.1) .
ukuloq]dxdt £y
(¢4

1 2 ik
=-2-(§ [|ul N~ zaaﬂoﬂ

2
Proof: Let WQ(t) be a mollifier, uy = u.wq , etc. Define
1%¢) = 1 if tS-Q,lQ(t)=-%,if -Q<t<0 ,
1%9(t) =0 if t>0 . Then g=o'®= (uinQ)Q ¢ and

Q S ey 2y 10
Iu[(uqnl )Q]tdxdt = 2S.[|uQ| 1 n1%axdt
Q Q

r
- ig w120 10 - l& 2 .0
2 |uQ| n, L dxdt 2 [uQ] nlltldxdt 5
r r

Hence from (0.2)
o
1 2 ik k i e
- + -
2 § [ ol naxat Qj [(aup"a“ ) o 0%gnt
-e B x{t} r
- (£%(-,u,9u)) Quim"] dxdt

1 2 Q ik k i Q
= - 1 as

ZQS [[uQI n, 2(aa¢opu )Quqoanl ]dxdt s
r

and (2.1) follows on letting Q-0 . ged.

Step 2: Choose 7 :CQ(Rn+l) vanishing on S - and such
that 0s7t<1, Tt=1 on Qr,|v-r|2+|rt|sr—c2-,
suprSc{’rdx.andlet

Bzrx(t) aer{t}

G = ) uifaw l ?ax (:=0, if 120 on B, x{t}.
Bzrx{t} Bzrx{t} :
Choosing ¢ = (u—\_l(t))le
(2.1) yields the
Caccioppoli type inequality: Suppo‘ue 2aM < A . Then

[~es.01 and taking account of

.20 | jyul?axae 5 | ( { lu-ﬁ(t)lzdx)dt .
Q Mr

e r Ber{t}
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Proof: Note that u(t) is absolutely continucus. (Insert

2 into (0.2).) Therefore by Fubini's theorem

i1 1]"”1"—[
- - 2 - - 2

S otu(u—u) v dxdt = g otu( K (u-u) v dx) dt =0 ,

2r Ber{t}

and (2.1) - with (u-u) instead of u - implies (2.2).

ged.

Step 3. Although there is no general equivalent of (1.5)
for functions in V , for solutions of systems like (0.1)
several Poincaré-Sobolev type inequalities can be stated.
A preliminary observation is needed. Let x e ccg(Br)
satisfy o< x 1 - sup x < c§ x dx and let
~ - Br

B, = suppx , u =§'udx,u =Suxdx/§xdx.’rhen
X x B x B

X

X BX

(2.3) 3 |u-u, lzdx < X |u-u |2dx < c} [u-0 |zdx

B L B x B x

x x X

Proof of (2.3). The first inequality expresses the mini-
mizing property of the mean:

-~ 2
] Ju-a |2dx < llu—cl dx , VceR .
B x B
x x

To obtain the second we estimate

-2
Bj oi1Zax = | 1] (@O0-3) + @ -uty) 1xy) ay| Pax( [ xax)

X By B_x ’ Bx
2 .
< {1+ SHRX |u-a |2d
N §xdx S u—ux X . ged.
By %

Poincaré-Sobolev-type estimates: Let v,u be as in Step 2,

2+ = -;%2—2 . For any solution u of (0.2)-(0.4) there holds
(2.4) sup I |u-\_.|(t)|2dx <c S IVulzdxdt .

t‘Ar Brx(t) QZr

Moreover, for any € > O
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(2.5)  }u-u(e) |“axat < er® 4|qu| “dxat +
Qr QZr

272%

2 >*

c(e)r (; |ou| dxdt) .
QZr

Finally, if & = fu dxat , & = S’ u dxdt

Qr QZr\ Qr/2
(2.6.a ) j | u-3] 2axat < ex? X |vu|2dxdt
Qt 2r
(2.6.b ) | lu-a]2axat € cr? X |vul| 2axat . .
Q2r\ Q::/ 2 Q) Qr/ 4

Proof: Introduce \’;(t) = ‘} u dx .

Bx_x{t}
Let to € /\r satisfy
- 2 - 2
S |u—u(t°)| dx = sup ! Ju-u(t) | “ax .
B,x{(t,) Eehr B x(t)

Testing (0.1) with ¢ = ("'G(t”Tzll-oo,t [ ,the "elliptic"
Poincaré inequality (1.5), (2.1), (2.3) ©  and a reasoning
as in the proof of (2.1) yield

- 2 2 -
5 S |u-u(t°<)| dx < ¢ l lou| “dxat + % X |u-u(t) lzdxdt
rx{to} L Qr T

2 . 2
S c k |gu| “axdt + % Ju-u(t) | “dxdt < ¢ 3 |vu|2dxdt z
QZr £ 2r

This proves (2.4).
By (2.4) , (2.3) and the "elliptic" Sobolev-Poincaré inequality

2 1-§
}lu-—ﬁ(t)l dxdt < sup( § |u=-u(t) |2dx)

e tea, Brx{t}
2+
2.\ 2
¢ ‘S‘( '& Ju-u(t) | dx) dt
A r)<{i:}

7
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24-

1= ==

2 + +

Sc ( r? {‘ |u| 2dxdt> ( £ } |wu] 4 dxdt) ]
°2r QZr

and (2.5) is a consequence of Young's inequality.

To prove (2.6.a) let © e C:(Bzr) satisfy O0<o¢<1 , 8 = 1

c
< £ > is-
on B_, A , and for any SeA) \A let t 2 s satis

r
£y
,[ |u-a(s) lzozdx = sup I |u-d(s) Izozdx S
Bzrx{ts} t>s Ber{t}

Testing (0.1) with ¢ = (u-G’(a))t)21]S .
(2.1) from Young's inequality we obtain

(s fixed!) like

t

s
55 S | u-a'(s) lzozdx)dt < X lu—E(s)lzozdx <
s \B, x{t Ber{ts}
< X | u-G'(s) lzozdx + c(8) l |vulzdxdt +
Ber{s} . er

S ~ 2
+ 2 1 [u-a(s) | *o2axdt .
r s

Choosing <% and noting that ts- s<41:2 the last term

on the right is dominated by the left hand side of this in-
equality. Applying the Poincaré inequality (1.5) to the first

term on the right and averaging with respect to s e "2:‘ Ar
there hence results

{‘ & [u-a(s) |2ozdxdsSc§ [vu|2dxdt
MrN A Bypx(t,) Q0

and (2.6.a) is a consequence of (2.3) and the estimate

V=61 2axae < | ju-ivee |2axae < 2 | lu-3(s) | % 02ax

Qr Qr B2:')((‘:5

for s & AZr\ Ar &

To obtain (2.6.b) introduce x(x) = 0(8x) and perform the
above calculations with ©(1-y) instead of o ,

\?(t) = § u dx instead of &(t) . ged.
Brx(t}\Br/4x{t} - 140 -



Step 4 combines estimates (2.2), (2.5) to obtain

Inverse HOlder inequality: Suppose 2a M<A , then for any
€ >0

+
+ 2/2
(2.7) §|vu|2dxat < c(:)( hvul2 dxdt) + € §'|vu|2axdt .

Q

r 4r Q4r

Step 5. A Gehring-type lemma [13, Proposition 1.3] now yields
the )

tP-estimate: Suppose 2a M<A , then [wul| e Ll‘i.’oc (QT) for
some p> 2 and

(2.8) (S‘IVulpdxdt)i/p < c(s' |vu|2dxdt)1/2 5
Q Q

r 4r

Step 6. Suppose that a::(x,t) = A;';(x,t,u(x,t)) and that
the Alk are uniformly Hélder continuous. Let ;\ = A(0,0)
(omitting indeces) and let veV solve

i eik Kk _ . _
(2.9) otv - ouaapoav =0 1in Qr , V=u on sr W

Recall the Campanato estimate for v (see [4])

+2
(2.10) ||yv|2axat < c®” {lwvi2axat . ve<r .
QQ Qr
It is unknown whether there holds a general maximum principle

for (2.9). In the case considered here, however, it is
possible to show that

(2.11) sup|v| € c-M ,
Q

5
cp. [20, (3.7)]. Substracting (2.9)

from (0.1) and testing with

' (u-v)ll-m,o[ like (2.1) we
obtain
2
AQX | V(u-v) | “axdt < aj lvulzlu-vldxdt
(2.12) r %
+ [ 1a-4] jgu| [9(u-v) [axat ,

Q!.'

whence in particular S |7 (u-v) lzdxdt < cs ]vu]zdxdt
Q
r r
Estimating [A-A| < w(r,lu-\?lz) with aconcave function o ,
and applying (2.8) and Jensen's inequality we obtain from
(2.12), (2.11)
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2/p
'} |7 (u=-v) |zdxdt < c(‘} Ivulpdxdt> .
Q Q

r r

(2.13) {(i & dxdt) b-tarp) +( } Ju-v| zdxdt) - (2/9)]
Q.

Qf

< c[w(r,} |u-u] 2 axat) X~ (2/p) (rzé IVulzdxdt) 1-(2/9)] .

Qt r

. ‘& |vu|2dxdt .
4r

Together, (2.10) and (2.13) yield for all g<r

(2.14)  ||gu|axat < c I(-}) B2 x(r)] § |ou|2axat
Q

Q Q4r
with
x(r) = w(l' ,i’lu-lﬂzdxdt;j'— 2/p), (rzi [wu| 2dxdt) 1-(2/p)
Q * Q.
By (2.6) therefore, if 1lim inf 2 '} Ivulzdxdt < e
— Q (x,t) o

is sufficiently small, the usual iteration procedure
([8, Lemma 2.1, p. 86]) yields that

+,
Izdxdt < e’ 2a

l Iou
Qr(xo.to)
for some a>Q . Hence from (2.6) and [5, Theorem 3.1] we
have

Partial reqularity: Suppose 2aM <A , then there exists an
open set aocQ such that u (and wu) is H8lder continuous

on Q and

(2.15)  Q\Q¢ {(x,.t,)|lim inf c? } |vu| 2axat > g ¥
r-o Qr(xo.to)

Hence also the (n-¢)-dimensional Hausdor ff measure with respect
to the metric &((x .t ),(x,,t))) = max{|x;=X,| .|t ~t,| }

8 S(a\g.8) =0
for all € < p-2 , cp. [13. Proposition 3.2].
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Now we specialize to diagonal systems with coefficients
i 1
aig = aaablk » Agp € ﬁm(Q). )

step 7 cannot be conveyed to parabolic systems immediately.

Due to anisotropy of space-time

A different weight function has to be employed like the
fundamental solution to the heat equation in Rn+1 .

Therefore wé turn to the parabolic analogue of the hole-

filling-technique. presented in [20] and further applied in
[12], [22]. '

. Q - gQq.
Step 8: For (xo,to)e QT , >0 let G G* ( ,(xo,to)) be
a mollified Green's function of the operator

e =0- oa(aaﬁ(-)oﬁ-) satisfying

2.16 X Q4 Q = X
( ) g [th aapaﬁwaac ]dxdt . :) dxdt

T Q "o’ o
for all w ¢J vanishing on the time like boundary
s = oax [0,T1v ex (0} of Q. .Aas ¢~0 G®— G as a distri-
bution and uniformly outside a neighborhood of (xo,to) ,
where G is the Green's function for ¢ on QT , cp. [1].
The Harnack inequality for parabolic equations [19], [24]

2
implies that on Qi = {(x,t) e Qr]t< -er’}
(2.17) gup G < cl(c) énf G
Qr(xo'to) Qr(xo,to)
with constants depending on € and dist((xo,to),s) .
Moreover the estimate [1; Theorems 7,8]
n/z 'x-x°|2>
colt-t | exp(—c3Tz:E;T- < G((x,t) ,(x .t )

(2.18)

2 | x-x|
< egle-gol™ exp(-CsTt—.t—r
o

for t< ty s with constants again depending on

dist((xo,to).s) shows that there exists a function

v(e) - 0 (e - 0) such that

(2.19) sup c G < v(e) inf G(‘.(O.rzi) ’
Q2r\(Qr/2UQZr) QZr

1) si%-0 if 14k, oK a1 if i=k.
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where for convenience we have again shifted (xo,to) to

(0.,0) .

Again due to presence of time-derivatives an analogue of
(1.16) only will hold for solutions of (0.1) in general. We

return to this point below.

In the following we will state estimates again on our standard
domains Q. - To facilitate notation let Ge =G(-,(0,0)) .

Step 9. Suppose 2aM < A. Let r be as in Step 2,
u = {- u dxdt . Then for any 6>0 , >0 we obtain
Q2:'\0:‘/2

the following
weighted Caccioppoli inequality:

| v 26 rPaxae < < b ug) %6 axat +
2r r er\ Qr
(2.20)
2,12 -3/22 x
+ 5 l | u-1a] IvGe] Qe3/21' dxdt + _c_z g |u—u|2<;:;/zdxdt.

QZr\ Qr be QZr\ Qr

Proof: Let @ €]0,Vo[ . Testing (0.1) with ¢ = (u-\?)GQe'rzl
by (2.1) and using Green's identity (2.16) we obtain

]=,0[ "’

i' . : .
Qg‘,r[aaﬂoa"‘ OBU1 - fl(- »u,vu) (u—\ﬁ 1] Ggrzdxdt

L =2 0.2 _
ZQX ['“ ulT(Ggr),
2r

"

32 Q 2]
aupoﬂlu aj oa(GeT )| axat

25 =22 Q _ ! =22 Q
3 2} [lu ul|“r (69, auﬂoﬂklu—u| T )oche dxdt
r

+

=2 Q 2 Q
u- .G - -
Qiz [[ u oTe T aaaaﬂlu iyl 0, TG T +
r
=) 2
+ . Q
aaBBﬂTlu u oaGeT] dxdt

< S |u—G'|ZGQedxdt +el |vu:2<;grzdxdt

2
€r QZt\ Qr er

N
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s ) u- G']Z(G%p/zdxdt &5 ) Iu 8 IVGQI %" =3/2 24 4¢

or Q,. \Q Q0N

Since 2aM <A the second term on the right is dominated by
the left hand side, if € is sufficiently small. By Fatou's
lemma we may then let Q - O to obtain (2.20). qed.

Estimating the second term on the right of (2.20) requires an
additional .

Step 10. For any 6 >0 (without any smallness assumption re-
lating a,M, and A)

| |u-§|2|vce| 2G ~3/2.2308¢ < ¢
QZr\ : 5
(2.21) X
< c & |u| G /zdxdt + _cz_ | u- u| Gl/zdxdc.
Q /2 r Q \Q x/2
Proof: Let o(x,t) = r(2x,2t) , n = 7(1-g) . Testing the
. . . -1/2 22
equations (2.16), (0.2) with w = Gy | u-8] “n 1]_00'0[ , resp.
1/2 2 N . i
¢ = 4(“-\369 n 1]_0)’0[ and subtracting, by (2.1) we obtain:
-2 X fu- u|2 1/2 2dx + 4 l |u—\T|ZG;/2ntqudt
Byexlo} 2r
T S -3/2, =2 2
> a(wé»alGeaaGeGe |u-u] “n“dxdt
QZx:

—41‘_3 ouo

uts £ (e u,9u) (u-B) ] 2/2 2 axdt
Qr

8

1/2 2 = 2 1/2 }
+4 - - -
QS ‘.am’aa“‘Ge anlu u| “n aaBOBIu u| 8,nGy “n|dxdt = o0 .
2r
Estimating the last term by Young's inequality we obtain
(2.21) . ged.

Conclusion. (2.19) - (2.21) together now yield the following

estimate for the function @ (r) =S|vu|2c;edxdt 2
1

o & <o | |vule +/2axat +-% X lu-8) %el/ 2axat

Q%2 QN2
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~ 2 3 2
+ j% S l“‘“' G dxdt + — 2 X |u -u[ / dxdt
r er\Qr/z or QZ \Q r/2
2. .1/2
B
r %/2 2%z ¥
(2.22)
2 1/2
+ S SS lu-a] %G 1/2dxdt+ﬂ'2(£)' S lu-8] “e / axdt
2
r QZL‘\Q:/Z 22 QZr\Q r/2
2
+—c§ SS [u-a] % dxdt+'—'(—)' ‘ |u-d] ‘e pdxdt
o r
o QZr\Qr/Z Q@ r/2

2 3 2
+—c—5 S |u- “|2 3/25)‘5*— +—‘LJ" X |u- u| / dxdt .
r

or 0,00, /5 Q%2

-n/2

Now choose ©&=r . via (2.17), (2.18) from (2.22) we derive

r. . { 2 i 2
09(:) < c(g) \X |u| Gedxdt + v(e) § |Qu| G ,dxdt

02: Qr/2 QZ: =
+ ﬂ?— = S ]u—§| 2Gedxdt: + 2’—2(-5)- S ]u-x?l % pdxdt
= QZr\ r/2 o Qe Qr/2 &

Applying (2.17) again to draw the Green's function out of
the last integrals, then using the Poincaré type inequality
(2.6) , and moving Ggr G 5 into the integrals again we

finally obtain that S
e () < cle) (e (4r)-a_(5)) + v(e)s ,(4x)
84 2] o'l r2
Choose € such that v(e) <1 . Adding c(e) times the

left to this inequality and dividing by c(e) + 1 there
results

r c(e) v(e)
o.(z') < < (e) 41 08(41') + S (e} ol or2(4r)

S usup ¢ (4r)
[: >}

-14‘-



c(e) +v(g)
cle) +1
the supremum with respect to >0 on the left hand side

with a constant u = <1 . Now we also pass to

yielding v
sup @ _(§) S p sup ¢ _(4r)
o> © 4 >0 ©

for all r such that Q4r(x°.t°) €Q; . Iterating, (2.6)
implies that

§ Iu-G'lzdxdt Ser ™ 3 Ivulzdxdt
Q (xo ! to) Qr (xo - to)
Sec X |VUI2G 2dxdt < ¢ 2%
er(xo'to) r

for some a>0 , for all r such that Q4r(x°,t°) c QT , with
a uniform constant c¢ depending only on the data and
dist((xo,to) ,S) . But from Da Prato's result [5] again, we
now infer H8lder continuity of u .

The preceding results may be strengthened to assert
H8lder continuity of weak solutions of diagonal quasilinear
systems under the assumption a M <A [12], which in genera
is bestpossible.

3. The, above results well confirm the impression that
apart from technical complications all results of elliptic
regularity theory have a parabolic analogue. This method of
extrapolation, however, does not provide an answer for truly
time dependent problems. For instance, does the parabolic
"flow" conserve the regularity of the initial data, if only
assumptions (0.3), (0.4) are imposed and no smallnes con-
dition is required? In this generality the question has
found a negative answer [21], even for diagonal systems.
However, if the elliptic system associated with the evolution
problem has a variational structure and either n =2 or a
one-sided condition is satisfied, it is believed that regu-
larity of initial data is retained.

Somewhat related is the problem of conveying the regu-
larity theory for minima or quasi-minima of regular varia-
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tional integrals to the associated parabolic problems. In the

elliptic case the notion of quasi-minimum has proved a power-
ful and elegant tool (cp. [9]) and it would be highly de-
sirable to make it available in the time-dependent case,

perhaps by a time-discrete approximation of the evolution

equations related with a functional in variation through a

sequence of variational problems.
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