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SOLVABILITY OF EVOLUTION PROBLEMS FOR VISCOUS
INCOMPRESSIBLE FLOW IN DOMAINS WITH NON-COMPACT
BOUNDARIES
V. A. SOLONNIKOV

Abstract: One considers the question of solvability of
initial-boundary value problems for the Stokes and Navier-Sto-
kes equations in unbounded domains with non-compact boundaries
assuming that the initial data and the external forces are not
square integrable over the whole domain. For the linear problem
the sketch of the proof of the exigtence theorem is given. '

Key words: Stokes equation, Navier-Stokes equation, initi.
al boun%ary value problems.

Classification: 35Q10, 76D05

We are concerned here with initial-boundary value problems
for the Stokes and Navier-Stokes equations in domains QL < Rn,
n = 2,3, with several "exits to the infinity", i.e. in domains

of the form
Q=0 veu...ve, O ={xed : \x\é—R°§

where Gi' i=1,...,m are disjoint unbounded domains., It is
agsumed that for arbitrary i = 1,...,m, a sequence of bounded
domains Gy, k = 1,2,... exists exhausting the "exit" G; as

k —> co and possessing the following properties:
1) Gy 28y
ii) The domains Dy = Gik\ Giq (k=1 ’2""’Gio = @)

This paper was presented on the International Spring School «
Evolution Equations, Dg@pfichovice by Prague, lay 21-25, 1984
(invited paper).
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as well as {1, = .nou Gy Veee UG, are connected and
dist (O N\ 0 ,ﬂo)—> © ags £ — .
(111) Let B(x) be a divergence free vector field (i.e.
du
v Pt |

u,
n

teeot

= 0) defined in GJ, locally square in-

n 8N
. J
end satisfying the condition fziﬁ’.'ﬁ' dS = O where X; is a

dx
1
tegrable with ite first derivatives, vanishing on 3G

section of GJ (for instance, 2.'3-,- awdf n 30)u_1). For eve-
ry kZ1 a divergence free vector field ?(x) exists such that

E>\ac;:,nzm =0, T(x) = ¥(x) for xe Gyp10 U(x) = 0 for
xeGj\ ij, the operator ij:?—-»ff is linear and

1 ITY . <bhdd ., yvd 4b WV
S Wy Dy Yaagy “3x

where T\ .

ou
i
- is Ly-norm of ¥ in Oyper VE = -{—}

axj i,J=14c009n
and b is a positive constant independent of ?, J, ke

The vector field ? = ij'\'f satisfies the relations

—
V.U =0 (ZEOJQ.

(2)
=1 5 v =0
v \ Wy O aw;]k-1 \5031: n a‘*’nk-1 lawdk\ aajk_1

and can be represented in the form

(3) T=d¢ + 7

where ¥ is a smooth function, 0 £ ¢(x) 41, g(x) =1 for
xeG;]k-1' §(x) = 0 for xe Gj\ ij, and

(4) v-?s-’d.vgs@ (x € wy), ?\a";jk-o

(as far as the ;;roblems (2),(4) are concerned, see [1 - 41).
The function @ satisfies the necessary condition J‘w.&gudx -

- - ‘\?O?GS = 0.
aUa'll\ aa),a-b_,
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Example 1. Gy is & cylinder: x = (xq,35)E ¢’ x> x‘a’.
Let Gy = G'x(xg,xg + k], then o = G x (xg +k - 1,xg + k],

and the estimates (1) are obvious.

Example 2. G; 1s & cone; T—:—‘ cg, [x|>R, (g 1s a domain
on a unit sphere in R"). We define ij as {xe¢ GJ; R, < Ix| £
£2¥R 37, so that oy -{stJ:Zk'1 Ry<Ix|42% R }. The func-
tion ? in (3) can be chosen in such & way that [V§| £

£c, R;‘a‘k. The problem (4) is solvable, and

\vv zc I
(5) v “w;;k 2 le @y

with a constant 02 independent of k. Making use of the Fried-
richs inequality

> k
W0, 60 R2 1y# o (?\aw;knaﬂ = 0)
we easily obtain .

uﬂ‘nwjksna’lek - “ﬂw;ké“ +05Cy Cq) NN .

-1,-k
Mve - uv?nwjk + VTN oy * 1% 2 “T"“wjk é

-1,-k

&(Cq + C,0q) RS2 llT?llmjk + l\Va’thk <

a«l + C,C5(1 + Cx)1 “V‘?“ujk'
Example 3. GJ ={x € m3;0<x3<1, Ix 1= \lx? + x§>R°§.

| 2 ok (k=1
We take Gy = {xeGy:R < [x’1&2"R ¢, Wy = {xeGd.Z R, <
<|x’|4 2R § and detine $(x”) in such a way that |V{(x)) |4

_é_C1R;12"k. In the present case the estimate (5) is replaced by
k
Rvad £C,2°R_ Qe . On the other hand, the const-
©3x 4 (<] ¢ “’jk ?

ant in the Friedrichs inequality is independent of k, since
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? ¢ |22 , 1t P .
=1 g & n ox, n if 0
Hence, (1) follows.

lawjknan.

The less elementary examples are presented in [3,4].
We now pass on to the definition of some functional spaces. We
introduce the following notations:

Q': an arbitrary bounded subdomein of Q. . WL (Q’): the S.L.
Sobolev space consisting of vector fields that are square inte-
grable in Q’ together with their generalized derivatives up to
the order £ ; UTIl 2 a (= HDS?HS_,)1/2.

w5 (') lals g
qQ : the set of positive numbers q., k = 041,e.. such that

(6) Gt & Go Geap & 68T G
#¢ : the set of positive numbers Wy i =1,000omy k = 1,2,.00

such that 2

Wy, @ Wy 8,8, £>0,
(71 _
Xy pS %y 8,8, £=0,..0,k-1,

The constants a4, ai' are positive and independent of k, £3; 84,
a, >1.
Wéc (Q,q), ’W’Ze (5L,2¢): the spaces of vector fields

Tewt (Q) equipped with the norms
2

sloc
g = -1 iR L
b "atcaq) T A % g )
(g = [ mex(12PR , sup % 7 B IR ]
“wd @, Lo W2 @) T WA (@) ]

For £ = O, we denote these spaces by L,(Q,q ) and 352(_(]_,%),
regpectively.
We ﬁbserve thet fw’f (.Q.,'DC)CW; (Q,q) with g =1 +
m
+ .2:-4 ;4-;1 a&ij' since
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W, s1#R, o+ % SR, .
W) Q) AT F W) S

o %o >
s B2 wmpeg,

Next, we introduce some spaces of vector fields depending both
on x and on t €(0,T). Let Qy = L x(0,T), QT’ = Q'x (0,m),
Qp = Sy (0,1, Qpf = ;% (0,1, By L,(Qp,q ) and
%Z(QT,')@ ) we mean the spaces of vector fields YfeLa.loc(QT)
with finite norms

51 = (sup o' N2 ylie

LolQpoat) = V" Tk Lo (Qup)

and

\ - 2 , -1 w242 1/2
121y (gq 200 = [Pex W (o s mp b q;k))]

respectively. The following spaces play a basic role in subse-

quent considerations.

D2'1/2(QT'): the space of vector fields with the norm given by

the formula
2 T .. % 2 gn
Wosgp © Ju [0 18000 - Tt sl? -
8) = [.ax [Tat [120x,0) - Az, w2 % -
s foex (1% (x,012 &

where ¥y(x,t) = ¥(x,t) for t>0, dy(x,) = 0 for t<O.

Dl’”z (QT'): the space of vector fields with the norm
(9 MRy 4/ ={nm\2012 .+
ol "2 ar) o420
. . \ 1/2
+ fo [c;,qu(x,t)l dxdt} ‘

The boundedness of the norm (8) or (9) means that €(x,0) = O
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in a certain sense. For T = co these norms can be expressed in

terms of the Fourier transform of \_1'0 that is defined by
a0
;u’(x,g J = fo e-itf ¥, (s,t)at, 1f the integral in the right-

hand side is convergent. The norms (8) and (9) are equivalent to
o 1 2 1/2

¢ [Taf [ 1118, §)12 ax a§)'/? ena

[L:dg fa,(lg i l§(x,§’ )l2 + 1V alz)dx df] 1/2 respectively.

Moreover, it can be easily verified that for all 6 2 0 the norm
0 -26t = 2 dh
[fo e at fn,dxj; L y(x,8) - Ty(x,t-0)|2 &+

+ [Te 2t a [ (61%x,012 + | VRx,02) ax]'/2

is equivalent to

(o [ [Pag [, (sl 1T l2 + 173x,012) ax]'/2

where s = 6+ 1§ and E(X,S) ='j:°e"5t Ax,t)dt is the Laplace
transform of ¥ with respect to t.

Following the above scheme, we define Dg’uz(QT,q ) and
mg'1/2(q,r,ae) as the spdces of vector fields equipped with
the norms

120 )]/

[ sup qE‘ Nl

20+1/2(q,,q L DS'VZ(ka)

and
Z\ = Tub? ,
$2!1/2(QT.*) [max (tu D2'1/2(Q )
sup 3, il Do 1/2(Qik)]

respectively. The spaces D '1/2(0 ,q) and & ;’1/2(0,1.,% ) are
defined in an analogous way.

Let ¥ € L,(Q,a ). We say that iten?,'”z(QT,q;) if
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Wx,t) = F(x) F(t) + W=x,t) where 76D2'1/2(Qm.q) and $(t)
is a fixed smooth function such that 0 & ¢ (t) £1, F(t) =0
for tZ1, $(t) =1 for 0&£t £1/2, and we set

+ N2 172,
L2

24 = (17¥
D%”z(%.ql ) (9,q)

D2'1/2(QT0<B )

This expression is equivelent to the norm

L) e 2 dh,1/2
Lwdt fndxj’; \uy,(x,t) - '\%,(x,t-h)l ;.z) /2 here
ﬁ'?(x,t) = ¥(x,t) for t>0 and qu(x,t) = F(x) ) for t<oO.
It @ 6 Wi(Q,q), then D;"/z(qm.q) is the set of all T =
=30 +%, ven)""2(qp,a), end
1/2
I = (1912 + 1312 ).
%) 01" 2(qp,a) 4 wio,q)

The sets 203.’1/2(QT.96) and 3%»'1/2(01..38) are defined for
FeLy(n,2) and Fe Wil ,s) as the sets of T =
= F (&) + Fwith 7€ D00 1/2(qy,0e) or FeD!11/2(qy, %)

regspectively, and
— = 2 2 1/2
. “93"/2(%.30 (m:bg;‘/zt%.m) * 191G, @,

bl - (WP + g2 2,
aky'2ag,0) 2 111/2(ag,2¢) W (Q, 96)

We now turn to the initial-boundary value problem

w 9T,
%g_ V2 ?+ Vp = ?-é‘}‘ ﬁa}, V.?=0, (x,t)€Qp,

(1)
?lt=o = ¥, ?lxean. =0,

(12) fi%?.?ds = (1), J o= 1. m-l

This problem as well as a similar problem for the full Na~-
vier-Stokes equations is studied in the bouk [5]1 by 0.A. Lady-
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2henskaya both for bounded and for unbounded domains. The solu-
tions are found in classes of vector fields whose elements have
a finite "energy integral" (so that in particular V Ve L, (Qq))
and satisfy the homogeneous conditions (12), but these conditi-
ons are not written explicitly. It was J. Heywood who introdu-
ced the conditions (12) into the formulation of the problem and
who found the solutions of (11),(12) with arbitrary ocj(t) in a
rather particular class of domains [6]. This class was conside-
rably extended in [7 - 9, 3, 11.

In the present paper we study the problem (11),(12) in a ge-
neralized (i.e. weak) formulation, but unlike [5 - 9, 1], we do
not require the boundedness of the "energy integral"., For the
case of cylindrical L = @ % [R the linear and non-linear evolu-
tion problems of viscous flow are studied in a certain class
of vector fields with an infinite "energy integral" by O.A. La-
dyzhenskaya, H, True and the present author [10]. In the paper
[11] devoted to & linearized evolution problem, the class p's1/2
is used.

By a weak solution of (11),(12) we mean a divergence free
vector field ¥(x,t) that is locally square integreble in Qps a8
well as its first derivatives ’7:!1 and that satisfies the condi-
tions (12), the homogeneous boundary conditions leea_q = 0 and

the integral identity
(13) foT Jo Ty + v VF: VA axat =
T e &
= fy Ja (T2, fj‘ixd)dxdt + [ F@ A (x,0ax

m ov a"[
. vRvg- ¥, —L L
where @ . = @y M4 teeet $ N, i iy3=1 oxy 33y

and 7 is an arbitrary divergence free vector field with a com-
pact support, possessingfthe derivatives ﬁt’ ﬁx{e LZ(QT) and
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vanishing for x € 9l and for t =T,

Theorem 1. Suppose that T < oo and that
i) Fe ’W’;(ﬂ. ,@), 1s a divergence free vector field,

P |an = O

ii) ?6 ECQ(QT'”)' ?i € %Z(QT’*)'

iii) +there exists a divergence free vector field
e 27)2)'1/2(QT,92) venishing for x ¢ {1l and satisfying the

conditions
-
fs:’"a.’.i’ds = () - () fiiq;’.n as

(it means in particular that the compatibility condition
«£y(0) = fz;—'}.ﬁ dS holds).

If the constant a, in (7) satisfies the condition
1< a1'<1 +d , then the problem (11),(12) has a unique weak so-

lution Ve @ 1,1/2

7 (QT ,2¢) and

lig| £ c(n) (121 A
(14;3)1'1/2(%,&) L,(Qpeee)  F1 IR (qp,me)

F4\ 2
' ?u";m.x)+

)= ¢(T) M, (D).
D12172(qy,3¢) L

If, in addition, ?J € ﬂ)g’UZCQT.ze). Fe Wi(,20),

2, € £,(ap,2), V&eDO/2(ap,), then 7 € £, (ap,2),

V¥ Shg;;/z(QT,ae), and

—> —»
Wily, (ap,a0) * uv?u@(\;g,z(%m)gc1(m)( 1Tl (4,0 *

|
+ |l¢1|,w§ + lz 1 +

m
+ .2 U7
#1701 (Q,3¢) YL, (ap,2e)

(15)  yvai )= C,.(T) M,(T)
502’1/2(QT,3C) = 42
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An analogous existence theorem holds for the spaces
D‘?'1/2(QT,q| )o It is formulated in the same way as Theorem 1 with
obvious changes; the conditions & € ’WZCD. ,%), T e éﬂz(QT,ac)
should be replaced by 3 € W;(_(l '@ )y ?eLz(QT,cn ) etc. The con-
stant a, in (6) should not be too large, i.e. 1<a, <1 + d"1,
d'1> 0.

Congider the non-linear problem

?t-l-(?ov)?—vva?'i' Vp:?': V-?-O
(16)

V0o = X5 V|zeaq = O

an L:.?.?ds = oty (1), § o= T,e.e,mele
x>

A weak solution of (16),(17) is defined as a divergence free
vector field ¥(x,t)e Ly 100(Qp) With V?ELZ']_OQ(QT), vanish-
ing for x € 0 and satisfying (17) and the integral identity

fo (.- (VIR T+ VR U7 ax at =
frfn Faxat+ [F.7

for any divergence free f’rL" with a eompact support such that
Wir Vﬁe Ly (Qqp), 17: 0 forxe 0, and for t =T,

Theorem 2, Let the vd.omain 0 satisfy the following addi-
tional condition: for every W(x) specified in c":jk possessing
the finite Dirichlet integral and vanishing for x & 0 coij N
n 0 , the inequalities

ll?v’llLs(Oi_)éb Iv¥@h, ,ifn=3
* 1
(18) ! -
1/3 2/3
l\Vv'\lLG(Oij)é_b llV?Ila)ij \\?Ilwij, ifn=2

hold with a constant b independent of W and j, and let the same
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inequalities hold for the domain Q‘o' If ft@’, s satisfy all
the hypotheses of Theorem 1 and % 4 £1, then the problem (16),
(17) has a unique solution ¥ D '/2(qp,a¢) with ¥, e £,(Qq,2¢),
V¥ e Q)gg/z(Q,r1 »®0) in the interval (0,T,), T, being a no1n-
increasing function of My(T) + M,(T) (M;(T) are the same as in
(14),015)).

The proofs of Theorems 1 and 2 and of analogous theorems in
other functional spaces are given in [4]. We restrict ourselves

to the idea of the proof of the first part of Theorem 1. First

of all, we construct a weak solution of the problem {11),{12)

Feple1/2(q ) with q. =1 + "Z"I T We extend the vec-
4 e 9n =1 34 Ly

tor fields T, ?i’ ® into the half-space t<0 by zero and then
ints the half-space t>T as even functions of t - T. This exten-
sion conserves the differentiability properties of ?, f;_, @. The
new unknown vector field @ = ¥ - & (t)F(x) - &(x,t) is diver-

gence free, it satisfies the conditions ?lxea.ﬂ.: 0, fz T dS =
¥

=0, j=1y0e.,m, and the integral identity

00 o0 4 P e
( )J; ja(-i’.'v‘{t +» VRO )axat = [7f (A Z AL ALY
19

- [P, (83 e Tpaxar - » [T Vs

+ V& V7)) axdt

that is a consequence of the identity (13) written for T = c0 .,

Changing 7 for e 2%

we can rewrite (19) in the form

f‘o d§ fn(e_‘g-"_?l+vV§: V?p )dx =

-

and applying the Parceval ‘s identity,

(20)
=J::d§ f.ﬂ- (ac;"?i'% ii. %xi+5§°'%) dx
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o~

= 2 ~ = ~ =4
where u «7 = u, '?),1 *eeet U M., U is the Laplace transform of
=4

o~ o~ 2z
RT-7-Fpgw, 8 -22 -7, -»8 42 -5 $L.
1

Consider the following auxiliary problem:
Find a divergence free vector field ’3(‘2)6 ‘V’l;(.(lz) depending on
a parameter s = 6 + ig and satisfying the integral identity
@, F) = [ (AL P + v IRD), I yax -
(21) o N
= -[n;.[(g +eg) ¥+ ¥ §i. i;fxihx

for all divergence free ¥ € ﬁ;(_Qz). For 6 2 0 the quadratic
form Q(W,¥) satisfies the comdition

Re(1-1 sgn §)Q(M,M Z (6 + 1§1) [ (W2 ax +
=)

@2, v L IVRZ ax 2 (1s1W2 + 9 [VH?) ax

Qg Y ’
and the existence of 3(2) follows from the Lax-Milgram theorem.
Moreover, ﬁu) is a holomorphic function of s in the half-plane
Re 8>0, since §+ s’_é’o and ii are holomorphic., Letting ir)= -'1!{0‘)
(1 +1 sgn‘g') and integrating with respect to g , We obtain af-

ter elementery calculations the estimate:
[:ag Lg(lslh’{“)lz + v 1VA®)|2)4x ¢

(23) g£:dg fn,, c%lé’ 2+ c51Z )2 16\ + ¢, 1E1? ax £
£ C,(6) Myqp -

Next, we evaluate f:dg fn& (sl 1B9N2 4 5 L 7RON2) 42 tor

k <f ., To this end we insert into (21) the test function
‘_’f"’%kﬂ (1 +1 sgng) where vk+1 B (O LY TJ:‘H =0 in
ana 7,

k+1* Y41 = Pipet a £) in @;y,q- After easy calculations,
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meking use of (1), we obtain
L85 L (al@RN2 45 1750126 <
(24) £ o5 [Tag j‘(;'m\i,,x‘(leallE“Z)I2 + v 19E®)2) 4,
—
+ ngdg [nmﬁ%_,[?\z + lsllé’ola + % \3’1\2) ax,

i.e.
WS C5(Yk+1 ~ yk) + C7 M;qy
or
2z ci_ ..._7_0
Vi Ce+l Vet Cet+1 % :
5 5

where y;, is the left-hand side of (24). Hence,

c.M c Ce \AL-k=1
g F- 1 teoot (—L) } +
Vit Cg+1 e Cg+1 Be+1 Cg+1 g1

(25) + (_Ci )z‘k v, £ CIM1 q {1 + a Eia—1 teoot
Ce+1 £ o 41 K % oo+l
5 : 5 5
C.a l-k-'l Cea Z-k
+ aO(Ei—E:') } + C(8)M, (Es_Tl) qkécgr'l1qu Yk <Z,
5 5

provided Csa1 /05+1 <1,

In virtue of (25), there exists a subsequence of ﬁf‘”?
converging weakly in the Hilbert spaces with norms (10) for ar
bitrary bounded £ c fL , The limiting element :u’ satisfies the
inequality (25), i.e.

[7ag fnb(lsl 1212 + » 1931 axfcg 1yqp.

Moreover, making use of (21) it is not hard to show that 3 sa-
tisfies the identity (20). The inverse Laplace transfomm ifo of

ﬁ’va.nishea for t< 0 (since 3 is a holomorphic function of s in
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the half-plane Re 8Z0), and satisfies the inequality
®an (¥ -26% 2
j; hT Loe at Iahlﬁo(x,t) - T?o(x,t-h)l dx +

© _26% 2
[7e ar [o VORZ axdog u; g

end the integral identity (19).
Let us show that i?e‘.b;"/a(qm,ac). Ve fix oy, kz1 and
~
take = (1 + 1 sgng) [§k+p+1 - ﬁk—pﬂ) in (20). Repeating
the calculations leading to (24) we arrive at the following
inequality for the numbers

Ly f—:dg fG;

2 2
b,,(.\cm_,,,a(,\’\ W12+ » 19R12)ax, p = 0,00 k11

e
10 «
2§ Zoe + Cqq [ f f%

1 2 T2
»* 5, z(glm + sl1B,1° +

kepet Gq}ln-lp«-

c

2 10 ~

- AL P Z_..+C

3 J C10+1 p+1 12 9 ¥
- B

where q =%§4 (2€yppy + 24y 3) + 2y, satisty (6):

~ netaa

Tut = Tp +5,.un+9.( Ry T Ry 5) &

nitaa

v, J=-p=-1 " o %
P * 8t aeik+p+1 & ae:l.k-p-l ),3:%*251 £8, 9 89

218093 My 80y My 2%y

., Cuatl
provided a4 —-2

« This inequality shows that
10
E'eﬁ)l’1/2(QT,Qe), and the estimate (14) for V=W + T+ed

follows immediately with C(T) = Ce°T,

The second part of the theorem can be proved by similar

estimates of the integrals
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Joag o, (sl 1B12 + 5 1at 19T12) ax ana

L‘ng fw'k(\s\z 122+ » I sl B12) ax.

With Theorem 1 established, it is not hard to prove the
solvaebility of (16),(17) by successive approximations. Theorem
1 holds also for T =c0 under slightly more restrictive assump-
tions on T and a (see [4]), end if the data P, éj? , @ are small
in an appropriate sense, then the problem (16),(17) has a solu-
tion for all t>0. This is completely analogous' to the result
of 0.A. Ladyzhenskaya [5] obtained in the three~dimensional c&:
se for flows with a finite "energy integral". The question, whe-
ther there exists the global solution §>¢§D1'1/2(QT,36) of the
problem (16),(17) in the two-dimensional case is still open.

A different approach to the problems (11),(12) and (16),

(17) ie proposed by M.E. Bogovski [12] who proved coercive esti-
2,1
P

Thigs is a generaslization of the present author s results for

mates in the spaces W (QT) for the solutions of (11),(12).
"interior" and "exterior" domains with a compact boundary
(13, 141, On the base of these estimates, the solvability of a
non-linear problem is established locally for n = 3 and global-
ly for n = 2, For p large enough, the space w%'1(QT) contains
vector fields with an infinite "energy integral', but in some
important cases, for instance, in the case of cylindrical fL
and « = fs_ .7 dS 4 0, the solutions of (11),(12) and (16),
(17) do not vanish at the infinity and do not belong to
warl (qp).

The exterior problems are considered also in the Holder
spaces 02+“’1+d/2(QT) without any assumption of the stabiliza-

tion of the solution as |x} —» @@ ., Por the problem (11), for
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ingtance, the following theorem is established in [14],

Theorem 3. Let (L be an exterior domain with 80 ¢ 02+°°,
& € (0,1), and suppose that Fe 02“‘(9.) is a divergence free
vector field vanishing on 3Q , = o, %GCH‘"(H"")/ZCQT)
and the compatibility condition holds

"y af (x,O) 2
Psl =524 3;‘}— + PU@ )| epp = ©

where P; ¥=R-Vw and @ is & solution of the Neumann pro-
blem

2 - dw \ o l
= o I = hen o
Vo v ' 5n . 30
Then the problem (11) has a unique solution ve 02+°°’1+“/2(QT),
Vre C“'d/z(QT) and, in addition, p(x,t) possesses the finite

~(14aeg)
| t-nd Ix - yl-‘rlp(x,t) - p(y,t) -

- p(x,%) + p(y,T)l, %6 (0,1). For the solution a coercive
esf™mate holds

17) +
02+u-’1 +&/2 (QT)

norm

l G*lff) -

sup
:“l. !

lp

| + | p|lea?)

v
plc“"-"‘/z(QT)

“c(m (% l?i"cna,(u«)/z( G 2rag)e
Qqp)

The restrictions on ?, ?j can be weakened, but it should
be pointed out that the formulation of this theorem given in
L14] (see Theorem 9.1) needs some corrections. For the nonli-
near problem (16) an analogous local theorem is established.

Because of the conditions (18), Theorem 2 does not seem

to be applicable to exterior domains, and it would be interegt-
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ing to find an a?propriato generalization of this theorem., In
this connection it should be noted that for linear parabolic
second order equations some more sharp estimates are found, which
makes it possible to work in the class of weak solutions whose
"energy integrals" in the domains Q. ={x €Q:|xl<r} may grow

as fast es e®F for r >> 1 (see [15, 16]).
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