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Abstract: In this paper the system of partial differential
equations describing mobile carrier transport in semiconductor
devices with constant or varying densities of ionized impurities
is investigated. Under appropriate assumptions there are indica~-
ted proofs of the global existence, uniqueness and the exponen-
tial staebility of solutions to corresponding systems,
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Introduction. These lectures consist of two parts. In Part
I we shall be concerned with a system of partial differential
equations proposed in 1950 by van Roosbroeck [17] as a model for
the transport of mobile carriers in a semioconductor device., A
large number of numerical experiments has shown that this model

is quite useful for purposes of device design and device analy-
sis (see, e.g8¢,[3]1). Its analyticel investigation started rather

late with a series of papers of 1.S. Mock L12, 13, 14].

Mock also tried to justify some of the commonly adopted numeri-
cal methods, and he summed up his results in a book [15] that
appeared in 1983, Further results were obtained by Seidman [18]
and Gajewski [4,5,6]. In our presentation we follow closely a
recent paper of Gajewski-Groger [7] dealing with global existen-

ce, uniqueness, and asymptotic behaviour of solutions to van

This paper was presented on the International Spring School on
Evolution Equations, Dobfichovice by Prague, May 21-25, 1984
(invited paper).
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Roosbroeck ‘s equations under reasonable initial and boundary
conditions.

Van Roosbroeck ‘s model assumes that the densities of ioni-
zed impurities in the semiconductor are known and do not vary
during the process unper consideration. In Part £I we shall deal
with a generalization of van Roosbroeck ‘s model allowing the
densities of ionized impurities to change according to simple
kinetic equations. The results of this part are new. Since their
proofs are similar to the proofs of the results of Part I we

ghall indicate only the necessary modifications.

I. Semiconductors with constant densities of ionized

impurities

I.1. Provisional formulation of the problem. Let G clRN,

N&3, be the domain occupied by a semiconductor device, We are
looking for functions u;, u,, and v of te R := [0,+00[ and
x € G satisfying van Roosbroeck ‘s equations

ouy ]

>t * div Ji(ui,v) + R(u) = 0, 1i=1,2,

(1)
- div (e gred v) = £ + uy - Uy,

where
u=(u1,u2) represents the densities of holes and electrons,
v is the electrostatic potential,
ji(ui,v) = -Di(grad u; + q uygrad V), 1=1,2, qq==q, = 1,
are the hole and the electron current densities,
D1, D2 are the diffusion coefficients of holes and elec-
trons,
R(u) is the net recombination rate,
¢ 1is the dielectric permittivity of the semiconductor

material,
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f is the net density of the charge of impurities.
The equations (1) are to be supplemented by appropriate side
conditions. We assume that the boundary 9G 1is the union of two
disjoint parts T and I and that
u=%= (31,'1‘1'2), v=%on R, x T,
(2) av
Ji(uq,v) -7V = ja(u.a,v) <V =0, Sy tav=g onm+><|",

(3) u(0,x) = u°(x), x€G.

Here y» denotes the outward unit normal at a point of " , and
'fi, ¥, a, and g are functions representing the interaction of the

semiconductor device with its environment.

For a detailed discussion of these equations see [15,3].
We remark only that ji(ui,v) = -Dyu, grad Ei if we define
$4:= log u; + qqVv. The variables $,, i=1,2, are to be inter-
preted as the electrochemical potentials of holes and electrons,

respectively.

I.2, Precige formulation of the problem. If E is any Banach
space and S an interval of the real axis then C(S;E),01(Sy,l) ,LP(S;E),
Lll’oc(S;E), 1£p £ o0 , denote the usual spaces of E-valued func-
tions defined on S. If E carries a natural lattice structure
then we denote by E+ the positive cone in E, and for u&E we de-

+

fine u':= sup {u,0}, u := sup {-u,0}.

In what follows we assume that

Gc lRN, N<3, is a bounded Lipschitzian domein,

3 =Tul , FAT =g, nes(F) >0,

(s D;>0, D,>0, & >0, q =-q, =1, a€LP(T), geLO(T"),

fe L*(G), R(u) = k(u4u, - 1), kZ0,



}i"qiv 1,0

(6) FeH'(®AL®@E), T, = , Sewh @@, 11,2,

The last assumption means that the boundary values on ﬁ appe-

aring in (2) can be extended to sufficiently nice functions on G.

Let Vi={weH (G):w it . ok, and let V¥ be its dual, We de-
tine Ay (H' ()N LP(6)) xB'(6) —> V*, 1-1,2, and B:H'(G) —» V*
by

(Ai(w,v),h):- ‘!;3 D (grad w + q w grad v)gred h dx,

(1) {Bv,h) := fG € grad v grad h dx + j;_‘ (av-g)d6,
weH ()AL (G), vEH (G), heV.

Purthermore, we introduce F, = F,;L®(G; R%) —» V¥ by

(®  (Fyw,n>:= [ k(1-uup)h ax, ue I(G; ), ne,
1=1,2.

(By IP(G3 R®), ne N, 14p 4 00 , we denote the usual space of
IR%-valued functions defined on G.) Finally, let

(9 w’e LP (63 B?).
The problem (1)-(3) can now be written precisely as follows:

Yt >0: us(t) + 4y (uy(t),v(t)) = Fyult)),

(1) Bv(¥) = £4(uy-u)(¥), ug-s 13 (RN L2 (IR,3L2(6)),

.

2
uiSL

ool IR3VH), 1=1,2, u(0) = u®, v-¥aC(R;V),

where u{ denotes the derivative of uy with respect to time in
the sense of V¥-valued distributions. It is easy to check that
sufficiently smooth functions u, v are a solution to (I) if and

only if they satisfy (1)-(3).

The stationary problem corresponding to (I) reads as fol-

lows:
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(‘
- A (uf,v®) = 2, (uF), uf = Uje as “ € VALP(G), i=1,2,

Bv* = £ + ¥ - uf, vF - VeV,

I.3. Results

Theorem 1. Let the conditions (4)-(9) be satisfied. Then
there exists a unique solution (u,v) to the initial-boundary
value problem (I). This solution has the property uz 0.

Theorem 2. Suppose that (4)-(8) hold and that in addition
~ ~
(10) grad §, =0, 1=1,2, §,+ §, =0,

Then there exists a unique solution (u*,v¥) to the boundary va-
lue pmblanﬂ(II). This solution has the properties

§i-q v
. i

u‘; , ai(u’;.v*) = 0, i=1,2, R(u¥) = k(\i’1u§-1) = 0,

Theorem 3. Suppose that (4)-(10) hold. Purthermore, let
(1) ugz const> 0, i=1,2,

If (u,v) and (u¥*,v¥) are the solutions to (I) and (II), respec-

tively, then there exist A > 0, ¢>0, €,>0, ¢4< 00 such that
Yte Ric du,(t)dc,, i=1,2,

Mt

.

lu(t)-u"‘ﬂLz 2)+ﬂv(t)-v*\|

G3R'

1 £c
H' (G)nL%(G)

Remarks., 1. The main result of Theorem 1 is the global ex-
istence of the solution despite the quadratic nonlinearity of
the operators A; and Fy. Of interest is also the boundedness
property of the densities u; since the equations (1) are inac-
ceptable if the uy become too large.

2, Condition (10) meens that the driving forces for the
flows of holes and electrons and for the net recombination ra-
te vanish at the ohmic contacts of the device, By Theorem 2
this implies that the flows and the net recombination rate
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vanish everywhere in G.

3. We presented a result on the stationary problem (II) on-
ly as & preparation for Theorem 3. An existence result for Prob-
lem (II) avoiding the hypothesis (10) can be found in Gajewski
L51.

4. In his papers Mock considered only the case a = g = 0,
thus excluding contacts called gates. He never proved that uy be-
longs to Lfgc( lR+',L”(G)) or to LY( lR+;L°°(G)). not even in the
context of asymptotic behaviour. He assumed that for some p>N
the relations Bv = h, he LP(G), v-F& V imply that vew2rP(q),
This assumption clearly restricts the considerations to special
geometries (see, e.g., Grisvard [9]). Similar essumptions were ma-
de by Seidmen (18] and Gajewski [4-6].

5. The results stated above remain true if the constants k,
Dy are replaced by k(u,v) and Dg + D;(lgrad vl), where
k: IR2x R—> IR, is Lipschitzian and DJ: R, —> IR, is such that

¥y +> D} (y)y, y € R, is Lipschitzian and bounded.

I.4. Essential steps of the proofs. We shall outline the
mein ideas of the proofs of Theorem 1 - Theorem 3. For details we
refer to Gajewski-Groger [Tl.

1. The existence of a solution to (I) has been proved as follows:
The operators Ay and F__L have been replaced by Agr), Pir) , Where

r>0 is a regularization parameter and

<Ai(.r) (w,v),h) := fG D, (grad w+qy min {w*,r} gred v)grad h ax,
2
PP @hnd = fo k(1 - min f(uuy)*iPhn ax,

weH'(G), veH'(G), ue1?(Gy R?), heV.

The solvability of the regularized problem has been shown by means
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of Schauder’s fixed point theorem. Next by methods to be descri-
bed below there were derived a-priori estimates for uy in

I’l?c( R,3L%(G)) uniformly with respect to r. Thus, for a given
compact interval S = [0,T) one can choose r>0 so large that a
solution to the regularized problem is a solution to the original
problem on S. The uniqueness of a solution to (I) can be proved

by stendard arguments.

For the sake of simplicity we describe the proof of a-prio-
ri estimates only for the original problem (I). At first one pro-
ves u;Z 0 by means of the test function uI. Next one uses the

function H:12(G; R?) < H' (6)—> IR defined by
S 1 (Bv-BY,v-¥)
H(u,v):= f(; =i fa& log &; dy dx + x (Bv-B¥,v-

(cf. Gajewski [4]1). Almost the same function had been introdaced
already by Gokhale [8]., Corresponding functions were used also
in the theory of reaction systems and diffusion-reaction sys-
tems (see Horn-Jackson [111, Groger [101). If (u,v) is a soluti-
on to (I) such that uy Z const>0 then

2 . ~

- §5 H®),v(1) =32, Cul(6), §,(0)-5,7,
and this is the dissipation rate of the system. Under the assum-
ptions of Theorem 3 the semiconductor device is a closed system
in the sense of thermodynamics. Hence one would expect in this

cagse H to be decreasing along the trajectories of the system.

Indeed, one can prove
Lemma 1, If (u,v) is a solution to (I) then for tZ820

v
H(u(t),v(t)) < H(u(s),v(s)) + ¢ fh (1+H(u(v ),v(z)))dz .

If (10) is satisfied then this inequality holds with ¢ = O,
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Prom Lemma 1 and the properties of H it follows that

t
YVt e R lu(t)lIL1 an) + llv(t) 2o & 7t

where 79" , ¢ depend only on the data of the problem and ¢ = O if
(10) is setisfied.

Lemma 2, If (u,v) is a solution to (I) and S = [0,T] then

cl

lul £ c(llul vl
s, 16R2)) TS (6R2)) | 1¥(s5E' (6)))*

where C is a continuous function of its arguments depending only
on the data of the problem.

The proof of this lemma is rather complicated. It uses an
iteration technique introduced by Moser [161 (cf. also Alikakos
111), One derives for n=1,2,... bounds for the norm

n
flu, i a by means of the test function ((ui-ll)"')2 '1, M
1°(s31° (6))
sufficiently large. Lemma 2 completes the proof of the a-priori

estimates.

2, If (u¥,v*) is a solution to (II) then one proves by means of

the test function log(uj/d;) that A (uf,v*) = F,(u*) = 0, u} =
A P

, i=1,2, and
§ -y* 'i' +v¥
(12) Bv¥*=f+e! -e2 ,v¥-%FaV.

Conversely, using standard maximum principle and monotone opera-
tor arguments one can show that (12) has a unique solution. This
leads to the unique solvability of Problem (II).

3. By an iteration technique similar to that in the proof of Lem-
ma 2 one obtains uiZ const > 0 under the hypotheses of Theorem 3.
This can be used to show that %-{ H(u(t),v(t)) & -NH(u(t;vi{t))

for sufficiently small N\ > 0, if H is defined by means of u’;



instead of ﬁ'i. Hence H decreases exponentially along the trajec-
tory (u,v). The assertions of Theorem 3 are easy consequences

of this fact.

II. Semiconductors with varying densities of ionized
impurities

ITI.1. The kinetics of impurities, holes, and electrons.

In Part I there was no need to distinguish between different
impurities. In this part we have to teke into account that the
densities of some of the ionized impurities may vary during the

process under consideration.

Let IJ, J=1,...,m, be species taking part in the process as
impurities. By et and e~ we denote holes and electrons conside-
red as species., If Ij is a donor and 1‘5 the corresponding ion
then the reactions taking place can be written symbolically as

follows:

+ ky 4+ - + -
(13) e +IJ ﬁj‘zxd' e +Id mj%xa.

This means that we have mass action kinetics with reaction con-
stants as assigned to the reaction arrows. For the sake of sim-
plicity we assume that each molecule supplies only one electron.
Similarly, if I:l is an acceptor and xs its ion then the reactions

are

k
(14) et +x; =_1sz, e +IJ;J'“!X;.
Kyt ™M

Due to the choice of units made tacitly already in Part I we have
Kjud =1 (lela is the square of the intrinsic carrier density).
It xj is a donor (an acceptor) we denote by u23+1 the density of
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Xy (of X7) and by u,y,, the density of Xj (of Xy). Accordingly
we define

{Oiij is a donor

%341 ¢ » Gpyapi= 1+ Qe

-1 it Ij is an acceptor

With this notation the reaction equations for the impurities ta-
ke the form (see, e.g., [2])
ouy
>t - Pi(u). 1=3,0¢.,0,
where n:= 2m + 2, us= (u1.....un), and
Fpgaer (e ky(ouqup g g 4K qup 400+ my (U055 p-Hitp 54905

P23+2:- - sz+1, J=1,000,me

(15)

Simultaneously we have to redefine 1'1 » P2 as follows:
mv

16) Fi(we= k(1-uqu;) +‘.’§4 kj(-u1u23+1 + Kd“2.‘)+2)’

Fy(u)i= k(1-uyu,) *;5-:1 my(-Uplp g4p + Mylpgyq)e

II.2. Fornulation of the problem. Let esgain (4)-(7) be sa-
tisfied, and let

m €N, n:= 2m+2; BPj4 = 0 or Pj4 = -1, 9 j42° 1+q2:j+1,
an
kj>0, m3>0, Kj>0, K‘.jll:j =1, j=1,00e,m

The mappings P,, F, defined by (16) will be considered as mappings
from L% (Gy R™) o V* (cf. (8)), whereas Fyyee. P will be consi-
dered as mappings from L%(Gj; IR") to L®(G). Let

(18) u®e LP(G; B™).

The ewolution of the system under consideration is described by
the following equations and side conditions:
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VE>0: u (£) + Ay (uy(£),v(8)) = Fy(u(t)),
u - € I‘%oc( R,3V)n I'l?c( R, ;L(C)),
(Imm  ujel® (R, 1=1,2; uf(t) = Py(u(t),
uge ¢ (IR312(6)) A L0 (R3L0(6)), 1=3,...,m,
u(0) = u®, Bv(t) = ¢ +1.;<=:"4 qguy(t), v-¥eC(IR;V).

The function f takes into account that we may still have fixed
ionized impurities. The corresponding stationary problem reads

ag follows:
Ai(u’i,v*) = Pi(n‘), uj = ﬁieﬁ, € VAL®(G),i=1,2;
(Iv) Fi(u") = 0, u"ie L_f" (G), i=3,...,n,

~v
Bv¥=of + >, qguf, v*- Fev.

II.3. Results

Theorem 4. Let the conditions (4)-(7), (15)-(18) be satis-
fied. Then there exists a unique solution to Problem (III). If

(u,v) is this solution then uzZ O and
(19)  V£6 Rz (U1 tip5up) (8) = U35 440345, 3=1peee me

Theorem 5. Suppose that (4)-(7),(10), and (15)-(17) hold.
Yoreover, let fj¢ L®(G), j=1,...,m, be given. Then there exists
a unique solution (u*,v*) to Problem (IV) such that “’;;m +
+ u‘z‘j+2 = f3, 3=1,...,m. For this solution it holds

~
$4-q; V¥
W aed Tt 11,2y Wjuf =1,

By = 40 uEDT 3= Tl

Theorem 6. Let (4)-(7),(10),(11), and (15)=(18) be satis-
fied. If (u,v) is the solution to (III) amd (u¥,v*) is the
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solution to (I¥) such ¢that

« 0 [
Waer * WByap = Tg1m Upgyq * Upgeps Imleee,m,
then there exist A > 0, ¢ >0, 0,>0, 6, <® such that

VielR o @u,(t) o, 1=1,2,

+ Av(t)-v*1 éc oM,

fu(t)-u*1
L T 1 (6) n 14G)

Remarks. 1. If (u*,v¥) is & solution to Problem (IV) un-
der the hypotheses of Theorem 5 then we have equilibrium for
each pair of reactions in (13),(14) and R(u*) = 0.

2. Another natural choice of !23,._1 is

+ $
123“ (u,v):= k:l(-os1 S23"'14{10}2“2)'» n$(0E2+ 2;"*2-“33‘?:”1) =

923427 23417
2 gy gy ¥ gp g4p) + mge I ity g oMy 1)

where §$,:= log u; + q;v and the constants in this definition
satisfy the conditions (17). Therefore it is of interest that

= kjo

the results of Theorem 4 - Theorem 6 remain true if the const-
ants kj. mj are replaced by strictly positive locally Lipschitz-
ian funotions of u and v.

3., If the ions of impurities can accept or supply more than
one electron then one has to modify the definition of the func-
tions Pi somewhat, but the results are essentially the same.

II.4. Comments on the proofs. The proofs of Theorem 4 -
Theorem 6 are similar to those of Theorem 1 - Theorem 3. We res-
trict ourselves to short comments.

1, Let (u,v) be a solution to (III). The assertion uZ 0 can be
proved again by means of the test function u;. From uZ 0 it fol-
lows immediately (cf. [191))

“"234& ' IP(R+;L°(G)) s1 “'2’3+1N§,+2‘ 1%(G)* J=1,000,m, imi, 2,
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The main problem is once more to find bounds for u,, Uy. One can

prove an analogue to Lemma 1 if one defines

H(u,v):= ~ log I- dx + — { Bv-B¥,v-¥2
. fGE‘l fw"‘ g o dy 2 ’ >

4

for u, e LE(G; R%), veH'(G), where =™, (4 € L% (a),

i=3,...,n, are such that 'ﬁ'{ﬁ'zjﬂ = K31)’23+2. J=1,...,m, Subsequ-
ently one can obtain bounds for ﬂui(t)llp , 1=1,2, almost 1li-

(a)
terally as under the hypotheses of Part I.

2, If (u*,v¥) is & solution to (IV) satisfying the relations

“;;]H + u§j+2 = fj, j=1,0..,m, then by means of the test functi-

ons log(ul/,) one can prove that A, (uw§,v¥) = 0, 11,2, P, (u¥) =

= 0, i=1,.,.,n, and

P~d

S1"'v* 1
)=

€ L U, 14,2, Wy = L0104 e

ui ’ 3-1,...,111,

~ L4

§,-v* P4V m §q=v*
Bv T +e e +‘3§4 ‘;j(q23+2 (1+llde )7, vr-veV,
Conversely, the last equation can easily be handled by maximum
principle and monotonicity arguments. This leads to the asserti-

ons of Theorem 5.

3. Under the hypotheses of Theorem 6 one proves at first as in
Part I that ui(t)z const>0, i=1,2, t& 0. Next one shows that
for every t°>o there exists co>0 such that

VEZ toiip g (D ZE 0pty, Jul,eee,m, 1a1,2,

.. .0 o
where fyi= Upyq + Wi, Thus, for t>0 it makes sense to define
wyCt)

1 2
H(u(t),v(t))e= z(Bv(t)-Bv‘,v(t)-v*) + J’G §4 f“f% log %1 dy dx +
My, jea 180 My 2 4 B
2L L[, log—X—ay+ [ 108 51— ay} ax,
16 Wi U3 441 “25+2 U5 542
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where Gyi= {x60G:fy(x)>0f. I t,>0 and A > 0 is sufficient-
ly small then

VEZt: §g H(®),v(8) & ~ AH(t),v(¥).

The proof of this inequality is, however, somewhat more compli-
cated than the proof of the corresponding assertion of Part I.
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