

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log85

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,4 (1984)

APPENDIX TO THE PAPER "AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL EQUATION IN BANACH SPACES" Stanisfav SZUFLA

<u>Abstract</u>: The paper contains a result concerning the Kuratowski measure of noncompactness in the space $L^1(D,E)$ of Bochner integrable functions with values in a Banach space E.

 $\underline{\text{Key words}}$: Urysohn integral equations, measures of noncompactness.

Classification: 45NO5

Assume that R is a Benach space and D is a compact subset of

Assume that E is a Banach space and D is a compact subset of the Euclidean space R^m . Denote by ∞ and ∞_1 the Kuratowski measures of noncompactness in E and L¹(D,E), respectively. Let V be a countable set of strongly measurable functions from D into E such that there exists $\mu \in L^1(D,R)$ such that $\|x(t)\| \leq \mu(t)$ for all $x \in V$ and $t \in D$. For any $t \in D$ put $V(t) = \{x(t): x \in V\}$ and $v(t) = \{x(t): x \in V\}$

Recently Heinz [2] proved that the function ${\bf v}$ is integrable on ${\bf D}$ and

(1)
$$\alpha (\{ \int_{T} x(t) dt : x \in V \}) \le 2 \int_{T} v(t) dt$$

for each measurable subset T of D.

Now we shall prove the following

Theorem 1. Assume in addition that $\lim_{\mathcal{H} \to 0} \sup_{x \in V} \int_{D} ||x(t+h) - x(t)|| dt = 0.$

Then

$$\alpha_1(V) \neq 2 \int_{\mathbb{D}} v(t) dt.$$

<u>Proof.</u> For any positive number r put $V_r = \{x_r : x \in V\}$, where

$$x_{\mathbf{r}}(t) = \frac{1}{\text{mes } Q_{\mathbf{r}}} t + Q_{n} x(s) ds \qquad (t \in \mathbb{D})$$

and Q_r is the closed ball in R^m with center 0 and radius r. It is well known that under our assumptions the set V_r is equiconti-

nuous and uniformly bounded, and $\lim_{n\to 0} \|x - x_n\|_1 = 0$ uniformly in x & V. Hence

(2)
$$\alpha_1(V) = \lim_{n \to 0} \alpha_1(V_r)$$

(2)
$$\alpha_1(V) = \lim_{n \to 0} \alpha_1(V_r)$$
 and, by Lemma 3 of [3], $\alpha_1(V_r) \leq \int_D \infty(V_r(t)) dt$.

Moreover, by (1), we have

Moreover, by (1), we have

(4)
$$\propto (V_r(t)) \leq 2v_r(t)$$
 for $t \in D$,

where
$$v_r(t) = \frac{1}{\text{mes } Q_r} \int_{t+Q_R} v(s) ds$$
. Since $\lim_{n\to 0} ||v-v_r||_1 = 0$, from (2) - (4) it follows that $\alpha_1(v) \neq 2 \int_{\mathbb{D}} v(s) ds$.

Using (1) and Theorem 1, and repeating the argument from [4]. we conclude that the main result (Theorem 2) of [4] remains valid also for arbitrary Banach space E if we replace β by ∞ and the assumption $|\lambda| < \rho$ by $|\lambda| < \frac{1}{2}\rho$.

References

- [1] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56.
- [2] H.P. HEINZ: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis 7 (1983), 1351-1371.
- [3] S. SZUFLA: On the existence of LP-solutions of Volterra integral equations in Banach spaces, Funkcialaj Ekvac. 27(1984).
- [4] S. SZUFLA: An existence theorem for the Urysohn integral equation in Banach spaces, Comment. Math. Univ. Carolinae 25(1984), 19-27.

Os. Powstan Narodowych 59 m.6, 61216 Poznan, Poland

(Oblatum 13.11. 1984)