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NO UPPER BOUND FOR CARDINALITIES OF TYCHONOFF C.C.C.
SPACES WITH A Gs-DIAGONAL EXISTS
(AN ANSWER TO J. GINSBURG AND R. G. WOODS' QUESTION)
Dmitrii B. SHAKHMATOV

Abstract. It is proved that every ind-sero-dimensional
Tychonoff space X with a Gg-diagonal can be embedded as a
closed subspace in anind-zero-dimensional Tychonoff space Y
with a Gp-diagonal satisfying the countable chain condition.
In particular, for any cardinal T there exists a Tychonoff
¢.c.o. space Z with a Gy~diagonal such that |Z|>T . This set-
tles the gquestion advanced by J.Ginsburg and R.G.Woods and
repeated by A.V.Arhangel’skii as well.

Key words and phrases: Tychonoff space, countable chain
condition ( =c.c.c. ), space with a G&- iagonal.
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1. Introduction.

J.Ginsburg and R.G.Woods showed that the cardinality of a
collectionwise Hausdorff topological space with a G&-dnsmu}
satisfying the countable chain condition does not exceed 260
( [1] y Corollary 2.3). They also constructed an example of a
Hausdorff non regular space with a Gs-diagoul satisfying the
countable chain condition of cardinality 2 ¢ ([1] » Bxample

2.4) and raised the following

Question 1.1 ([1] » Question 2.5). Is it true that the
cardinality of a regular space with a G&-dingonal satisfying
I3

the countable chain condition does not exceed 2 o?
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Question 1.1 was alse mentioned in A.V.Arhangel’skii’s
survey ([2] » open problea 16). In this paper we give a comp-
lete answer to Question 1.1 (see Cerollary 3.3).

2. Notatiens and terminelogy.

Notations and terminology follow [3]. A space means t:jo-
logical space. All Spaces are assumed to be Tychonoff (= comp-
letely regular + 2,). A space X 1s sero-dimensional iff ind X~
=0, 1.0.,X has a vase consisting of closed-and-open sets. A
space X is said to have a Gs-dilgom i1ff the diagonal A=
={(x,0): xeX}c X*X 1s a Gg-set 1n X*X . symvols |X|,
’W'(X), ;L!(X) and X(X)donoto the cardinality, weight, pseudo-
character and character respectively. A space X is said to sa-
tisfy the cowntable chain condition 1ff the Souslin mumber
c(X)=sup{|¥|: Y 18 a family of pairwise disjoint non-
empty open subdbsets otX of the space X is countable. A spa-
ce X 1s left-separated iff there exists a well-order < on X
such that every left interval X_ ={ yeX : y< 3(‘,} is clos-
ed in X - As usual cardinals are identified with initial or-
dinals. For a set X 1let expX ={F: F 1s a suvset oz X}.

3. Main results.

Theorea 3.1. Every sero-dimensional Tychonoff space X
with & os-ungom ocan be embedded as a closed subspace in a
sero-dimensional Tychonoff space Ywitb -cs-dxuom satisfy-
ing the countable chain condition.

Theorea 3.2. If in addition to the assumptions of Theorem
3.1 the space X 1s left-separated, then so is the space Y.

Corollary 3.3. For any cardinal ‘T there exists a Tycho-
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noff (left-separated) space Z with a Gp-diagonal satisfying
the countable ohain condition such that |Z|>T.

Corollary 3.3 gives a complete answer %o Question 1.1.

ZTheerem 3.4. Every sero-dimensional Tychonoff space X
can be embedded as a closed subspace in a sero-dimensional

Tychonoff space Y such that 50( Y)< ’D(X ) and C(Y) =8o-

Theorea 3.5. If in addition to the assumptions of Theorea
3.4 the space X is left-separated, then so is the space Y

Corollary 3.6. (M.J.Zeitlin [4]). There exists a Tycho-
noff space Z with a Gs-dugonl without one-to-one continmuous
mapping onto a Hausdorff first-countable space.

Corollary 3.6 gives an answer to a question of A.V.Arhan-
gel’skii. It is worth noticing that our space Z constructed
in Corollary 3.6 satisfies the countable chain condition while
the corresponding space of M.J.Zeitlin doesn’t.

4. Proofs.

The constructions are similar to those desoribed by the
author 1in [5].

We need the following well-known

Proposition 4.1. ( [6] ). Yor any space X the following
conditions are equivalent:

(1) X nas a Gg-dtagonal,

(11) there existe a sequence {Xﬂ-: mew} of open covers of
X such that for any distinct points x,:’(ex one can find an

newwitn {Ueyn : [=y4lcU}-2.

Proof of Theorem 3.1. For every c(<waby transfinite in-
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duction we construct the structure E0L= <Xd,% ,9_-?5;,36&,
GJ‘:, ed,8d> with the properties (1)-(9).

(I)Xd,%d,g—%due s.ta,%dﬂﬁfﬁ,.%&:%d»ﬂ—éd is a
one-to-one mapping, E{;={F : Fcﬁédu_g—éd,l: is finite and
F#a3,

(2) Gdi%du %d_’GXP Xo( is & mapping satisfying
the following condition:

12 8P, , ten O, (8)=X_NO, (T ($)),

(3) 8d={€d,m: nEwS; the tamtly & mst satisty
the following conditions:

(3a) goL,r\,C %ok for every rLe (0,

(3b) U{ed(-é)i te gd,n}:)(fﬂ for any Le W),

(3c) for every two distinct points \T,,gEXd there
exists an L& W (which depends on XL and g ) such that
{ 6egd,m: {z,yjc B, =0,

(34) 8d,wﬂ %d’m=525 as soon as (L=<l .

In our further constructions the properties (4)-(8) must
hold in case B<l .

) Xg =X, Bpe B, Fo o= B, |y

p

(5) 1f 669%, then 90((6)0)(F,=9F,(€),

(6) eo((é)ﬂ XP=,@’for each & JB g’éﬂ ’

(7) 1t "I'_é)(&\ XP, then there is a g&%d\jé’swith
xe 6,(8),

(8) gP""’C go(,ﬂ— and gdm-\ gp,nc%d\%p as soon as
new

=JL
TP’

Convention 4.2. From now on we let ’6:((:)=ﬂ{9d(8)1

te F} for every F& 9;
(9) Let A< (,Oz. Let 3{_!}3 a family with JCCCJ—;;, |3q=
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=W, and @;(F)#g for each Feﬂ(l\., Then one ocan find two
a1stinot elements Fy,F, e K wim B (FONE (F)+g

ok+4 o+l 2
—
Convention 4.3. Henceforth we fix a symbol [, o Tor de-
— o
- =
moting the structure .Y, <Xd,ﬂéd,8%d,std,9;, Bd, go(>
and we will use it only in that meaning.

One can think of each Xd as being a piece of our future
space Y, of a family {ed(é): 8&%¢U9—2)d_}_u being a sub-
base for a topology on X . Each SG%U‘%&u a name for
the subbase set 90((8). For every Gé%d, JC, (8)1s a name
for the set XoL\ ed(g), 80 (2) makes each subbase set 60((8)
closed-and-open in XB( . (3c) assures T, of XoL ; (38)=(30)
guarantee the existence of a sequence of open covers of XoL
satisfying the condition (11) of Proposition 4.1,which pro-
vides a Gs-dugou]. of Xd 3 (6) makes each Xb( closed in
Y 3 (9) 1s responsible for c.c.c. of Y .

A basis of induction. Let X be an original space and let
{UG: €eB} be a base onX consisting of closed-and-open
sets. Sinoe X has a Gp-diagonal,one can find a family { Yn:
new} satisfying the condition (1i) of Proposition 4.1. Since
X is sero-dimensional,we can think of each n 88 consisting.
of closed-and-open sets. Let ¥n= {VG,"': €€E>nj,whorl
Bnﬂ Bm=525 whenever rL+h,and Bﬂ(U{Bn= new})-—-ﬂ-

Now define the structure EO « Let XO"X,%O=U{B“_1
new}UB,go’nan, &o"'{go,n: newl; 1z 8B,
then €,(8)=U, and 1 6B, , then B,(8)="V, , . v
choose sets 550,9_0 and a mapping JCO in accordance with
(1) snd define a mapping Go on %O by letting 60(%)=xo\
\90(3(_,;4(6)) for every B 53-0 . One can easily verify that
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]
the ;i.o 80 constructed satisfies the conditions (1)-(3).

Cenvention 4.4. Everywhere below we will identify the

sets X and )(0‘

!o:.rk 4.5. By construction the family {60(8): be
E%OU f]?)o‘oonliutl of closed-and-open subsets of X and the

topology generated by taking it as a subbase,coincides with
the original topology on X .

An inductive step. @ For limit ordinals an inductive
step is carried cut by

Lemma 4.6. Let ol be a 1imit ordinal and suppose that
the structures EF’ with the properties (1)-(8) have already
been defined for every B < ol .

Lot Xd,=U{XP: p<ol*}, Séd:=U{%P:p<c(’},9%d.=
=U{52P= Pd GVl peet} 8, =U{&g o peatt),
80(, ={ d,’nin.ew}. Determine the map st‘,:%d,—’%d, by SC;.(G)=
=TT, (8), where f> 1s any ordinal with F><ot* and € R,.

P — P
Define the map O ) o P d.U P exp X = bY letting o = (8)=
=U{ Qpcg): F)<o(“ » fégéé‘u %P} tor each € %o(,u%d..

Then the structure ‘—'i'u(" satisfies the properties (1)-
-(8).

Proof of Lemma 4.6. A verification of the properties (1),

(2), (4)-(8) 1s trivial and can be omitted. Let us verify (3),
(3a) 1is obvious. .

(3b) Arbitrarily choose :X:E)g‘, and new, !henmEXP for
some P<°L*. By (3b) for this F),ono can find a £e§P,n
with €O, (8) . But rSP,WCng.,n and P(ﬂ)c: Qd.({)

mply xe U{0,.(8): 8 . 1.
(3c) Let x,geXd,,xahg. Then x,geXPfor some <
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<™. By (3c) for B, there is an rLe W such that {@ég
{2, S}C e] ®1= Q . The proportiu (6) ana (8) ilply
8 REANA XP =) whenever {e&, P . Now from (6) it
follows that {6 & - : {a, }c Gd,(é)}c {%G(‘;F,Li
(243 8, ()} =2

(3d) Lot b % be chosen arbitrarily. Then 6 E %P
for some P<c{ . By (8),wo have {n,EU.) 868 } {new
be & } provided P<X<o( and thercforo {new:
6&& } {rew: —66_8 .} . But the last set 1s
oithor upty or consists of a aingle element since (3d) holds
for P :

The proof of Lemma 4.6 is complete .

@ Let ol = F;"'i. The .step from P* to L* 18 done with

the help of an auxiliary inductive comstruction.

An auxiliary uduotin construction. Let G’ {3{. U‘{,C
= g-P” | K | =w, ana QF‘&(F)#-,@ for all FEJ{} Emu-

merate elements of by non-limit ordinals not exceeding

some limit ordinal 8 ¢

(*) C= {J{ : O<o(<g, ol 1s a non-limit ordinall.

zet X,= XP”% =% »95 % , ICp= UCP.,Q_—
9.—,,9 QP g 8'5. . Stnrting from .__,o,by transfinite

1ndnct1cm for every oA < 8 define the structure .___,e( with
the properties (1)-(8) satisfying also the following condi-

tion: ’6\' ’6"

(X.) there are [, F,& K wmitn B, (FHN | (F)+@

whenever ol is a non-limit ordinal.

For 1limit ordinals an inductive step is carried out by

Lemma 4.6. In case of non-limit ordinals we make use of the
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following

Lemma 4.7. Let o(=IB+i and suppose that the structure
—_—
.:'__.Phnu the properties (1)-(8). Then there exists the strue-
ture Ed having not only the properties (1)=(8) but the pro-
perty (*o() as well.

Proof iLm& 4.7. Here we must ";1/-3/- outn "old'/'vluphu
sets gé USZ)P in such a way that some Q‘(F‘;) and 90((1:2)
with i’er j{,—c‘ would be forced to meet. However, we are
not free on it because of the property (2). Indeed, ;.\f/ €e
EB and SEP(B)e FZ for some b E gép , then Qd(Fi)ﬂ
N ed(f::g)=,® no matter how "growing out" is dome. 8o to
choose Fi and F?. such as in (X—o(),'o mst eliminate the case

described above.

Fow, let us turn to details. Let X =XPU {E‘;,wh_orc
.T,*¢XP and let %d=%pU{€: : new},g?)d=35pu
U{ 8} :necw},mere (14, :newjU] 8. :newl)n BY
Ue)=2,14,.:new}N {£;: new} = ame 8,#86, .8
#gm_ whenever L+H1l. Let :Ed(%)=9—t () as soon as
4633) ana JU ({)=z,: in case ‘g=‘g: + Put also @f
={F:Fc B U o [ 18 tinite ana F2gl 8d,n=
= Sp,m U8} for st new, &, = (&, n:rhewl.

Since K oLC g(;,’g{ °‘|=(o<):|_,npp1y1.ng the standard /\ -8ys-
tem arguments,one can find a JE %U {Q’} and a JC‘:C\'}(O(
with |J{;|=coi and ENF'=T for an1 pairs F' F'e
GJ{; . Choose an F:LGE U{; . Suppose that F1={£1»"'7
gK_, gtocgrc-u_):"’) ﬂ_l:o(gm) }, where ‘gi,..., ‘gme 930
and {6,,...,8 3N {8esr s B =02 (the 1ast zol10ws
from (2)). Let P={8,, .., 6, .%0(61),...,.750(6’"1)}. Then
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there is a finite set Mc 5{ such that FN\P=J tor
every FGJ{ NJ{ . Pick an F EU{ \JL . suppose that
Fo={0ay,..., 4, T, (0g,,),.. Juoca )3, where T
ESBO and {a,i,...,a/s}r\{a,sﬁ,...,at} =¥ . Then we have
{ai,...,a*_}ﬂ {61,..., gm}=J/', where J’=525 1t J=
=@, am J=1{C,,....Cp,C4,..., Cr} 12 I={cy,....C, ,
Jc, (Cc+i) . J,(C,)Y (1n the last case C; *C:/ as soon
as ’L#J,'L<"L,J$'Z ). Define a map 9 : P —’CXPX

by letting

Os (AU} 12 Eeiay,.,aq,4,,...,8,3,
6, (8)= 9 (&) 1t bePpN{oy,.,a 6’1, 2Bkl
{a‘,’) 1t ge{é n.eu)}.

Extend 60( over %dby lett_ix_xs on(g) == Xo(\
\6‘*(91—0:1(6)) tor every 6 53)&.

The structure -, o is thus completely defined. The pro-
perties (1),(2),and (4)-(8) rolag" directly from our construc-
tions. Besides JC = @Jd(F1)ﬂed(Fa)=#,®' and hence (%)
holds. We need only to verify (3). Items (a), (b) and (d) are
obvious. To verify (c), consider two cases.

(1) {.’I!, .‘;CX . The property (3¢) for 16 implies
{56 gF - {a‘_ 3}C Gp(e)} =@ for some NWEW. But g

- {8} s 6, (8)={x"}, x'e& Xp.
Now u follows from (5) that {Ge gd L 3‘)(:9 (8)}—
=g.

(11) One of points X and 1s * , say X=3C",
(3d) for /5 implies {Q_i, y Ay, —g ‘g }ﬂéP =
for some N.EW . But ( n_\g n)ﬂ% “ﬂ by (8), and
{0,1,..., 3,-81, , 8 }C% C% !hororore{a,l, Ay,
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£,...,830N Sd'n=z., It follows from the definition of
o ®nd the property (6) for o/ that {ge%d: {(X‘f,a}c

C@d(é)}={a,1,...,as, 61,...,8,(} and {fe 80‘ AR B2 Sa

y}CQ‘(G)} = as required. '

Lemma 4.7 1s completely proved.

The auxiliary inductive construction having been done,
applying Lemma 4.6,we should define the _airuotu.re '.__"T_, and
should determtne X =Xy, 90, =%, FB .=9—58,;ﬁ,‘d.=ﬁ8,
8’ ,=9_ . 90‘. = 68’ gd." =88 . The structure Ed,is as re-
quired. The properties (1)-(8) hold by Lemma 4.6. Since for
every non-limit ordinal (<& the property (3€) holds, (*)
implies that the property (9) is fulfilled for the ordinal ,B*
This completes the inductive construction.

The inductive construction having been done, apply Lemma

r

4.6 to obtain “H"‘*’a

Convention 4.8. Let Y=Xw2 . Honcerorth_for the sake
of simplicity we omit the indexr (), 1n %“’a’ %wa Iy,
gw?_»ewz’ ngn‘nd éwa- .

Consider the family Q=——{9C€): ERBUTDY ana the
topology 9’ generated by it as a subbase. The space (Y,g)
is that we need.

Proposition 4.9. The space (\f,g_) is gero-dimensional
and Tychonoff.

Proof. All elements of are closed-and-open in (Y,g—)
since (2) and (5) imply that Y\QCG)’-G(UC(@)) for
any gé% Since 7 1s a subbase for the topology ¢/, the
space (Y,gp) is gero-dimensional. By (30), the family se-
parates points of\f’ 80 (Y,g-) is a Tychonoff space.
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Proposition 4.10. The set X, 1s closed tn (Y, J ).
Moreover, this is true for all X p ith p<COy.

Proof. Suppose ,5< (,L)2 and e YN XP « Then :XLEXQ(\XF,
for some ol< wa . Applying (7), one can find a e %d\%
with e ed(‘é) . Now (6) implies Gd(é)ﬂx’;gua hence

Q(G)HXP=,@ by (5).

Proposition 4.11. The topology 9 induces on XD=X.
the original topology of X .

Proot. 1f 6T T then by (2), (5), (6), O()NX=0
and 6 (97:(-6))[\ X= (Y\ 9(6))0 X=X . Therefore, 9(8)“
NXe {Q,X }_provided be %U%\(%OUEO). Now suppose
tnat 6 F3,U B, By (5), 9(€)HXO=QO(€), and by Remark
4.5, the topology, generated on X by taking the ra-.uyfeo(g):
e 950 U%o} as a subbase, coincides with the original
topology of X . So 9— induces the original topology of X .

Proposition 4.12. The space (Y,g—) has a Gg-diagonal.

Proof. By our construction, each Xn={9(5): {eé’n}
is an open cover of Y . Let :n,geY,:x:aeg. Then O, EXO(
for some o{<W,. (3¢) implies that {ée&(’n:{x,g}c &(8)}=
=,6 for some Ne() . By (6) and (8), we have 6(€)ﬂXd=¢
whenever éegd\gd,m . From (5) 1t follows that {éeén
{x.43}= @(6)} =Q. meretore, the tam1y {¥, :necw}
satisfies the property (ii) of Proposition 4.1 by which we

conclude that the space (Y, (3_) has a Gs-diagonnl.

Proposition 4.13. The space (Y, 9_) satisfies c.c.c.

Proof. Put ,é’:gF)=ﬂ{9(6):@€ FY tor any FeF,

The family A={8(F)f Fe%‘“}u a base for the topologg.
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To prove 4.13,all we need is to show that any family ;C%

of cardinality (J, fails to be disjoint. Pick a —{ G(F).’
FeXJc A such that 3{C9_|3{1=w1 and O(F)#&
for every F = K . since ’3‘(‘ (JO;L<(—O 5 there is an ol <
< W, such that He g-_ and 6 (F)= X N GCF)#ﬁ

for all F& K. Applyins (9) to J{ pick F ,F E.g{uth
876, (FONB.,,(RICBEINB(R) . mus o

family ‘g is not disjoint.

Proof of Theorem 3.2. Let <X be a left well-order on
X . Define a left well-order < v on Y. on XX < Y
coincides with <X - Examining attentively the proof of The-

orem 3.1,one can see that in our auxiliary inductive construc-
tion we add a single point passing from of to ol+4 with the
help of Lemma 4,7. The Sequence in which we add new points to

Xo =X 8ives us the desired left well-order <Y on Y .

Proof of Corollary 3.3. Apply Theorem 3.1 to the discrete

space of cardinality T .

Proofs of Theorems 3.4 and 3.5 are similar to those of

3.1 and 3.2 respectively and will be omitted.

Proof of Corollary 3.6. Conuder & Tychonoff c.c.c. space

Z with a c-s-diagonal and |Z|>2 the existence of which is
guaranteed by Corrollary 3.3. Assume that there exists a one-
to-one continuous mapping of Z onto a Hausdorff first-count-
able space Y . Then C(Y)=‘(S' and from the well-known A.Haj-
nal and I.Juh@sz’s result [7] 1t follows that lYl<exP(7(,(Y)

() <€2%. mt 2% [Y|=12Z(>2% | wnion 10 a

contradiction.
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5. Some positive results and final remarks.

In connection with the negative answer to Question 1.1 it
is worth looking for olasses of spaces in the realm of which
Question 1.1 is settled positively. According to J.Ginsburg
and R.G.Woods’ result (see Introduction) in the realm of col-
lectionwise Hausdorff spaces an answer to Question 1.1 is "yes",
The following easy result is of the same kind.

Proposition 5.1. In the realm of Hausdorff spaces of

pointwise-countable type an answer to Question 1.1 is "yes",

Proof. For spaces of pointwise-countable type 4}()()==
==7C()() (see [3], Exercise 3.1.F). Hence a space of point-
wise-countable type with a Gspdiagonal is first-countable. Now
1t suffices to apply A.Hajnal and I.Juhhsz’s result |X|<

sexP(X(X)'C(X)) [7].

Corollary 5.2. The cardinality of a Cech-complete c.c.c.
\
Hausdorff space with a Gs-diagonal does not exceed 22(0.

With the help of a method, different from described above,
the author obtained the following general result:

Theorem 5.3. Let us consider the following properties:

1) having a Gs-diagonal,

2) being & -discrete (this 1s to be a sum of count-
able family of its discrete closed subspaces),

3) normality,

4) metacompactness,

5) hereditary metacompactness.

Every Tychonoff space )( can be embedded as a closed
Gs-snbspaoo in a Tychonoff c.c.c. spaco.Sf_in such a way that

the space \f- has any of the above properties whenever )( has.
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Corellary 5.4. For any cardinal [
mal hereditarily metacompact
such that | Z|>T.

there exists a nor-

CS-discrete c.c.c. space 23

Remark 5.5. Every CS ~discrete space has a Ggpdiagonal.
Bemark 5.6. This work had already been finished when I
found out from the thesis of Toshiji Terada [8] that he nada

also given an answer to Question 1.1. I don’t know his proofs
’

for his paper subtmitted to "Canadian Mathematical Journal"
is not published yet. V.V. Uspenskii, after having learned ;rgu-

ments of the present paper, gave his own solution in [9].
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