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Abstract: Using the preradical approach, torsion and co-
cyclic quasimodules are investigated. It is also shown how va-
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1. Introduction

A loop Q(+) satisfying the identity (x+x)+(y+s) =
= (x+y)+(x+s) 1is commutative and it is called a commutative
Moufang loop. We denote by C(Q(+)) the centre of Q(+) , 1.,
a e C(Q(+)) 1iff (a+x)+y = at+(x+y) for all x,y ¢ Q ., Then
C(Q(+)) 4is a normal subloop of Q(+) y 3x e C(Q(+)) for
every x e Q and we have the upper central series O = go(Q(+))E
E‘Q,(QU))_’:QZ(Q(*-))E c0e S 6 (QAUF))E o.. of Q(+) ,where
€n+1(Q(+))/,(Q(+)) = C(Q(+)/C (A(+))) for every n = 0,1,2,... .
The loop Q(+) is said tc be nilpotent of class at most n 1if
€,(Q(+)) = Q . Purther, for all x,y,z e Q , the associator
[x,¥,2] 18 defined by [x,y,s]= ((x+y)+s) - (x+(y+s)) and we
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denote by A(Q(+)) the subloop generated by all associators.
Then A(Q(+)) 4s & normal subloop of Q(+) and 3x = 0 for
every xe A(Q(+)) . Moreover, we have the lower central series
Q=4,(Q+))=2 4,(Q(+)) = 4,Q(+))= ... ZA4QMH+)=... of

Q(+) , where AAH(QH)) is the subloop generated by all associ-
ators [x,y,s] , x e 4,(Q(+)) , y,5 ¢ Q, for every n = 0,1,2,...
The loop Q(+) 1is nilpotent of class at most n ifr A(Q(+)) =
EQ,_,(Q(*)) 112 A _,(Q(+)) S C(Q(+)) and ifr 4 Q(+) =0,
As for details and further information concerning commutative
Moufang loops, the reader is referred to[5] .

Let Q(+) be a commutative Moufang loop. A mapping f of
Q into Q 1is said to be n-central » Db being an integer, if
nx + £(X) e C(Q(+)) for every x e Q . Clearly, f is n-central
1ff it is m-central, where = ¢ {0,1,2% and n = 3k+m . The
sero endomorphism x—>0 is O-central, the automorphism x— -x
is 1-central and the identical automorphism x—x ip 2-central,
As proved in [9], the set of all (0,1,2-)central endomorphisms
of Q(+) 1is an associative ring with unit,

!'hroughoﬁt the paper, let R be an associative ring with
unit, § & ring homomorphisam of R onto the three-element field
25 = 30,1,23 and I = Ker $ .3y (£ -special unitary left R-)
quasimodule Q we mean a commutative Moufang loop Q(+) equip-
ped with scalar multiplication by elements of R such that the
usual module identities are satisfied, i.e. r(x+y) = rx+ry ,
(r+8)x = rx+ex , r(sx) = (rs)x , 1x = x for all r.seR,

X,y ¢ Q and, moreover, tx e C(Q(+)) forall xe Q and t e p

The last condition says that the endomorphism x —»rx of Q(+)
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is (-E(r) )-central for all r e R . Some information concern-
ing quasimodules and constructions of non-associative quasimo-
dules can be found in [9], [10] ana [11] .

Let Q be a quasimodule. A subquasimodule P of Q is
normal in Q (i.e. P is a block of a congruence of Q ) iff
P(+) 4is a normal subloop of Q(+) . Now it is easy to see that
all the members of the upper central series as well as of> the
lower central series of Q(+) are normal subquasimodules of Q .
Hence Q 1is said to be nilpotent of class at most n iff the
loop Q(+) 1is so. Purther, we shall say that Q is a primitive
quasimodule if rx = 0 for all rel and xe Q.

1.1 Example. Every commutative Moufang loop (abelian groups in-
cluded) is a Z-quasimodule, 2 being the ring of integers and
¢ the natural homomorphism of Z onto §3 .
1.2 Example., Let Q(+) be a 3-elementary commutative Moufang
loop. Put rx-é-(r)x for all reR and xe Q . Then Q =

= Q(+,rx) is a primitive quasimodule and we see that the classes
of primitive quasimodules, gs-qminodulu and 3-elementary com-
mutative Moufang loops are equivalent.

1.3 Example. Let Q(+) be a non-associative commutative Moufang
loop. Denote by R the ring of cemtral endomorphisms of Q(+) .
Por every f ¢ R there is a unique n(f) e {0,1,23 such that

f is n(f)-central and the mapping f—> -n(f) is a ring homo-
morphism of R onto Zy . Now, Q has an B-quasimodule structure.

1.4 Example. A quasigroup @ is said to be trimedial if every
subquasigroup of G generated by at most 3 elements is medial,
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i.e. satisfies the identity xy.uv = XU.yv . Trimedial and me-
dial quasigroups appear in meny geometrieal situations (see e.8.
[11, [4], [1s], [16]) and important olasses of trimedial
quasigroups are idempotent trimedial quasigroups (called alse
distributive quasigroups and determined by the identities X.y8 =
IY.X% , Y5.X = yX.3X ), symmetriec trimedial quasigroups (better
known as CH-quasigroups or Manin quasigroups and determined by
the identities xy = yx » XXy =y and IXX.y% = xy.x5 ) and idem-
potent symmetric trimedial quasigroups (distributive Steiner
quasigroups known in an equivalent form as Hall triple systems).
Fow, let R = Z[x,y,x"',y"'] . As provea in [12] , the classes
of pointed trimedial quasigroups and centrally pointed quasimo-
dules are equivalent,

1.5 Proposition., Let n be a positive integer.

(1) Every quasimodule which can be generated by at most n ele-
ments is nilpotent of class at most m = max(1,n-1),

(11) The free primitive quasimodule of renk n (and hence the
free quasimodule of rank n ) 18 nilpotent of class precisely m .,

Proof. (1) See [9, Proposition 4.3] 3 the assertion is a_cemse-
quence of the same result for commutative Moufang loops which ig
kmown as the Bruck-Slaby’s theorem ( [5 , Theorem VIII,10.1]).
(11) See [2, Corollary 1v.3.2],

1.6 Proposition, Let Q be a quasimodule, Then both A(Q) ana
Q/c(Q) are primitive,

Proof. Let r e I . We have rx e €(Q) for all xe Q and it is
clear that Q/C(Q) is primitive, On the other hand, the mapping
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f: x—>rx is an endomorphism of Q(+) and Im f= C(Q(+)) . Con-
sequently, Im f is associative, hence A(QQ=Ker £ and ry =0

for all y e A(Q) .

1.7 Proposition. (1) Every simple quasimodule is a module.

(1i) Every maximsl subquasimodule of a nilpotent quasimodule is
normal,

(11i) If the ring R is left noetherian then every subquasimodule
of a finitely generated quasimodule is finitely generated,

Proof. See [9, Lemme 4.8, Corollary 4.11, Proposition 4.6] .

Let Q be a quasimodule. For all a,be Q , define a mapping
1.,‘, by 1.’b(x) = ((x+a)+b) - (a+b) ., Then in,b is an suto-
morphiem of the loop Q(+) and 1, p(x) =x+[x,80],

’

1.8 Lemma, Let P be a subquasimodule of a quasimodule Q . The
fol:low:lng conditions are equivalent:
(i) P 1is a normal subquasimodule of Q .
(11) 1, ,(P)S=P for all a,be Q.
L
(111) [x,s,b]e P for all xe P , a,be Q .

Proof. Easy.

1.9 Lemma. Let Q be a quasimodule and a,b e Q . Then 1. b
’

is en asutomorphiem of the quasimodule Q .

Proof, Let r e R be arbitrary and s = -3(r).1 . Ve have

(r+8)x e C(Q) for every x e Q . Denote c¢ = (r+s)a , d = (r+s)b .
Then ’1a,b(x) + i‘,b(rx) = ia,b((r-u)x) = (r+s)x and

(r-ra)ia’b(x) = ic’d((r-u)x) = (r+s)x . Consequently, 1"b(rx) =

= ria’b(x) o

- 703 -



2. Preradicals

By a preradical p (for quasimodules) we mean any subfun-
ctor of the identity functor, i.e. p assigns to each quasimo-
dule Q a subquasimodule p(Q) in such a way that f£(p(Q))<=
< p(P) whenever f is a homomorphism of Q into a quasimo-
dule P . The basic properties of preradicals for quasimodules
are the same as in the module case and the reader is referred
to [3] and [9] for details. We shall also use the termtnology
introduced in [3] . Recall that a preradical p is said to be
hereditary if p(P) = Pn p(Q) whenever P is a subquasimodule
of a quasimodule Q . A preradical p is said to be coheredi-
tary if £(p(Q)) = p(P) whenever f is a surjective homomor-
phism of a quasimodule Q onto a quasimodule P . If p 1is
s preradical then by 1.9 p(Q) is a normal subquasimodule of Q
for every quasimodule Q . Further, p is said to be a radical
if p(Q/p(Q)) = 0 for every quasimodule Q .

2.1 Example. It is easy to see that for every integer n =0 ,
A, 1is a cohereditary radical. On the other hand, C 1is not
a preradical, since the centre is in general preserved only by

sur jective homomorphisas.

2.2 Example. For every quasimodule Q , let B(Q) denote the
lou§ normal subquasimodule of Q such that the corresponding
factor is primitive. Then B is a cohereditary radical. By 1.6,
B(Q)= c(Q) .

2.3 Lemms. Let Q be a quasimodule generated by a set M . Then
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B(Q) is just the subloop of Q(+) generated by all rx ,rel,

xe M,

Proof. Denote by P that subloop. Since I is an ideal, it is
easy to verify that P 1is a subquasimodule and ry ¢ P for all
rel,yeQ. Further, P is normal and hence P = B(Q)

2.4 Example. For every quasimodule Q , let D(Q) denote the
least normal subquasimodule such that the corresponding ‘factor
is a gs—nodule, i.e. a vector space over _2_3 . Then D 1is a co-
hereditary radical end, moreover, D = A + B , i.e. D(Q) =

= [x+y 3 x e A(Q) , y @ B(Q) } for every quasimodule Q .

2.5 Example. For every quasimodule Q , let J(Q) denote the
intersection of all maximal normal subquasimodules of Q ; J(Q) =
= Q if there are no such subgquasimodules. Clearly, J(Q) is

Just the intersection of all Ker f , T ranging over all homo-
morphisms of Q into simple (quasi)modules. Thus J is a radical

and ASJ<D (use 1.7).

2.6 Proposition. Let Q be a quasimodule.

(1) J(Q) 1is the intersection of all normal maximal subquasimo-
dules of Q .

(1i) If Q 1is nilpotent then J(Q) is the intersection of all
maximal subquasimodules of Q .

(1ii) Let Q be finitely generated, P< J(Q) be a normal sub-
quasimodule of Q and let f denote the natural homomorphism
of Q onto Q/P . If M is a subset of Q such that f£(M) ge-
nerates Q/P then Q is generated by M .

Proof. (i) and (ii) follow from 1.7(i),(ii), respectively.
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(111) Assume, on the contrary, that Q 1is not generated by N
and let N be a finite set generating Q ., Purther, let K be
a subset of N maximal with respect to the property that Mo K
do not generate Q and take ae K \ K + There is a subquasimo-
dule G of Q maximal with respect to M UK<SG and a f£a .
It is easy to see that G is a maximal subquasimodule of Q and

hence PS G , a contradiction,

Let F be a filter of left ideals of the ring R . For every
quasimodule Q , let p(Q) denote the set of all xe Q such
that (0:x) = {reg ;3 rx=03% e 3". Then p=p?, is a here-
ditary preradical.

2.7 Proposition. There is a one-to-one correspondence between
hereditary preradicals and filters of left ideals given by

F —> pQ) = ixeQ; (0:x) e FJ

P s Fp=lI1SR;pR/1D) =R1Y
This correspondence induces a one-to-one correspondence between

hereditary radicale and radical filters.
Proof, See [9, Proposition 3.2, Lemma 3.3, Lemma 3. 4].

Let p Dbe a preradical. Define a preradical ) by p(Q) =
= () Ker £ , £:Q>P » P(P) = 0 , Clearly, P 18 @ radical and
it is just the least radical containing P .

2.8 Lemma, Let P be a preradical. Then a8 quasimodule Q ip
P-torsion iff there are an ordinal number o( and s chain q ﬁ
0< A< K, of normal subquasimodules of Q such that qQ, 3
Q=Q ama Q‘”/Q = p(Q/Qﬂ) for every 0< A<, Q.=

3
= Uqf for /3 1limit.
r<p
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Proof, Obvious.

2.9 Lemma, Let p be a hereditary preradical. Then p 1is a he-
reditary radical,

Proof. See (9, Proposition 3.7) .

Let A be a simple module., Then A is isomorphic to R/I
for a meximal left ideal I ; we denote by ¥ = ¥ 1 (R = (R,I)
the filter (radical filter) generated by I and we pnil: -S-A = Pg
By 2.7 and 2.9, §, =p, .

The field _Z_3 considered as a module is simple and isomor-
phic to B/I . We shall also use the notation L= §£3 and
K = g . Finally, denote by ¥ (resp, & ) <the filter (radical
filter) generated by all maximal left ideals and put s = Pg
80 that § = P -

3. 8- and §-torsion quasimodules

3.1 Proposition, A quasimodule Q 1is L-torsion iff it is primi-
tive,

Proof, Obvious,

3.2 Proposition. Let Q be a finitely generated primitive quasi-
module. Then Q is finite and (Q| = 3 for some n> 0 .

Proof. The field g; is clearly a noetherian ring and the result
follows from 1.7(iii) by induction on the nilpotence class of Q .

3.3 Proposition. For every quasimodule Q , A(Q) S L(Q) = K(Q) &
S 8(Q) emd AQ < L(Q) = 5(Q) . Consequently, every K-torsion-
free quasimodule (and also every g-torsionrree quasimodule) is

a module.
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Proof. This follows from 1.6,

3.4 Corollary. Let A be a simple module not isomorphic to 53 .
Then every 8, -torsion quasimodule is a module.

Now, denote by ¥ a representative set of simple modules
such that 2, e ¥ .

3.5 Proposition. Let Q be amn S-torsion quasimodule., Then Q is
a direct sum of subquastmodules 8,(Q) ,Ae ¥ ., I ay¥ Z

then 5,Q) is a ‘module isomorphic to a direct sum of copiu

of A.If A= _3 then _S_A(Q) is a primitive quasimodule,

Proof, First, let Be ¥ be arbitrary and let P be the sub-
quasimodule generated by 5,Q ,Ae¥ ,A¢B.Let ¥ e
the filter generated by all maximal left ideals I such that
B/I 1is not isomorphic to B &nd let a e 83(Q) n P . Then the
cyclic module Ra is both Sp-torsion and Pg-torsion (both Sp
and pg are hereditary and P is pP;-toreion), so that a =0 ,
Now, suppose that B = Z; . Then (P+C(Q))/C(Q) is both L-tor-
sion and p,;-torsion, hence it is a zero module and PSS C(Q) .
In particular, P 1is a module snd the sum L(Q)+P 1is direct,
Finally, A(Q) < L(Q) and QAQ) = (L(Q)+P)/A(Q) . From this,
Q = L(Q)+P and the rest is clear.

3.6 Theorem. Suppose that the ring R has primary decompositions.
Let Q be an §-torsion quasimodule. Then Q is & direct sum of
subquasimodules §,(Q) , A e ¥ . If AFZy; then §,(Q) 1is

a module,

Proof. We have A(Q)< L(Q) and Q/A(Q) 1is generated by the
image of ) 5‘(0) s Ae Y . Hence Q is generated by this set

and wé can proceed in the same way as in the proof of 3.5,
3.7 Proposition. Let Q be a finite K-torsion module. Then IQl=
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= 3 for some nZzo.
Proof. The assertion is an easy consequence of 3.2.

5.8 Lemma, Let I be an ideal of R and let (& be the radi-
cal filter generated by I . Then:

(1) A left ideal K belongs to R iff for every sequence
8y5855... Of elements of I there is n =1 with 8,...a, a K,
(i1) If I 4s finitely generated as a left ideal then a left
ideal K belongs to & iff IS K for some n >1 .

Proof. See e.g. [3, Corollary III.4.6, Proposition III.4.4 ].

3.9 Corollary. Let Q be a quasimodule. Then x e K(Q) iff for
every sequence a,,8,,... Of elements of I there is n =1
with 8,+.+8,X = 0 , Moreover, if 1 1is finitely generated as
a left ideal then x e K(Q) iff I®x =0 for some n=1 .

3.10 Lemma, Let I be a finitely generated maximal left ideal
of the ring B such that I is an ideal and A = BR/I 1is finite.

Then every finitely generated §,

Proof. Clearly, I°/I™' is finitely gemersted and B/I® 1s

-torsion module is finite.

finite for every n =1 , By 3.8(ii), every cyclic §_‘-torsion
module is finite and the rest is clear.

3.11 Proposiiion. Suppose that I is finitely generated as a left
ideal. Then every finitely generated K-torsion quasimodule Q 1is
finite,

Proof. We shall proceed by induction on the nilpotence class n
of Q. If n=1 then Q is a module and the result follows

from 3.10, Now, let n = 2 , We have 4 WQ) =0, A Q<= c(Q)
and G = Q/An_.‘(Q) is finite by the induction hypothesis. There
are two finite subsets N and M of &‘_2(0) and Q , respec-
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tively, such that (N+A_,(Q))/A;_,(Q) = A _o(Q/8 _1(Q) ana
(I+An_|(0))/!h_1(Q) = @ . Denote by P the subquasimodule gene-
rated by all the associators [x,y,s] sy XeN , y5se¢ X, Then

P 1is a finitely generated subquasimodule of An—I(Q) and hence

P is a normal finitely generated submodule of Q.In particular,
P 1s finite, On the other hand, if u e An_z(Q) and v,we Q

are arbitrary, then u = x+a » Y=JY+b , w= s+c for some x s N,
y,2 e X and a,b,0 e C(Q) . We have [u,v,wl= [x,y,8]e P ana
we see that P = A _1(Q)- . Thus both 4 1(Q) and G are finite,
80 that Q is finite, too.

3.12 Proposition, Let I be a finitely generated maximal left
ideel of R such that I 4s an ideal and A = R/I 1is finite,
Then every finitely generatea §‘-torsion quasimodule is finite.

Proof. By 3.4, 3.10 and 3.11.

3.13 Theorem, Suppose that every maximal left ideal of R is an
ideal, finitely generated as a left ideal, maximal ideals commute

and every simple module is finite. Let Q be a finitely gene-
rated §-torsion quasimodule., Then Q is finite and there are
44500004 ¢ ¥ such that Q 1is isomorphic to the product

8, (x...x8 @ .

=&, A

Proof. The ring R has primary decompositions and the result

now follows from 3.6 and 3.12,

3.14 Remark. The assumptions of the preceding theorem are satis-

fied e.g. if R 18 a finitely generated commutative ring,

3.15 Proposition. Suppose that R 1ia left noetherian.and every
simple module is finite. Then every finitely generated grtor-ion
quasimodule is finite.

Proof. In the situation of Lemma 2.8, W is finite by 1.7(111)
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and we can proceed by induction, using 3.5 and 3.2,
4. Cocyclic quasimodules

A quasimodule Q is said to be cocyclic if it contains
8 (non-zero) rormal simple submodule A such that A 1is con-

tained in every non-zero normal subquasimodule of Q ,

4.1 Lemma, Let Q be a quasimodule and A be a normal simple
subquasimodule of Q ., Then A S c(Q) .

Proof, Let a e A and X,y e Q be arbitrary. Denote by P the
subquasimodule generated by 8,x,7 . Then P is a nilpotent
quesimodule and A € C(P) by (9, Lemma 4.7 ] . Consequently,
(a+x)+y = a+(x+y) and we have proved that A< C(Q) .

4.2 Proposition., Let Q be a cocyclic quasimodule and A be the
normal simple submodule of Q . Then:
(1) Asc(Q amd 3(Q) = §,(Q) .
(i1) Q is subdirectly irreducibdle.
(1i1) Either AS A(Q) and A is isomorphic to Zy or Q is
a module,

(iv) C(Q) 4is a cocyclic module,
Proof. Easy (use 4.1),

4.3 Corollary. A quasimodule Q is cocyclic iff C(Q) #0 and
Q 1is subdirectly irreducible. In particular, a nilpotent (resp.
finitely generated) quasimodule is cocyclic 1ff it is subdirectly

irreducibdble,

4.4 Proposition. Suppose that R 1is commutative and noetherism,
Let Q be a cocyclic quasimodule and A the normasl simple subdb-
module of Q , Then:
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(1) Q is g‘-toruon.

(i1) If Q 1s finitely generated and A is finite then Q is
finite,

(111) If Q 1s non-associative then A is iuo-o}cphic to Zy
and Q is R-torsion.

(iv) If Q 4is finitely generated and non-associative then Q is

finite.

Proof. First, let Q be a module. By [3, Proposition VI.3.4],
R is a stable ring and so the injective hmll E of Q is
g‘-torsion. Now, suppose that A is isomorphic to 53 . We have
A< C(Q) and 0(Q) is R-torsion, since it is a cocyclic module.
On the other hand, Q/g(Q) is a primitive quasimodule and thus

Q 1is g—torsion. The rest is clear.

4.5 Exsmple. Let ® be an infinite limit ordinal number and

N = {‘o"'l"“ } be the canonical basis of the vector space Q =
Eg") « Define a mapping t of ¥’ into Q by t(aa,a°+1,as+2) =
=8, t(n‘ﬂ,a’s,a’"z) =-a, for 1=p=<x and t(a,,a,,aﬁ =0
in all remaining cases. It is clear that t can be extended uni-
quely to a trilinear mapping T of Q> into Q such that
(x,x,y) = *(T(x,y,5),u,v) = *(u,v,T(x,y,s)) = *(u,(x,y,5),v) = O
for all x,y,s,u,ve Q . Put x% y = x + y + T(x,y,x-y) for

all x,ye Q . Then Q = Q(%) is a primitive quasimodule nilpo-
tent of class 2 (see (] ). Moreover, a e c(Q’) 1irr T(a,x,y)+
+I(x,y,s)+?(y,a,x) = 0 for all x,y e Q . Now it is easy to
check that we have C(Q") = A(Q") = { 0,8 ,-8, } . In particular,
Q° ie a cocyclic quasimodule. Thus for every infinite cardinal &
there is a cocyclic primitive quasimodule (nilpotent of class 2)
of cardinality ¢ .

4.6 Example. Let n 24, Q=3 , a =(1,0,...,0) ,..., a =
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= (0,...,0,1) , N = {&;,...,8 } . Define a mapping t of x>
into Q by t(ai,ai+1,ai+2) =a , t(ai+l’°1"'i+2) = -a, for
every 1=<4i=n-3, t(sn-Z’.n—l") =8, “'&1-1’%-2") = -8,
t(a.n_l,l,Z) =8 , t(l,an_1,2) = -a . Then t can be extended
uniquely to a trilinear mapping T of Q3 into Q and we put
X%y = x+y+T{x,y,x-y) . Then Q° = Q(¥%) 4is a primitive quasi-
module nilpotent of class 2 , |Q°| = 3® and it is not difficult
to check that Q° 1is cocyclic, provided n ¥ 5 and n # 6k+1
By (14 ], for every m =1 ym# 2,3,5 , there is a cocyclic pri-
mitive quasimodule of order 3m y nilpotent of class 2. On the
other hand, it is clear that there are no cocyclic primitive qua-
simodules of order 32, 33 and it is proved in [ 8] that there

is no cocyclic primitive quasimodule of order 35 .

5. Cohereditary radicals and varieties of quasimodules

By a variety of quasimodules we mean a noh-empty class of
quasimodules closed under cartesian products, subquasimodules

and homomorphic images.

5.1 Proposition, (i) If q ie & cohereditary radical then the
class Uq of all torsionfree quasimodules is a variety,

(ii) Let V be a variety of quasimodules. For every quasimodule
Q, let qu(Q) = N Ker ¢ y £:Q >P , Pe V , Then q, 1is a co-~
hereditary radical.

(1ii) The correspondence q -» '\rq and V — 9, between co-

hereditary radicals and varieties of quasimodules is bijective.
Proof, Easy.

Let V be a variety of quasimodules. Denote by vn (resp.
’\rp ) the class of all modules (reep. primitive quasimodules)

contained in V and put Lw = au(R) . Then both vu and
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are varieties, Ly is an ideal of R, LyQ =0 for every
quasimodule Qe V and a module M belongs to 1V a 1iff
LM =0,

5.2 Proposition., Let V" be a variety of quasimodules such that

L,%1.Ten 7V t, eand T,=0.

Proof. We have R = Ly+ I, 80 that Q =RQ = 0 for every
Qe TV

P
5.3 Proposition. Let V" be a variety of quasimodules and let
Fe T be a quasimodule free in ' . Then B(F)n A(P) =0 .

Proof. Let X be a free basis of P and let ¢ denote the
natural homomorphism of F onto G = F/A(F) . Then G is a free
R/Ly-module, f|X is injective and £(X) is a free basis of

G . Now, let a e A(F)n B(F) . By 2.3 there are n = 0 y pair-
wise different Xysec0yX, € X and elements TrreeesTp ¢ I with
& = rxt..4rx, (we have ryx3 e C(F) ). Consequently, O =

= r.f(x, )+, .4 _f(x) Tyseeey @@L and a=0,
| n*'%n) 0 Ty n

5.4 Proposition, Let V be a variety of quasimodules. Then
is just the variety generated by m VY 'U’p B

Proof, This is an easy consequence of 5,3,

5.5 Proposition. Let . and W be varieties of modules and pri-
mitive quasimodules, respectively. Denote by 1V the variety of
quasimodules generated by W u W . Then 'U’n = and 'o'p =W .,

Proof. Let F e V be a free quasimodule of infinité countable
rank, Since V 1is generated by W uy 'w’, P ip isomorphic to
a subquasimodule of the product G x P y Ge W and Pe W

being free of infinite countable rank; we shall assume that P

is a subquasimndule L x P . Consequently, L, =0 and we
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see that U = 'U’m « On the other hand, B(F) s H=Gx 0 .
B(?) 1is a normal subquasimodule of G x P and P/B(F) is
isomorphic to a subquasimodule of (H/B(P)) xPe W ., However,
'\rp is generated by F/B(F) and therefore W = '\rp .

Now, denote by Y the dual lattice of the lattice of ide-
als of the ring R and by P the lattice of varieties of pri-
mitive quasimodules (i.e, the lattice of varieties of 3—elem;n-
tary commutative Moufang loops). Let ¥ be the subset of Y x ¢
formed by all couples (I,U) s Where either W = 0,o0r 0 ¥
AU AN, s I1S1,

5.6 Theorem., The lattice of varieties of quasimodules is isomor-
phic to the lattice ¥

Proof. Apply 5.2, 5.4 and 5.5.

5.7 Proposition. Let R be left noetherian, n =0 and V be
a variety of quasimodules nilpotent of class at most n , Then
V 1is finitely based (i.e. ' can be determined by a finite

number of identities).

Proof, Using 1.7(iii), we can proceed in the same way as in the
proof of [ 6, Theorem III ].

5.8 Corollary. Let R Dbe left noetherian, n=0 and V be
a variety of quasimodules nilpotent of class at most n , Then

V' contains only countably many subvarieties.

By [ 13, §10], the lattice of varieties of primitive quasi-
modules nilpotent of class at most 2 is a three-element chain,
Having some information on the lattice of ideals of R (e.g.
if R 1is a commutative principal ideal ring, etc.) and using 5.6,

we can describe the lattice of varieties of quasimodules nilpo-
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tent of class at most 2 . Moreover, applying the methods deve-

loped in [ 7] for medial quasigroups, the results are transfer-

able to various classes of trimedial quaeigroups (cf. 1.4).
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