

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log80

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,4 (1984)

TORSION QUASIMODULES T. KEPKA and P. NEMEC

Abstract: Using the preradical approach, torsion and cocyclic quasimodules are investigated. It is also shown how varieties of quasimodules are constructed from varieties of modules and 3-elementary commutative Moufang loops.

Key words: Commutative Moufang loop, quasimodule, preradical, variety of quasimodules.

Classification: 20N05

1. Introduction

A loop Q(+) satisfying the identity (x+x)+(y+z)= = (x+y)+(x+z) is commutative and it is called a commutative Moufang loop. We denote by $\underline{C}(Q(+))$ the centre of Q(+), i.e. a e $\underline{C}(Q(+))$ iff (a+x)+y=a+(x+y) for all $x,y\in Q$. Then $\underline{C}(Q(+))$ is a normal subloop of Q(+), $3x\in \underline{C}(Q(+))$ for every $x\in Q$ and we have the upper central series $0=\underline{C}_{Q}(Q(+))\subseteq \underline{C}_{Q}(Q(+))\subseteq \underline{C}_$

denote by $\underline{A}(Q(+))$ the subloop generated by all associators. Then $\underline{A}(Q(+))$ is a normal subloop of Q(+) and 3x = 0 for every $x \in \underline{A}(Q(+))$. Moreover, we have the lower central series $Q = \underline{A}_0(Q(+)) \supseteq \underline{A}_1(Q(+)) \supseteq \underline{A}_2(Q(+)) \supseteq \ldots \supseteq \underline{A}_n(Q(+)) \supseteq \ldots$ of Q(+), where $\underline{A}_{n+1}(Q(+))$ is the subloop generated by all associators [x,y,s], $x \in \underline{A}_n(Q(+))$, $y,z \in Q$, for every $n = 0,1,2,\ldots$ The loop Q(+) is nilpotent of class at most n iff $\underline{A}(Q(+)) \subseteq \underline{C}_{n-1}(Q(+))$ iff $\underline{A}_{n-1}(Q(+)) \subseteq \underline{C}(Q(+))$ and iff $\underline{A}_n(Q(+)) = 0$. As for details and further information concerning commutative Moufang loops, the reader is referred to [5].

Let Q(+) be a commutative Moufang loop. A mapping f of Q into Q is said to be n-central, n being an integer, if $nx + f(X) = \underline{C}(Q(+))$ for every x = Q. Clearly, f is n-central iff it is n-central, where $m = \{0,1,2\}$ and n = 3k+m. The sero endomorphism $x \rightarrow 0$ is 0-central, the automorphism $x \rightarrow -x$ is 1-central and the identical automorphism $x \rightarrow x$ is 2-central. As proved in [9], the set of all (0,1,2-) central endomorphisms of Q(+) is an associative ring with unit.

Throughout the paper, let \underline{R} be an associative ring with unit, $\overline{\Phi}$ a ring homomorphism of \underline{R} onto the three-element field $\underline{Z}_3 = \{0,1,2\}$ and $\underline{I} = \operatorname{Ker} \overline{\Phi}$. By a $(\overline{\Phi}$ -special unitary left \underline{R} -) quasimodule Q we mean a commutative Moufang loop Q(+) equipped with scalar multiplication by elements of \underline{R} such that the usual module identities are satisfied, i.e. r(x+y) = rx+ry, (r+s)x = rx+sx, r(sx) = (rs)x, 1x = x for all $r,s \in \underline{R}$, $x,y \in Q$ and, moreover, $tx \in \underline{C}(Q(+))$ for all $x \in Q$ and $t \in \underline{I}$. The last condition says that the endomorphism $x \to rx$ of Q(+)

is $(-\cancel{\Phi}(\mathbf{r}))$ -central for all $\mathbf{r} \in \underline{\mathbf{R}}$. Some information concerning quasimodules and constructions of non-associative quasimodules can be found in [9], [10] and [11].

Let Q be a quasimodule. A subquasimodule P of Q is normal in Q (i.e. P is a block of a congruence of Q) iff P(+) is a normal subloop of Q(+). Now it is easy to see that all the members of the upper central series as well as of the lower central series of Q(+) are normal subquasimodules of Q. Hence Q is said to be nilpotent of class at most n iff the loop Q(+) is so. Further, we shall say that Q is a primitive quasimodule if rx = 0 for all $r \in \underline{I}$ and $x \in Q$.

- 1.1 Example. Every commutative Moufang loop (abelian groups included) is a \underline{Z} -quasimodule, \underline{Z} being the ring of integers and $\underline{\Phi}$ the natural homomorphism of \underline{Z} onto \underline{Z}_3 .
- 1.2 Example. Let Q(+) be a 3-elementary commutative Moufang loop. Put $rx = \Phi(r)x$ for all $r \in \mathbb{R}$ and $x \in Q$. Then Q = Q(+,rx) is a primitive quasimodule and we see that the classes of primitive quasimodules, Z_3 -quasimodules and 3-elementary commutative Moufang loops are equivalent.
- 1.3 Example. Let Q(+) be a non-associative commutative Moufang loop. Denote by R the ring of central endomorphisms of Q(+). For every $f \in \mathbb{R}$ there is a unique $n(f) \in \{0,1,2\}$ such that f is n(f)-central and the mapping $f \to -n(f)$ is a ring homomorphism of R onto \underline{Z}_3 . Now, Q has an R-quasimodule structure.
- 1.4 Example. A quasigroup 6 is said to be trimedial if every subquasigroup of 6 generated by at most 3 elements is medial,

i.e. satisfies the identity xy.uv = xu.yv. Trimedial and medial quasigroups appear in many geometrical situations (see e.g. [1], [4], [15], [16]) and important classes of trimedial quasigroups are idempotent trimedial quasigroups (called also distributive quasigroups and determined by the identities x.ys = xy.xs, ys.x = yx.sx), symmetric trimedial quasigroups (better known as CH-quasigroups or Manin quasigroups and determined by the identities xy = yx, x.xy = y and xx.ys = xy.xs) and idempotent symmetric trimedial quasigroups (distributive Steiner quasigroups known in an equivalent form as Hall triple systems). Now, let R = Z[x,y,x⁻¹,y⁻¹]. As proved in [12], the classes of pointed trimedial quasigroups and centrally pointed quasimodules are equivalent.

- 1.5 Proposition. Let n be a positive integer.
- (i) Every quasimodule which can be generated by at most n elements is nilpotent of class at most m = max(1,n-1).
- (ii) The free primitive quasimodule of rank n (and hence the free quasimodule of rank n) is nilpotent of class precisely m. Proof. (i) See [9, Proposition 4.3]; the assertion is accensequence of the same result for commutative Moufang loops which is known as the Bruck-Slaby's theorem ([5], Theorem VIII,10.1]). (ii) See [2, Corollary IV.3.2].
- 1.6 <u>Proposition</u>. Let Q be a quasimodule. Then both $\underline{A}(Q)$ and $Q/\underline{C}(Q)$ are primitive.

Proof. Let $r \in \underline{I}$. We have $rx \in \underline{C}(Q)$ for all $x \in Q$ and it is clear that $Q/\underline{C}(Q)$ is primitive. On the other hand, the mapping

f: $x \rightarrow rx$ is an endomorphism of Q(+) and Im $f \subseteq \underline{C}(Q(+))$. Consequently, Im f is associative, hence $\underline{A}(Q) \subseteq Ker f$ and ry = 0 for all $y \in \underline{A}(Q)$.

- 1.7 Proposition. (i) Every simple quasimodule is a module.
- (ii) Every maximal subquasimodule of a nilpotent quasimodule is normal.
- (iii) If the ring \underline{R} is left noetherian then every subquasimodule of a finitely generated quasimodule is finitely generated.

Proof. See [9, Lemma 4.8, Corollary 4.11, Proposition 4.6].

Let Q be a quasimodule. For all a,b e Q , define a mapping $i_{a,b}$ by $i_{a,b}(x)=((x+a)+b)-(a+b)$. Then $i_{a,b}$ is an automorphism of the loop Q(+) and $i_{a,b}(x)=x+[x,a,b]$.

- 1.8 Lemma. Let P be a subquasimodule of a quasimodule Q . The following conditions are equivalent:
 - (i) P is a normal subquasimodule of Q .
- (ii) $i_{a,b}(P) \subseteq P$ for all $a,b \in Q$.
- (iii) [x,a,b] e P for all $x \in P$, $a,b \in Q$.

Proof. Easy.

1.9 Lemma. Let Q be a quasimodule and $a,b\in Q$. Then $i_{a,b}$ is an automorphism of the quasimodule Q.

Proof. Let $r \in \underline{R}$ be arbitrary and $s = -\Phi(r).1$. We have $(r+s)x \in \underline{C}(Q)$ for every $x \in Q$. Denote c = (r+s)a, d = (r+s)b. Then $si_{a,b}(x) + i_{a,b}(rx) = i_{a,b}((r+s)x) = (r+s)x$ and $(r+s)i_{a,b}(x) = i_{c,d}((r+s)x) = (r+s)x$. Consequently, $i_{a,b}(rx) = ri_{a,b}(x)$.

2. Preradicals

By a preradical p (for quasimodules) we mean any subfunctor of the identity functor, i.e. p assigns to each quasimodule Q a subquasimodule p(Q) in such a way that $f(p(Q)) \subseteq p(P)$ whenever f is a homomorphism of Q into a quasimodule P. The basic properties of preradicals for quasimodules are the same as in the module case and the reader is referred to [3] and [9] for details. We shall also use the terminology introduced in [3]. Recall that a preradical p is said to be hereditary if $p(P) = P \cap p(Q)$ whenever P is a subquasimodule of a quasimodule Q. A preradical p is said to be cohereditary if f(p(Q)) = p(P) whenever f is a surjective homomorphism of a quasimodule Q onto a quasimodule P. If p is a preradical then by 1.9 p(Q) is a normal subquasimodule of Q for every quasimodule Q. Further, p is said to be a radical if p(Q/p(Q)) = 0 for every quasimodule Q.

- 2.1 Example. It is easy to see that for every integer $n \ge 0$, \underline{A}_n is a cohereditary radical. On the other hand, \underline{C} is not a preradical, since the centre is in general preserved only by surjective homomorphisms.
- 2.2 Example. For every quasimodule Q , let $\underline{B}(Q)$ denote the least normal subquasimodule of Q such that the corresponding factor is primitive. Then \underline{B} is a cohereditary radical. By 1.6, $\underline{B}(Q) \subseteq \underline{C}(Q)$.
- 2.3 Lemma. Let Q be a quasimodule generated by a set M . Then

 $\underline{B}(Q)$ is just the subloop of Q(+) generated by all rx, re \underline{I} , x e \underline{I} .

Proof. Denote by P that subloop. Since \underline{I} is an ideal, it is easy to verify that P is a subquasimodule and ry e P for all r e \underline{I} , y e Q. Further, P is normal and hence P = B(Q).

- 2.4 Example. For every quasimodule Q , let $\underline{D}(Q)$ denote the least normal subquasimodule such that the corresponding factor is a \underline{Z}_3 -module, i.e. a vector space over \underline{Z}_3 . Then \underline{D} is a cohereditary radical and, moreover, $\underline{D} = \underline{A} + \underline{B}$, i.e. $\underline{D}(Q) = \{x+y ; x \in \underline{A}(Q), y \in \underline{B}(Q)\}$ for every quasimodule Q.
- 2.5 Example. For every quasimodule Q , let $\underline{J}(Q)$ denote the intersection of all maximal normal subquasimodules of Q; $\underline{J}(Q)$ = = Q if there are no such subquasimodules. Clearly, $\underline{J}(Q)$ is just the intersection of all Ker f , f ranging over all homomorphisms of Q into simple (quasi)modules. Thus \underline{J} is a radical and $\underline{A} \subseteq \underline{J} \subseteq \underline{D}$ (use 1.7).
- 2.6 Proposition. Let Q be a quasimodule.
- (i) $\underline{J}(\mathtt{Q})$ is the intersection of all normal maximal subquasimodules of \mathtt{Q} .
- (ii) If Q is nilpotent then $\underline{J}(Q)$ is the intersection of all maximal subquasimodules of Q .
- (iii) Let Q be finitely generated, $P \subseteq \underline{J}(Q)$ be a normal sub-quasimodule of Q and let f denote the natural homomorphism of Q onto Q/P. If M is a subset of Q such that f(M) generates Q/P then Q is generated by M.

Proof. (i) and (ii) follow from 1.7(i),(ii), respectively.

(iii) Assume, on the contrary, that Q is not generated by M and let N be a finite set generating Q. Further, let K be a subset of N maximal with respect to the property that M \cup K do not generate Q and take a e N \setminus K. There is a subquasimodule G of Q maximal with respect to M \cup K \subseteq G and a $\not\in$ G. It is easy to see that G is a maximal subquasimodule of Q and hence $P \subseteq G$, a contradiction.

Let $\mathcal F$ be a filter of left ideals of the ring $\underline R$. For every quasimodule Q, let p(Q) denote the set of all $x \in Q$ such that $(0:x) = \{ r \in \underline R ; rx = 0 \} \in \mathcal F$. Then $p = p_{\mathcal F}$ is a hereditary preradical.

2.7 Proposition. There is a one-to-one correspondence between hereditary preradicals and filters of left ideals given by

$$\mathcal{F} \longrightarrow p(Q) = \{x \in Q; (0:x) \in \mathcal{F}\},$$

$$p \longrightarrow \mathcal{F}_p = \{I \subseteq \underline{R}; p(\underline{R}/\underline{I}) = \underline{R}/\underline{I}\}.$$

This correspondence induces a one-to-one correspondence between hereditary radicals and radical filters.

Proof. See [9, Proposition 3.2, Lemma 3.3, Lemma 3.4].

Let p be a preradical. Define a preradical \hat{p} by $\hat{p}(Q)=$ = \bigcap Ker f , $f\colon\! Q\to P$, p(P)=0 . Clearly, \hat{p} is a radical and it is just the least radical containing p .

2.8 Lemma. Let p be a preradical. Then a quasimodule Q is \hat{p} -torsion iff there are an ordinal number \propto and a chain Q_{β} , $0 \leq \beta \leq \alpha$, of normal subquasimodules of Q such that $Q_0 = 0$, $Q_{\alpha} = Q$ and $Q_{\beta+1}/Q = p(Q/Q_{\beta})$ for every $0 \leq \beta < \alpha$, $Q_{\beta} = Q_{\beta}$ for β limit.

Proof. Obvious.

2.9 <u>Lemma.</u> Let p be a hereditary preradical. Then \hat{p} is a hereditary radical.

Proof. See [9, Proposition 3.7].

Let A be a simple module. Then A is isomorphic to \underline{R}/I for a maximal left ideal I; we denote by $\mathfrak{F}=\mathfrak{F}_{\underline{I}}$ ($\mathbb{R}=\mathbb{R}_{\underline{I}}$) the filter (radical filter) generated by I and we put $\underline{S}_{\underline{A}}=p_{g}$. By 2.7 and 2.9, $\underline{\hat{S}}_{\underline{A}}=p_{g}$.

The field \underline{Z}_3 considered as a module is simple and isomorphic to $\underline{R}/\underline{I}$. We shall also use the notation $\underline{L}=\underline{S}_{\underline{Z}_3}$ and $\underline{K}=\underline{\hat{L}}$. Finally, denote by \mathcal{F} (resp. \mathbb{R}) the filter (radical filter) generated by all maximal left ideals and put $\underline{S}=p_{g}$, so that $\hat{S}=p_{g}$.

3. \underline{S} - and $\underline{\hat{S}}$ -torsion quasimodules

3.1 Proposition. A quasimodule Q is \underline{L} -torsion iff it is primitive.

Proof. Obvious.

3.2 <u>Proposition</u>. Let Q be a finitely generated primitive quasimodule. Then Q is finite and $|Q|=3^n$ for some $n\geq 0$.

Proof. The field \underline{z}_3 is clearly a noetherian ring and the result follows from 1.7(iii) by induction on the nilpotence class of $\mathbb Q$.

3.3 <u>Proposition</u>. For every quasimodule Q, $\underline{A}(Q) \subseteq \underline{L}(Q) \subseteq \underline{K}(Q) \subseteq \underline{S}(Q)$ and $\underline{A}(Q) \subseteq \underline{L}(Q) \subseteq \underline{S}(Q)$. Consequently, every \underline{K} -torsion-free quasimodule (and also every \underline{S} -torsionfree quasimodule) is a module.

Proof. This follows from 1.6.

3.4 <u>Corollary</u>. Let A be a simple module not isomorphic to \underline{z}_3 . Then every $\underline{\hat{s}}_A$ -torsion quasimodule is a module.

Now, denote by $\mathcal Y$ a representative set of simple modules such that \underline{z}_3 e $\mathcal Y$.

3.5 <u>Proposition</u>. Let Q be an <u>S</u>-torsion quasimodule. Then Q is a direct sum of subquasimodules $\underline{S}_{\underline{A}}(Q)$, \underline{A} e \underline{Y} . If $\underline{A} \neq \underline{Z}_{\underline{3}}$ then $\underline{S}_{\underline{A}}(Q)$ is a module isomorphic to a direct sum of copies of \underline{A} . If $\underline{A} = \underline{Z}_{\underline{3}}$ then $\underline{S}_{\underline{A}}(Q)$ is a primitive quasimodule.

Proof. First, let Be Y be arbitrary and let P be the subquasimodule generated by $\bigcup \underline{S}_{\underline{A}}(Q)$, \underline{A} e Y, $\underline{A} \neq B$. Let $\mathcal F$ be the filter generated by all maximal left ideals I such that \underline{R}/I is not isomorphic to B and let a $\underline{S}_{\underline{B}}(Q) \cap P$. Then the cyclic module $\underline{R}a$ is both $\underline{S}_{\underline{B}}$ -torsion and $\underline{P}_{\underline{F}}$ -torsion (both $\underline{S}_{\underline{B}}$ and $\underline{P}_{\underline{F}}$ are hereditary and P is $\underline{P}_{\underline{F}}$ -torsion), so that $\underline{a} = 0$. Now, suppose that $\underline{B} = \underline{Z}_{\underline{F}}$. Then $(\underline{P} + \underline{C}(Q))/\underline{C}(Q)$ is both \underline{L} -torsion and $\underline{P}_{\underline{F}}$ -torsion, hence it is a zero module and $\underline{P} \subseteq \underline{C}(Q)$. In particular, P is a module and the sum $\underline{L}(Q) + P$ is direct. Finally, $\underline{A}(Q) \subseteq \underline{L}(Q)$ and $Q/\underline{A}(Q) = (\underline{L}(Q) + P)/\underline{A}(Q)$. From this, $Q = \underline{L}(Q) + P$ and the rest is clear.

3.6 Theorem. Suppose that the ring \underline{R} has primary decompositions. Let Q be an \hat{S} -torsion quasimodule. Then Q is a direct sum of subquasimodules $\underline{\hat{S}}_{\underline{A}}(Q)$, \underline{A} e \underline{Y} . If $\underline{A} \neq \underline{Z}_{\overline{J}}$ then $\underline{\hat{S}}_{\underline{A}}(Q)$ is a module.

Proof. We have $\underline{A}(Q) \subseteq \underline{L}(Q)$ and $Q/\underline{A}(Q)$ is generated by the image of $\bigcup \ \underline{\hat{S}}_{\underline{A}}(Q)$, \underline{A} e Y. Hence Q is generated by this set and we can proceed in the same way as in the proof of 3.5.

3.7 <u>Proposition</u>. Let Q be a finite \underline{K} -torsion module. Then |Q| =

= 3^n for some $n \ge 0$.

Proof. The assertion is an easy consequence of 3.2.

- 3.8 Lemma. Let I be an ideal of \underline{R} and let R be the radical filter generated by I . Then:
- (i) A left ideal K belongs to $\mathbb R$ iff for every sequence a_1, a_2, \ldots of elements of I there is $n \geq 1$ with $a_n \ldots a_1 \in \mathbb K$. (ii) If I is finitely generated as a left ideal then a left ideal K belongs to $\mathbb R$ iff $I^n \subseteq \mathbb K$ for some $n \geq 1$.

Proof. See e.g. [3, Corollary III.4.6, Proposition III.4.4].

- 3.9 Corollary. Let Q be a quasimodule. Then $x \in \underline{K}(Q)$ iff for every sequence a_1, a_2, \ldots of elements of \underline{I} there is $n \ge 1$ with $a_n \ldots a_1 x = 0$. Moreover, if \underline{I} is finitely generated as a left ideal then $x \in \underline{K}(Q)$ iff $\underline{I}^n x = 0$ for some $n \ge 1$.
- 3.10 Lemma. Let I be a finitely generated maximal left ideal of the ring \underline{R} such that I is an ideal and $\underline{A} = \underline{R}/I$ is finite. Then every finitely generated $\underline{\hat{S}}_{\underline{A}}$ -torsion module is finite.

Proof. Clearly, I^n/I^{n+1} is finitely generated and \underline{R}/I^n is finite for every $n \ge 1$. By 3.8(ii), every cyclic $\underline{\hat{S}_k}$ -torsion module is finite and the rest is clear.

3.11 <u>Proposition</u>. Suppose that \underline{I} is finitely generated as a left ideal. Then every finitely generated \underline{K} -torsion quasimodule Q is finite.

Proof. We shall proceed by induction on the nilpotence class n of Q . If $n \le 1$ then Q is a module and the result follows from 3.10. Now, let $n \ge 2$. We have $\underline{A}_n(Q) = 0$, $\underline{A}_{n-1}(Q) \subseteq \underline{C}(Q)$ and $G = Q/\underline{A}_{n-1}(Q)$ is finite by the induction hypothesis. There are two finite subsets N and M of $\underline{A}_{n-2}(Q)$ and Q, respec-

tively, such that $(N+\underline{A}_{n-1}(Q))/\underline{A}_{n-1}(Q) = \underline{A}_{n-2}(Q)/\underline{A}_{n-1}(Q)$ and $(M+\underline{A}_{n-1}(Q))/\underline{A}_{n-1}(Q) = G$. Denote by P the subquasimodule generated by all the associators [x,y,s], $x \in \mathbb{N}$, $y,s \in \mathbb{N}$. Then P is a finitely generated subquasimodule of $\underline{A}_{n-1}(Q)$ and hence P is a normal finitely generated submodule of Q. In particular, P is finite. On the other hand, if $u \in \underline{A}_{n-2}(Q)$ and $v,w \in Q$ are arbitrary, then u = x+a, v = y+b, w = s+c for some $x \in \mathbb{N}$, $y,z \in \mathbb{N}$ and $a,b,c \in \underline{C}(Q)$. We have $[u,v,w] = [x,y,s] \in P$ and we see that $P = \underline{A}_{n-1}(Q)$. Thus both $\underline{A}_{n-1}(Q)$ and G are finite, so that Q is finite, too.

3.12 <u>Proposition</u>. Let I be a finitely generated maximal left ideal of \underline{R} such that I is an ideal and $\underline{A} = \underline{R}/I$ is finite. Then every finitely generated $\underline{\underline{S}}_{\underline{A}}$ -torsion quasimodule is finite. Proof. By 3.4, 3.10 and 3.11.

3.13 Theorem. Suppose that every maximal left ideal of \underline{R} is an ideal, finitely generated as a left ideal, maximal ideals commute and every simple module is finite. Let Q be a finitely generated $\underline{\hat{S}}$ -torsion quasimodule. Then Q is finite and there are $\underline{\hat{A}}_1,\ldots,\underline{\hat{A}}_n$ e \mathcal{Y} such that Q is isomorphic to the product $\underline{\hat{S}}_{A_1}(Q)$ x ... x $\underline{\hat{S}}_{A_n}(Q)$.

Proof. The ring \underline{R} has primary decompositions and the result now follows from 3.6 and 3.12.

- 3.14 Remark. The assumptions of the preceding theorem are satisfied e.g. if \underline{R} is a finitely generated commutative ring.
- 3.15 <u>Proposition</u>. Suppose that \underline{R} is left noetherism, and every simple module is finite. Then every finitely generated $\underline{\hat{S}}$ -torsion quasimodule is finite.

Proof. In the situation of Lemma 2.8, ∞ is finite by 1.7(iii)

and we can proceed by induction, using 3.5 and 3.2.

4. Cocyclic quasimodules

A quasimodule $\,Q\,$ is said to be cocyclic if it contains a (non-zero) normal simple submodule $\,A\,$ such that $\,A\,$ is contained in every non-zero normal subquasimodule of $\,Q\,$.

4.1 Lemma. Let Q be a quasimodule and A be a normal simple subquasimodule of Q . Then $A \subseteq \underline{C}(Q)$.

Proof. Let a e A and x,y e Q be arbitrary. Denote by P the subquasimodule generated by a,x,y. Then P is a nilpotent quasimodule and $A \subseteq \underline{C}(P)$ by [9, Lemma 4.7]. Consequently, (a+x)+y=a+(x+y) and we have proved that $A\subseteq \underline{C}(Q)$.

- 4.2 <u>Proposition</u>. Let $\,Q\,$ be a cocyclic quasimodule and $\,A\,$ be the normal simple submodule of $\,Q\,$. Then:
 - (1) $A \subseteq \underline{C}(Q)$ and $\underline{\hat{S}}(Q) = \underline{\hat{S}}_{A}(Q)$.
- (ii) Q is subdirectly irreducible.
- (iii) Either $A \subseteq \underline{A}(Q)$ and A is isomorphic to $\underline{Z}_{\overline{3}}$ or Q is a module.
- (iv) $\underline{C}(Q)$ is a cocyclic module.

Proof. Easy (use 4.1).

- 4.3 <u>Corollary</u>. A quasimodule Q is cocyclic iff $\underline{C}(Q) \neq 0$ and Q is subdirectly irreducible. In particular, a nilpotent (resp. finitely generated) quasimodule is cocyclic iff it is subdirectly irreducible.
- 4.4 <u>Proposition</u>. Suppose that \underline{R} is commutative and noetherism. Let Q be a cocyclic quasimodule and A the normal simple submodule of Q. Then:

- (i) Q is \$_-torsion.
- (ii) If Q is finitely generated and A is finite then Q is finite.
- (iii) If Q is non-associative then A is isomorphic to \underline{z}_3 and Q is $\underline{\hat{x}}$ -torsion.
- (iv) If $\, Q \,$ is finitely generated and non-associative then $\, \, Q \,$ is finite.

Proof. First, let Q be a module. By [3, Proposition VI.3.4], \underline{R} is a stable ring and so the injective hull \underline{E} of Q is $\underline{\underline{S}}_{\underline{A}}$ -torsion. Now, suppose that A is isomorphic to $\underline{Z}_{\underline{3}}$. We have $\underline{A} \subseteq \underline{C}(Q)$ and $\underline{C}(Q)$ is $\underline{\underline{R}}$ -torsion, since it is a cocyclic module. On the other hand, $Q/\underline{C}(Q)$ is a primitive quasimodule and thus Q is $\underline{\underline{R}}$ -torsion. The rest is clear.

4.5 Example. Let α be an infinite limit ordinal number and $\mathbf{N} = \left\{\mathbf{a}_0, \mathbf{a}_1, \dots\right\}$ be the canonical basis of the vector space $\mathbf{Q} = \frac{\mathbf{Z}_0^{(\alpha)}}{3}$. Define a mapping \mathbf{t} of \mathbf{N}^3 into \mathbf{Q} by $\mathbf{t}(\mathbf{a}_{\alpha}, \mathbf{a}_{\alpha+1}, \mathbf{a}_{\beta+2}) = \mathbf{a}_0$, $\mathbf{t}(\mathbf{a}_{\alpha+1}, \mathbf{a}_{\beta}, \mathbf{a}_{\alpha+2}) = -\mathbf{a}_0$ for $1 \leq \beta \leq \alpha$ and $\mathbf{t}(\mathbf{a}_{\alpha}, \mathbf{a}_{\beta}, \mathbf{a}_{\delta}) = 0$ in all remaining cases. It is clear that \mathbf{t} can be extended uniquely to a trilinear mapping \mathbf{T} of \mathbf{Q}^3 into \mathbf{Q} such that $\mathbf{T}(\mathbf{x}, \mathbf{x}, \mathbf{y}) = \mathbf{T}(\mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{x}), \mathbf{u}, \mathbf{v}) = \mathbf{T}(\mathbf{u}, \mathbf{v}, \mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{x})) = \mathbf{T}(\mathbf{u}, \mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{x}), \mathbf{v}) = 0$ for all $\mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{u}, \mathbf{v} \in \mathbf{Q}$. Put $\mathbf{x} \neq \mathbf{y} = \mathbf{x} + \mathbf{y} + \mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{x} - \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{Q}$. Then $\mathbf{Q}' = \mathbf{Q}(\mathbf{x})$ is a primitive quasimodule nilpotent of class 2 (see [M]). Moreover, $\mathbf{a} \in \mathbf{C}(\mathbf{Q}')$ iff $\mathbf{T}(\mathbf{a}, \mathbf{x}, \mathbf{y}) + \mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{a}) + \mathbf{T}(\mathbf{y}, \mathbf{a}, \mathbf{x}) = 0$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{Q}$. Now it is easy to check that we have $\mathbf{C}(\mathbf{Q}') = \mathbf{A}(\mathbf{Q}') = \left\{\mathbf{0}, \mathbf{a}_0, -\mathbf{a}_0\right\}$. In particular, \mathbf{Q}' is a cocyclic quasimodule. Thus for every infinite cardinal \mathbf{E} there is a cocyclic primitive quasimodule (nilpotent of class 2) of cardinality \mathbf{E} .

4.6 Example. Let $n \ge 4$, $Q = \underline{Z}_{3}^{(n)}$, $a_{1} = (1,0,...,0)$,..., $a_{n} = 0$

= (0,...,0,1) , N = { $a_1,...,a_n$ } . Define a mapping t of \overline{m}^3 into Q by $t(a_i,a_{i+1},a_{i+2}) = a_n$, $t(a_{i+1},a_i,a_{i+2}) = -a_n$ for every $1 \le i \le n-3$, $t(a_{n-2},a_{n-1},1) = a_n$, $t(a_{n-1},a_{n-2},1) = -a_n$, $t(a_{n-1},1,2) = a_n$, $t(1,a_{n-1},2) = -a_n$. Then t can be extended uniquely to a trilinear mapping T of Q^3 into Q and we put x * y = x + y + T(x,y,x-y) . Then Q' = Q(*) is a primitive quasimodule nilpotent of class 2 , $|Q'| = 3^n$ and it is not difficult to check that Q' is cocyclic, provided $n \ne 5$ and $n \ne 6k+1$. By [14], for every $m \ge 1$, $m \ne 2,3,5$, there is a cocyclic primitive quasimodule of order 3^m , nilpotent of class 2. On the other hand, it is clear that there are no cocyclic primitive quasimodules of order 3^2 , 3^3 and it is proved in [8] that there is no cocyclic primitive quasimodule of order 3^5 .

5. Cohereditary radicals and varieties of quasimodules

By a variety of quasimodules we mean a non-empty class of quasimodules closed under cartesian products, subquasimodules and homomorphic images.

5.1 Proposition. (i) If q is a cohereditary radical then the class $V_{\mathbf{q}}$ of all torsionfree quasimodules is a variety. (ii) Let V be a variety of quasimodules. For every quasimodule Q, let $\mathbf{q}_{\mathbf{v}}(Q) = \bigcap$ Ker f, f:Q \rightarrow P, P e V. Then $\mathbf{q}_{\mathbf{v}}$ is a cohereditary radical.

(iii) The correspondence $q \to \psi_q$ and $\psi \to q_\psi$ between cohereditary radicals and varieties of quasimodules is bijective. Proof. Easy.

Let V be a variety of quasimodules. Denote by V_m (resp. V_p) the class of all modules (resp. primitive quasimodules) contained in V and put $L_w = c_m(R)$. Then both V_m and V_p

are varieties, L $_{V}$ is an ideal of \underline{R} , L $_{V}Q$ = 0 for every quasimodule Q e V and a module M belongs to V $_{m}$ iff L $_{V}M$ = 0 .

5.2 <u>Proposition</u>. Let V be a variety of quasimodules such that $L_{V} \not \leq \underline{I}$. Then $V = V_{m}$ and $V_{p} = 0$.

Proof. We have $\underline{R} = L_{\gamma} + \underline{I}$, so that $Q = \underline{R}Q = 0$ for every $Q = V_p$.

5.3 <u>Proposition</u>. Let V be a variety of quasimodules and let $F \in V$ be a quasimodule free in V. Then $\underline{B}(F) \cap \underline{A}(F) = 0$.

Proof. Let X be a free basis of F and let f denote the natural homomorphism of F onto G = F/A(F). Then G is a free E/L_0 -module, f | X is injective and f(X) is a free basis of G. Now, let a e $A(F) \cap B(F)$. By 2.3 there are $n \ge 0$, pairwise different x_1, \dots, x_n e X and elements r_1, \dots, r_n e I with $a = r_1x_1+\dots+r_nx_n$ (we have r_1x_1 e I on Sequently, I and I are I and I and I and I and I are I and I and I are I are I and I are I are I and I are I and I are I and I are I are I are I are I and I are I are I are I are I and I are I are

5.4 Proposition. Let $\, \mathbb V \,$ be a variety of quasimodules. Then $\, \mathcal V \,$ is just the variety generated by $\, \mathbb V \,_{\mathbf m} \, \cup \, \, \mathbb V_{\mathbf p} \,$.

Proof. This is an easy consequence of 5.3.

5.5 Proposition. Let $\mathbb U$ and $\mathbb W$ be varieties of modules and primitive quasimodules, respectively. Denote by $\mathbb V$ the variety of quasimodules generated by $\mathbb U \cup \mathbb W$. Then $\mathbb V_m = \mathbb U$ and $\mathbb V_p = \mathbb W$. Proof. Let $\mathbb F$ e $\mathbb V$ be a free quasimodule of infinite countable rank. Since $\mathbb V$ is generated by $\mathbb U \cup \mathbb W$, $\mathbb F$ is isomorphic to a subquasimodule of the product $\mathbb G \times \mathbb P$, $\mathbb G$ e $\mathbb U$ and $\mathbb P$ e $\mathbb W$ being free of infinite countable rank; we shall assume that $\mathbb P$ is a subquasimodule $\mathbb V \times \mathbb P$. Consequently, $\mathbb U_{\mathbb U} \mathbb P = \mathbb V$ and we

see that $\mathbb{U}=\mathbb{V}_{m}$. On the other hand, $\underline{B}(F)\subseteq \mathbb{H}=\mathbb{G}\times \mathbb{O}$, $\underline{B}(F)$ is a normal subquasimodule of $\mathbb{G}\times P$ and $F/\underline{B}(F)$ is isomorphic to a subquasimodule of $(\mathbb{H}/\underline{B}(F))\times P\in \mathbb{W}$. However, \mathbb{V}_{p} is generated by $F/\underline{B}(F)$ and therefore $\mathbb{W}=\mathbb{V}_{p}$.

Now, denote by \Im the dual lattice of the lattice of ideals of the ring \underline{R} and by P the lattice of varieties of primitive quasimodules (i.e. the lattice of varieties of 3-elementary commutative Moufang loops). Let $\mathcal L$ be the subset of \Im x P formed by all couples $(I,\mathcal L)$, where either $\mathcal L=0$, or $0\neq \mathcal L$ $\mathcal L$ and $I\subseteq \underline I$.

5.6 Theorem. The lattice of varieties of quasimodules is isomorphic to the lattice $\,\Sigma\,$.

Proof. Apply 5.2, 5.4 and 5.5.

5.7 <u>Proposition</u>. Let \underline{R} be left noetherian, $n \ge 0$ and \overline{V} be a variety of quasimodules nilpotent of class at most n. Then \overline{V} is finitely based (i.e. \overline{V} can be determined by a finite number of identities).

Proof. Using 1.7(iii), we can proceed in the same way as in the proof of [6, Theorem III].

5.8 Corollary. Let \underline{R} be left noetherian, $n \ge 0$ and V be a variety of quasimodules nilpotent of class at most n. Then V contains only countably many subvarieties.

By [13, § 10], the lattice of varieties of primitive quasimodules nilpotent of class at most 2 is a three-element chain. Having some information on the lattice of ideals of \underline{R} (e.g. if \underline{R} is a commutative principal ideal ring, etc.) and using 5.6, we can describe the lattice of varieties of quasimodules nilpo-

tent of class at most 2. Moreover, applying the methods developed in [7] for medial quasigroups, the results are transferable to various classes of trimedial quasigroups (cf. 1.4).

References

- [1] L.Bénéteau, Etude algébrique des espaces barycentres et des espaces planairement affines, Doctoral Thesis, Université Paul Sabatier, Toulouse 1974
- [2] L.Bénéteau, Free commutative Moufang loops and anticommutative graded rings, J. Algebra 67 (1980), 1-35
- [3] L.Bican, T.Kepka, P.Němec, Rings, modules, and preradicals, Lecture Notes in Pure and Appl. Math. 75, Marcel Dekker, Inc New York 1982
- [4] G.Bol, Gewebe und Gruppen, Math. Ann. 114 (1937), 414-431
- [5] R.H.Bruck, A Survey of Binary Systems, "Ergebnisse der Mathe matik und ihrer Grenzgebiete", Band 20, Springer Verlag, Berlin - Heidelberg - New York 1958 (1966, 1971)
- [6] T.Evans, Identities and relations in commutative Moufang loops, J. Algebra 31 (1974), 508-513
- [7] J.Ježek, T.Kepka, Varieties of abelian quasigroups, Czech. Math. J. 27 (1977), 473-503
- [8] T.Kepka, Distributive Steiner quasigroups of order 3⁵, Comment. Math. Univ. Carolinae 19 (1978), 389-401
- [9] T.Kepka, Notes on quasimodules, Comment. Math. Univ. Carolinae 20 (1979), 229-247
- [10] T.Kepka, P.Němec, Quasimodules generated by three elements, Comment. Math. Univ. Carolinae 20 (1979), 249-266
- [11] T.Kepka, P.Němec, Trilinear constructions of quasimodules,

- Comment. Math. Univ. Carolinae 21 (1980), 341-354
- [12] T.Kepka, P.Němec, Distributive groupoids and the finite basis property, J. Algebra 70 (1981), 229-237
- [13] T.Kepka, P.Němec, Commutative Moufang loops and distributive groupoids of small orders, Czech. Math. J. 31 (1981), 633-669
- [14] S.Klossek, Kommutative Spiegelungsräume, Mitt. Math. Sem. Giessen, Heft 117, Giessen 1975
- [15] J.I.Manin, Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Publ. Comp., Amsterodam - London - New York, 1974
- [16] J.-P.Soublin, Etude algébrique de la notion de moyenne,J. Math. Pures et Appl. 50 (1971), 53-264

Matematicko-fyzikální fakulta, Karlova universita, Sokolovská 83, 186 00 Praha 8, Czechoslovakia

(Oblatum 30.5. 1984)

