

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25.1 (1984)

AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL EQUATION IN BANACH SPACES Stanistaw SZUFLA

Abstract: The paper contains an existence theorem for Lysolutions of the Urysohn integral equation, where Ly(D,X) is a generalized Orlics space over a Banach space X. For the case when X is finite dimensional and φ is a usual N-function, our theorem reduces to some results from Ch. IV of [4].

Key words: Urysohn integral equations, Orlics spaces, measure of non-compactness.

Classification: 45N05

Let X be a separable Banach space and let D be a compact subset of the Buclidean space $R^{\mathbf{m}}$. In this paper we shall present sufficient conditions for the existence of a solution x of the integral equation

(1)
$$x(t) = p(t) + \lambda \int_{D} f(t,s,x(s))ds$$

belonging to a certain Orlics space Lo(D,X).

- 1. Preliminaries. A function $\varphi: R_+ \times D \longrightarrow R_+$ is called a (generalized) N-function if
 - g(0,t) = 0 for almost all t∈ D;
- (ii) for almost every to D the function $u \to \phi(u,t)$ is convex and non-decreasing on R.;
 - (iii) for any $u \in R$, the function $t \rightarrow g(u,t)$ is L-measu-

rable on D;

(iv) for almost every t∈ D

$$\lim_{u \to 0} \frac{\varphi(u,t)}{u} = 0 \text{ and } \lim_{u \to 0} \frac{\varphi(u,t)}{u} = \infty.$$

The function φ^* defined by

$$g^*(u,t) = \sup_{u \ge 0} (uv - g(v,t)) (u \ge 0, t \in D)$$

is called the complementary function to g .

For a given N-function φ we denote by $L_{\varphi}(D,R)$ the set of all L-measurable functions $u:D \to R$ for which the number

$$\|u\|_{Q} = \inf \{r > 0: \int_{\Gamma} g(|u(t)|/r, t) dt \le 1\}$$

is finite. $L_{g}(D,R)$ is called the (generalized) Orlicz space. It is well known (cf. [3],[4]) that $\langle L_{g}(D,R), \| \cdot \|_{g} \rangle$ is a Banach space and

- 1.1. The convergence in $L_{\mathbf{g}}(\mathbf{D},\mathbf{R})$ implies the convergence in measure.
- 1.2. For any $u \in L_{g_p}(D,R)$ and $v \in L_{g_p*}(D,R)$ the function uv is integrable and

 $\int_{\mathbb{D}} |u(t)v(t)| dt \leq 2||u||_{\mathscr{G}} ||v||_{\mathscr{G}^{\sharp}} \qquad \text{(H\"{o}lder's inequality)}.$

If, in addition, the function ϕ satisfies Condition A:

$$\int_{D} g(u,t)dt < \infty \quad \text{for all } u > 0,$$

then we may consider the set $\mathbb{E}_{g}(D,R)$ defined to be the closure in $L_{g}(D,R)$ of the set of simple functions. Clearly $\mathbb{E}_{g}(D,R)$ is a Banach subspace of $L_{g}(D,R)$. It can be shown (cf. [3],[4]) that

- 1.3. The following statements are equivalent:
- (i) x ∈ E_φ(D,R);
- (ii) $x \in L_{\omega}(D,R)$ and x has absolutely continuous norm;

(iii) $\int_{\mathbb{D}} g(\alpha | u(t)|, t) dt < \infty$ for all $\infty > 0$.

1.4. If a sequence (u_n) in $E_g(D,R)$ has equi-absolutely continuous norms and converges in measure, then (u_n) converges in $E_g(D,R)$.

Further, denote by $L_{\mathcal{G}}(D,X)$ the set of all strongly measurable functions $x:D\longrightarrow X$ such that $\|x\|\in L_{\mathcal{G}}(D,R)$. Analogously we define $E_{\mathcal{G}}(D,X)$. Then $L_{\mathcal{G}}(D,X)$ is a Banach space with the norm $\|x\|_{\mathcal{G}} = \|\|x\|\|_{\mathcal{G}}$. Moreover, let $L^1(D,X)$ denote the Lebesgue space of all (Bochner) integrable functions $x:D\longrightarrow X$ provided with the norm $\|x\|_1 = \int_D \|x(t)\| dt$. We shall always assume that all functions from $L^1(D,X)$ are extended to R^m by putting x(t) = 0 for $t \in R^m \setminus D$.

Let β and β_1 be the Hausdorff measures of noncompactness (cf. [6]) in X and L¹(D,X), respectively. For any set V of functions from D into X denote by v the function defined by v(t) = $\beta(V(t))$ for $t \in D$ (under the convention that $\beta(A) = \infty$ if A is unbounded), where $V(t) = \{x(t): x \in V\}$. In what follows we shall use the following

Theorem 1. Let V be a countable subset of $L^1(D,X)$ such that there exists $\mu \in L^1(D,R)$ such that $\|x(t)\| \le \mu(t)$ for all $x \in V$ and $t \in D$. Then the function v is integrable on D and for any measurable subset T of D

(2)
$$\beta\left(\{\int_{T} x(t)dt: x \in V\}\right) \neq \int_{T} v(t)dt.$$
If, in addition, $\lim_{\tau \to 0} \sup_{x \in V} \int_{D} ||x(t+\tau) - x(t)|| dt = 0$, then
$$\beta_{1}(V) \neq \int_{D} v(t)dt.$$

We omit the proof of this theorem, because it is similar to that of Theorem 1 from [5].

- 2. The main result. Assume now that
- 1° M,N:R $_+$ × D \to R $_+$ are complementary N-functions and M satisfies Condition A.
- 2° $\varphi: \mathbb{R}_{+} \times \mathbb{D} \longrightarrow \mathbb{R}_{+}$ is an N-function satisfying Condition A and such that
- (3) $u \neq c \, g \, (u,t) \, + \, a(t)$ for all $u \geq 0$ and a.a. $t \in D$, where c is a positive number and $a \in L^1(D,R)$. Let ψ be the complementary function to g.
- 3° $(t,s,x) \rightarrow f(t,s,x)$ is a function from $D^2 \times X$ into X which is continuous in x for e.e. $t,s \in D$ and strongly measurable in (t,s) for every $x \in X$.
 - 4° || f(t,s,x)|| $\leq K(t,s)g(s,||x||)$ for $t,s\in D$ and $x\in X$, where
- (i) $(s,u) \rightarrow g(s,u)$ is a function from $D \times R_+$ into R_+ , measurable in s and continuous in u, and there exist $\alpha, \gamma > 0$ and $b \in L^1(D,R)$, $b \ge 0$, such that $N(\alpha g(s,u),s) \le \gamma g(u,s) + b(s)$ for all $u \ge 0$ and a.a. $s \in D$;
- (ii) $(t,s) \rightarrow K(t,s)$ is a function from D^2 into R_+ such that $K(t,\cdot) \in E_{\underline{M}}(D,R)$ for a.e. $t \in D$ and the function $t \rightarrow \|K(t,\cdot)\|_{\underline{M}}$ belongs to $E_{\underline{M}}(D,R)$.

For simplicity put $L^1 = L^1(D,X)$, $L_{\varphi} = L_{\varphi}(D,X)$, $E_{\varphi} = E_{\varphi}(D,X)$ and $B_{\varphi}^r = \{x \in E_{\varphi} : \|x\|_{\varphi} \le r\}$. Let F be the mapping defined by

$$F(x)(t) = \int_{\mathbb{D}} f(t,s,x(s))ds \quad (x \in \mathbb{E}_{\varphi}, t \in \mathbb{D}).$$

Theorem 2. Assume in addition that

- 5° $\lim_{\tau \to 0} \sup_{x \in \mathcal{B}_{\varphi}^h} \int_{\mathcal{D}} \|F(x)(t+\tau) F(x)(t)\| dt = 0 \text{ for all } r > 0$ and
- 6° $\beta(f(t,s,Z)) \leq H(t,s) \beta(Z)$ for almost every $t,s \in D$ and for every bounded subset Z of X, where $(t,s) \longrightarrow H(t,s)$ is a

function from D^{ℓ} into R_{+} such that $H(t, \cdot) \in L_{p}(D, R)$ for a.e. $t \in D$ and the function $t \to H(t, \cdot) H_{p'}$ belongs to $L_{p}(D, R)$.

Then for any $p\in E_\varphi$ there exists a positive number p such that for any $\lambda\in\mathbb{R}$ with $|\lambda|<p$ the equation (1) has a solution $x\in E_\varphi$.

Remark 1. For example, the condition 5° holds if f(t,s,x) = K(t,s)q(s,x)

and $\lim_{t\to 0} \int_{\mathbb{D}} \|K(t+\tau,\cdot) - K(t,\cdot)\|_{\mathbb{M}} dt = 0$ and $\|q(s,x)\| \le g(s,\|x\|)$ for $x \in X$ and a.e. $s \in \mathbb{D}$.

Remark 2. The condition 6° holds whenever $f = f_1 + f_2$, where f_1 and f_2 are such that

(*) for a.e. $t,s\in D$ the function $x\longrightarrow f_1(t,s,x)$ is completely continuous;

 $(**) \|f_2(t,s,x) - f_2(t,s,y)\| \leq H(t,s) \|x - y\| \text{ for } x,y \in X$ and a.e. $t,s \in D$.

<u>Proof.</u> By 4° and the Hölder inequality we have $\|F(x)(t)\| \le 2 \|K(t,\cdot)\|_{H} \|g(\cdot,\|x\|)\|_{N}$ for $t \in D$.

Since

 $\|g(\cdot, \|x\|)\|_{N} = \frac{1}{\alpha} \|\alpha g(\cdot, \|x\|)\|_{N} \le \frac{1}{\alpha} (1 + \int_{D} N(\alpha g(s, \|x(s)\|), s) ds) \le \frac{1}{\alpha} (1 + \frac{$

$$\frac{1}{\alpha}(1 + \int_{D} b(a)da + \gamma \int_{D} \psi(\|\mathbf{x}(a)\|, a)da),$$

we get

(4) $||F(x)(t)|| \neq k(t)(1 + ||b||_1 + \gamma r_g(x))$ for $x \in E_g$ and $t \in D$,

where $k(t) = \frac{2}{\infty} ||k(t, \cdot)||_{M}$ and $r_{\varphi}(x) = \int_{D} \varphi (||x(s)||, s) ds$. From 4°

(ii) and (3) it is clear that $k \in E_{\varphi}(D,R) \cap L^{1}(D,R)$. Hence

(5)
$$\|\mathbf{F}(\mathbf{x}) \chi_{\mathbf{T}}\|_{\varphi} \le \|\mathbf{k} \chi_{\mathbf{T}}\|_{\varphi} (1 + \|\mathbf{b}\|_{1} + \gamma \mathbf{r}_{\varphi}(\mathbf{x}))$$

for $\mathbf{x} \in \mathbf{E}_{\varphi}$ and any measurable subset T of D.

Similarly it can be shown that

(6) $\int_{\mathbb{T}} \| f(t,s,x(s)) \| ds \le \frac{2}{\alpha} \| K(t,\cdot) \chi_{\mathbb{T}} \|_{\mathbb{M}} (1 + \| b \|_1 + \gamma r_{g}(x))$

for $x \in E_{p}$, $t \in D$ and any measurable subset T of D.

In virtue of 1.3, from (5) we infer that F is a mapping of E_g into itself. We shall show that F is continuous. Let \mathbf{x}_n , $\mathbf{x}_o \in \mathbf{E}_g$ and $\lim_{n \to \infty} \|\mathbf{x}_n - \mathbf{x}_o\|_{\varphi} = 0$. Suppose that $\|\mathbf{F}(\mathbf{x}_n) - \mathbf{F}(\mathbf{x}_o)\|_{\varphi}$ does not converge to 0 as $n \to \infty$. Thus there exist $\epsilon > 0$ and a subsequence $(\mathbf{x}_{n,1})$ such that

(7)
$$\|\mathbf{F}(\mathbf{x}_{\mathbf{n}_{j}}) - \mathbf{F}(\mathbf{x}_{\mathbf{o}})\|_{\varphi} > \varepsilon$$
 for $j = 1, 2, ...$

and $\lim_{j\to\infty} x_{n,j}(t) = x_{0}(t)$ for a.e. $t\in D$. From 1.3 and the inequality

$$\mathbf{r}_{\varphi}(\mathbf{x}_{n}) \leq \frac{1}{2} \mathbf{r}_{\varphi}(2(\mathbf{x}_{n} - \mathbf{x}_{0})) + \frac{1}{2} \mathbf{r}_{\varphi}(2\mathbf{x}_{0})$$

it follows the boundedness of the sequence $(r_{\varphi}(\mathbf{x}_n))$. By (6) this implies that for a.e. $t \in D$ the sequence $(\|f(t,s,\mathbf{x}_n(s))\|)$ is equinintegrable on D. As $\lim_{s \to \infty} f(t,s,\mathbf{x}_n(s)) = f(t,s,\mathbf{x}_0(s))$ for a.e.

 $\textbf{t},\textbf{s} \in \textbf{D}, \ \textbf{the Vitali}$ convergence theorem proves that

lim
$$F(\mathbf{x}_{n_j})(t) = F(\mathbf{x}_0)(t)$$
 for a.e. $t \in D$.

Moreover, in view of (5), the sequence $(F(x_{n_j}))$ has equi-absolutely continuous norms in L_g. Thus, by 1.4, $\lim_{j\to\infty} (|F(x_{n_j})| - F(x_0))|_{Q} = 0$ which contradicts (7).

Fix a function $p \in E_{\varphi}$. Denote by Q the set of all q > 0 for which there exists r > 0 such that $\int_{\mathcal{D}} \varphi (\|p(t)\| + qk(t)(1 + \|b\|_{1} + \gamma r), t) dt \leq r$. Let $\varphi = \min (\sup_{\varphi} Q, 1/\|h\|_{\varphi})$, where $h(t) = \|H(t, \cdot)\|_{Y}$ for $t \in D$.

Fix $A \in R$ with $|\lambda| < \rho$. From the definition of (δ) we deduce

that there exists d > 0 such that

(8) $\int_{\mathbb{R}} \varphi(\|p(t)\| + |\lambda|k(t)(1 + \|b\|_1 + \gamma d), t)dt \leq d.$

Set $U = \{x \in \mathbb{F}_{g} : r_{g}(x) \neq d\}$ and $G(x) = p + \mathcal{A} F(x)$ for $x \in \mathbb{F}_{g}$. Then G is a continuous mapping $\mathbb{F}_{g} \to \mathbb{F}_{g}$ and, by (4) and (8), $G(U \subset U)$. Consequently

(9)
$$G(\overline{U}) \subset \overline{G(\overline{U})} \subset \overline{U}$$
.

Obviously, $\widetilde{\mathbb{U}}$ is a bounded, closed end convex subset of $\mathbf{F}_{\!\!\!(\boldsymbol{p})},$ end

(10)
$$\overline{U} \subset B_{\varphi}^{d+1}$$
.

Now we shall show that for any countable subset V of $\overline{\mathbf{U}}$

(11) $V \subset \overline{\text{conv}} (G(V) \cup \{0\}) \implies V$ is relatively compact in E_v.

Assume that V is a countable set of functions belonging to \overline{U} and

(12)
$$V \subset \overline{\operatorname{conv}} (G(V) \cup \{0\}).$$

Owing to 1.1 it is clear that

$$V(t)$$
 conv $(G(V)(t) \cup \{0\})$ for a.e. $t \in D$,

so that

(13)
$$\beta(V(t)) \leq \beta(G(V)(t))$$
 for a.e. $t \in D$.

From (4) it follows that for any $y \in \overline{G(U)}$

$$||y(t)|| \le \mu(t)$$
 for a.e. $t \in D$,

where $\mu(t) = \|p(t)\| + |\lambda| k(t)(1 + \|b\|_1 + y d)$. As V is countable, in view of (9) and (12), this implies that there exists a set D_0 of Lebesgue measure zero such that

(14) $\|\mathbf{x}(t)\| \leq \mu(t)$ for all $\mathbf{x} \in V$ and $t \in D \setminus D_0$.

Let us remark that $\mu \in E_{\varphi}(D,R) \cap L^{1}(D,R)$.

On the other hand, by 5° , (10) and (12), we have

$$\lim_{\tau \to 0} \sup_{x \in V} \int_{D} \|x(t + \tau) - x(t)\| dt = 0.$$

Hence, by Theorem 1, the function $t \to v(t) = \beta(V(t))$ is integrable on D and

(15)
$$\beta_1(\nabla) \leq \int_{\mathbb{D}} \nabla(t) dt$$
.

Furthermore, from 4° and (14) it follows that for any $t\in D$ such that $K(t,\cdot)\in E_M(D,R)$, we have

 $\|f(t,s,x(s))\| \leq \eta \ (s) \ \text{for } x \in V \text{ and s.e. } s \in D,$ where $\eta(s) = K(t,s)g(s,\mu(s))$. As $\mu \in E_{\varphi}(D,R)$, $4^O(i)$ implies that $g(\cdot,\mu) \in L_N(D,R)$, and consequently, by the Hölder inequality, $\eta \in L^1(D,R)$. Hence, owing to 6^O and (2),

$$\beta(G(V)(t)) = \beta(\{A \int_{D} f(t,s,x(s))ds:x \in V\}) \leq$$

$$|\lambda| \int_{\mathbb{R}} \beta(\{f(t,s,x(s)):x \in V\}) ds \leq |\lambda| \int_{\mathbb{R}} H(t,s) \beta(V(s)) ds$$

In view of (13), this shows that

$$v(t) \leq |\lambda| \int_{D} H(t,s) v(s) ds$$
 for a.e. $t \in D$.

Moreover, by (14), we have $v(t) \leq \mu(t)$ for a.e. $t \in D$, and therefore $v \in E_{\varphi}(D,R)$. Thus, by the Hölder inequality,

 $\label{eq:v(t) in H(t,-)} \|_{\psi} \ \|v\|_{\phi} \ \text{for a.e. } t \in \mathbb{D},$ so that

Since $\|A\|\|\|_{\varphi} < 1$, this implies that $\|\|v\|\|_{\varphi} = 0$, i.e. v(t) = 0 for a.e. $t \in D$. Hence, by (15), $\beta_1(V) = 0$, i.e. V is relatively compact in L^1 . On the other hand, as $\mu \in E_{\varphi}(D,R)$, (14) implies that V has equi-absolutely continuous norms in L_{φ} . From this we deduce that V is relatively compact in E_{φ} , which proves (11). Applying now Daher's generalization of the Schauder fixed point theorem (cf. [1]), we conclude that there exists $x \in \overline{U}$ such that x = G(x). It is clear that x is a solution of (1).

References

- [1] J. DAHER: On a fixed point principle of Sadovskii, Nonlinear Analysis 2(1978), 643-645.
- [2] J. DANES: On densifying and related mappings and their applications in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56.
- [3] A. KOZEK: Orlicz spaces of functions with values in Benach spaces, Comm. Math. 19(1977), 259-286.
- [4] H.A. KRASNOSELSKII, J.B. RUTICKII: Convex functions and Orlicz spaces, Moskva 1958.
- [5] W. ORLICZ, S. SZUFLA: On some classes of nonlinear Volterre integral equations in Banach spaces, Bull. Acad. Polon. Sci. Math. 30(1982), 239-250.
- [6] B.N. SADOVSKII: Limit-compact and condensing operators, Russian Math. Surveys 27(1972), 85-155

Institute of Mathematics, A. Mickiewicz University, Poznań, Poland

(Oblatum 29.11. 1983)