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AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL
EQUATION IN BANACH SPACES
5 Stanistaw SZUFLA

Abstract: The paper contains an existence theorem for L,-
solutions of the Urysohn integral equation, where l,(D,X) 1019

a generalized Orlics space over a Banach space X. For the case
when X is finite dimensional and 9 is a usual N-function, our
theorem reduces to some results from Ch. IV of [4].

wO. ¢ Urysohn integrel equetions, Orli¢s spaces, me-
asure of non-compactness.

Classification: 45N05

Let X be @ separable Banach space and let D be & ¢ompact
subset of the Buclidean spsce R®. In this paper we shall present
sufficient conditions for the existence of a solutien x of the
integral equetion
(m 2(t) = p(t) + A L) £(t,0,x(s))as

belonging to a gertsin Orlics space L,(D,x).

1. Prelimiperies. A function ¢ :R,x D — N, 1} called a
(generelized) K-fumction if

(1) @ (0,t) = O for almodt all te D;

(11) for slmost every te¢ D the function u — @ (u,t) is
convex end non-decreasing on R,j
(114) for eny ue R, the function t — @ (u,t) 18 L-measu-

-
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rable on D;

(iv) for almost every teD

1im 20 _ 5 ong 13p  lt) o 4,

w>0 u w0 u
The function @* defined by
@¥ (u,t) -va:po (uv - @ (v,t)) (uz0, teD)
is called the complementary function to ¢ -

For a given N-function ¢ we denote by l..,(D,R) the set of
all L-measurable functions u:D — R for which the number

Hull? = inf {r>0: _& @ (lu(t)i/r,t)dt< 13

is finite. Lg(D,R) is called the (generalized) Orlicz space. It
is well known (cf. [3],[4]) that (Ly(D,R),H-ﬂ?) is a Banach
space and

1.1. The convergence in Lq(D,R) implies the convergence
in measure.

1,2, For eny ue Lg(D,R) and veLy,(D,R) the function uv

is integrable and
'E) lu(t)v(t) ldt £ 21 ",f |Iv||9, (Holder“s inequality).
If, in addition, the function ¢ setisfies Condition A:
J:.D @ (u,t)dt < @ for all u>0,

then we may consider the set EV(D,R) defined to be the closure
in L9(D,R) of the set of simple functions. Clearly E9(D,R) is
a Banach subspace of Lg(D,R). It cen be shown (cf. [3],[4])
that

1.3. The following atatements sre equivalent:

(1) erq(D,R);

(11) =xe L(y(D,R) and x hes absolutely continuous norm;
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(111) Ji, ¢ (oclu(t)l,t)dt < 0 for ell o > O.

1.4. If a sequence (un) in Eq(D,R) hes equi-sbsolutely con-
tinuous norms and converges in measure, then (un) coriverges in

Eg(D,R).

Further, denote by Ly(D,X) the set of all strongly measu-
rable functions x:D—> X such that lIxNeLy(D,R). Analogously we
define E?(D,X). Then ﬁy(D,X) is a Banach space with the norm
A xl, = (I x||“¢ . Moreover, let L'(D,X) denote the Lebesgue
space of all (Bochner) integreble functions x:D — X provided
with the norm I xll, ='£ N x(t) )l dt. We shall slwaeys asssume that
all functions from L‘(D,X) are extended to R® by putting x(t) =
= 0 for te R®\D.

Let 3 end (3, be the Heusdorff measures of noncompaciness
(cf. [6]) in X and L’(D,X), respectively. For any set V of func-
tions from D into X denote by v the function defined by v(t) =
= (3(V(t)) for te€D (under the convention that 3(A) = @ if A
is unbounded), where V(t) = {x(t):x€V{. In what follows we
shall use the following

Theorem 1. Let V be a countable subset of L1(D,X) such that
there exists @& L'(D,R) such thet Il x(t)ll<u(t) for 11 xeV
and t& D. Then the function v is integrable on D and for eny me-
asurable subset T of D

(2) RUL xtv)atixeVh £ Lv(tiat.

If, in addition, lim sup 4;Hx(t +7) - x(t) )dt = 0, then
w0 xeV

B, (V) < £ v(t)at.

We omit the proof of this theorem, because it is similar
to that of Theorem | from [5].
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2. The main result. Assume now that

1° M,N:R,%x D — R, are complementary N-functions snd M
satiafies Condition A.

2° @:R,xD — R, is an N-fumction satisfying Conditien A
and such that
(3) u£cq@(u,t) + a(t) for all uz0 and e.a. teD,

where ¢ is a positive number and ae L‘(D,R). Let 4 be the com-
pPlementary function to ¢ -

3° (t,s,x)— f(t,s,x) is a function from D%« X into X
which is continuous in x for a.e. t,s€ D and strongly measar-
able in (t,s) for every x¢ X.

4° ll£(t,s,x) Il £ K(t,8)g(s,lixh) for t,seD and xcX, where

(1) (s,u) — g(s,u) is a function from Dx<R, into R,, me-
asurable in s and continuous in u, and there exist o« ,3'> 0 and
b<cL'(D,R), b2 0, such that N(«cg(s,u),s) £ y olu,s) + b(s) for
all uz> 0 and a.a. 8 € D;

(11) (t,s) — K(t,s8) is a function from D? into R, such
that K(t,-) € B (D,R) for a.e. t€ D and the function
t— i K(t,-)ill belongs to E,(D,R).

Por simplicity put L' = 1'(D,X), Iy = Ly(D,X), By = By(D,X)
and B; ={xc By lxl = r}. Let P be the mapping defined by

F(x)(t) =J;,f(t,.,x(.))a. (x€E, teD).

Theorem 2. Assume in addition that

5° 1im sup J;lll"'(x)(t +72) - F(x)(t)ll at = 0 for all r>0

t»0 x¢ B"

6° [(f£(t,s,2))£H(t,s)3(2) for almost every t,s €D and

for every bounded subset Z of X, where (t,s) — H(t,s) is a
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function from D into R, such that H(t,-)e)..r(D,R) for s.e. t&D
and the function t —> H(t, <), belongs to Lg(D,R).

Then for any pe E9 there exists a positive number o such
that for eny A€ R with |Al<@® the equation (1) has a solution

ery-

Remark 1. For example, the condition 5° holds if
£(t,s,x) = K(t,s)q(s,x)
end lim LUKt +2,) - K(t,-)i at = 0 end Nqla,x)i =

<g(s, Ixll) for x€X and a.e. s€D.

Remark 2. The condition 6° holds whenever f = f1 + fz,
where f, and f, are such that

(X) for a.e. t,s8€D the function !-+f1(t,l,l) is comp-
letely continuous;

(x %) Wf,(t,8,x) - fz(t,s,y)léﬂ(t,s) lx - y1 for x,yeX

end a.e. t,scD.

Proof. By 4° end the Holder inequality we have
IFx) (L) <2 lik(e,-) 0, Nagl- ,I!xll)ll,l for t€ D,
Since

beleilxily = 2 hocgle,ixly# 201 + [ N(ocgls, Mx(s) 1), 8)de) 2

201 + [ ble)as + 7 Lylix(a)h,8)a0),

we get

(4 WP (N£ k()1 + vl + ¥ (x)) for xeE, end teDd,

where k(t) = ;,%IIK(t,‘)"“ and r?(x) = qu (lx(s)§,s)ds. From 4°
(1i1) end (3) it is clear thst keES’(D,R)(\ L‘(D,R). Hence

(5) WF(x) xply € Megqly (1 + Rl + yry(x))

for er? and eny measurable subset T of D.
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Similerly it cen be shown that
(6) L hr(t,s,x(e))H ass2 IK(t, ) qqly(t + Nl + ¥ry(x)

for x€& E‘,’,, te D and any measurable subset T of D.
In virtue of 1.3, from (5) we infer that F is a mapping of Ey
into itself. We shsll show that F is continuous. Let X,y X € E

¥

end n]ijé:p"‘“ - xoll,f = 0. Suppose that IlI-‘(xn) - F(xo)"? does not
converge to 0 as n—> o . Thus there exist € > O and a subse-

quence (xnj) such that
(7) IlP(xnj) - F(xo)"?> € for j = ')290-.

and lim x, (t) = x,(t) for a.e. teD. From 1.3 &and the inequa-
v )

1lity
1 1
r¢(xn)é-2- rq,(2(xn -x,)) + 3 r?(zxo)

it follows the boundedness of the sequence (ry(xn)). By (6) this
implies that for a.e. t¢& D the sequence (llf(t,s,xn(s))ﬁ) is equi-

integrable on D. As é:!._i,n; f(t,s,xnj(s)) = f£(t,s,x,(s)) for a.e.

t,se D, the Vitali convergence theorem proves that
lim F(x, )(t) = Flx )(t) for a.e. teD.
3> J
Moreover, in view of (5), the sequence (F(x, )) hes equi-absolu-
tely continuous norms in L . Thus, by 1.4, lim (IF(x_ ) -
L4 3> nj
- F(xo)ilq, = 0 which contradicts (7).

Fix a function peE,,. Denote by Q the set of all q>0 for
which there exists r >0 such that __[D @ (hp(t)h + qk(t)(1 + Nb“"*
+ yr),t)dt«r. Let @ = min (sup Q, l/llhllq ), where h(t) =
= HH(t,-)I,r for t €D,

Fix Ae R with |Al<@© . From the definition of (@ we deduce
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that there exists d>0 such that
8 L @Up)ll + [A1k(t)(1 + b, + 9-),t)at<d.

Set U = ixe E,:rq,(x)é d} end G(x) = p + A F(x) for x¢ Eg. Then

G is a continuous mapping E9 — Eg and, by (4) and (8), G(UcU).
Censequently

(9) 6{T)c 6(U)c T.

Obviously, T is a bounded, closed and convex subset of F,g,, end
(10) Te B;”.

Now we shall show that for eny countsble subset V of T

(11) Ve conv (G(V)u 103) => V is relatively compsct in E, -
Assume that V is a countable set of functions belonging to U and

(12) Vc &nv (G(V)u{0}).

Owing to 1.1 it is clear that

V(t)cconv (G(V)(t)u 10%) for a.e. t€D,
so that
(13) B(V(t)) £ 3(G(V)(t)) for a.e. t&D.

From (4) it follows that for sny yeG—(F)

Hytt)ll £ w(t) for a.e. teD,
where w(t} =Mp(t)ll +(A1k(t)(1 +§bll, + yd), As V is count-
atle, in view of (9) end (12), this implies that there exists e

set D0 of Lebesgue measure zero such that
(14) x(t)ll € «(t) for all xcV and teD\D_.

Let us remark thet w& E,(D,R)n L'(D,R).
On the other hend, by 5°, (10) and (12), we have

lim sup _&“x(t + %) - x(t)hdt = 0.
r+0 xeV
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Hence, by Theorem 1, the function t — v(t) = B(V(t)) is inte-
grable on D and

(15) By (V) = [ v(t)at.

Turthermore, from 4° and (14) it follows that for any teD such
that K(t,+)¢ E.(D,R). we heve

he(t,s,x(s))V = n(s) for xeV and s.e. 8€D,
where 7(s) = K(t,s)g(s,x(s)). As ue Eb,(D,R). 4°(1) implies
that g(-, w)e LN(D,R), and consequently, by the Holder inequa-
lity, ne L‘(D,R). Hence, owing to 6° and (2),

PGV)(t)) = B ({Af £(t,s,x(8))As:xa V}) £
ML B (e, 8,x(8)):xc VE)ds <141 [H(t,8) 3 (V(s))ae

In view of (13), this shows that
v(t) € Ml‘gﬂ(t,s)v(s)ds for a.e. t €D,

Moreover, by (14), we have v(t) £ (t) for s.e. t €D, and there-
fore ve& E’,(D,R). Thus, by the Hoider inequality,

v(t) & IAI DH(t,-) Iy Hvlly for s.e. LD,
so that
vl € 121 Bnilig Nvhg .

Since IAl |IhIL‘,<1, this implies that ilvlly = 0, i.e. v(t) = O for
a.e. te D. Hence, by (15), f34(V) = 0, 1.e. V is relatively com-
pact in L'. On the other hand, as wé E?(D,R), (14) implies that
V has equi-absolutely continuous norms in 19. From this we dedu-
ce that V is relatively compact in !;9, which proves (11).
Applying now Daher’s generslizstion of the Schauder fixed point
theorsm (cf. [1]), we conclude that there exists x6 U such thet

x = G(x). It is clear that x is a solution of (1).
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