

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log79

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25.4 (1984)

CONSTRUCTION OF MEDIAL SEMIGROUPS Reinhard STRECKER

Abstract: Every medial semigroup, satisfying a certain condition, is a subsemigroup of a medial semigroup, which is constructed by means of commutative semigroups and their commuting and idempotent endomorphisms.

<u>Key words</u>: Semigroup, medial semigroup, endomorphism. Classification: 20M10

Let (H,+) be a commutative semigroup and φ , ψ its idempotent permutable endomorphisms, $\varphi^2=\varphi$, $\psi^2=\psi$, $\varphi\psi=\psi$. By the definition

(1)
$$ab = \varphi(a) + \psi(b)$$

we obtain a medial semigroup (H,), that is, a semigroup satisfying the identity uvxy = uxvy. Moreover (H, *) is satisfying the implication

(*) ab = cd \implies axb = cxd for all a,b,c,d,x \in H (see [4]). It is easy to see that not every medial semigroup with (*) can be constructed in this way ([4]). In the case of groupoids there are several theorems giving conditions for a --dial groupoid to be constructable from commutative groupoids by the definition (1) ([1],[2],[3],[5]). We prove in this note that every medial semigroup, satisfying (*), is a subsemigroup of a medial semigroup (H,*), obtained from a commutative semigroup (H,+)

by its idempotent permutable endomorphisms φ and ψ , where the multiplication is defined by (1).

1. The lemmas. Let $(\{x_i\}, i \in I; \cdot)$ be a medial semigroup satisfying (*). Let ?, ? be the following relations

$$x_j = x_k$$
 or there are $y_1, \dots, y_n \in X$, $n > 1$, and a permutation π of the numbers 2,3,..., $n = y_1, \dots, y_n$ and $x_k = y_1 y_{\pi(2)}, \dots, y_{\pi(n)}$.

$$\mathbf{x}_{j} \overset{\mathbf{x}_{k}}{\longrightarrow} \begin{cases} \mathbf{x}_{j} = \mathbf{x}_{k} \text{ or there are } \mathbf{y}_{1}, \dots, \mathbf{y}_{n} \in \mathbb{X}, \ n > 1, \text{ and a} \\ \text{permutation } \mathbf{x} \text{ of the numbers } 1, \dots, n-1 \text{ with} \\ \mathbf{x}_{j} = \mathbf{y}_{1}, \dots, \mathbf{y}_{n}, \ \mathbf{x}_{k} = \mathbf{y}_{n}(1), \dots, \mathbf{y}_{n}(n-1)\mathbf{y}_{n}. \end{cases}$$

$$\mathbf{x}_{j} \overset{\mathbf{x}}{\leftarrow} \mathbf{x}_{k} \Longleftrightarrow \begin{cases} \text{There are } \mathbf{y}_{1}, \dots, \mathbf{y}_{n} \in \mathbf{X}, \ n \geq 1, \ \text{and a permutation} \\ \mathbf{x}_{0} & \text{of the numbers } 1, 2, \dots, n \text{ with} \\ \mathbf{x}_{j} & = \mathbf{y}_{1}, \dots, \mathbf{y}_{n}, \ \mathbf{x}_{k} & = \mathbf{y}_{\pi(1)}, \dots, \mathbf{y}_{\pi(n)}. \end{cases}$$

Lemma 1. a) The relations $\tilde{1}$, \tilde{r} , \tilde{t} are reflexive, symmetric and stable with respect to the multiplication.

- b) F = 7 and 7 = 7.
- c) $x_j \sim x_k \Rightarrow x_j y = x_k y$ for all $y \in X$, $x_j \sim x_k \Rightarrow y x_j = y x_k$ for all $y \in X$, $x_j \sim x_k \Rightarrow x_j y \sim x_k y$ and $y x_j \sim y x_k$ for all $y \in X$.

The transitive closures of $\widetilde{1}$, \widetilde{r} , \widetilde{t} are congruences and we denote the congruence classes containing y by $[y]_1$, $[y]_r$ and $[y]_t$ respectively.

Lemma 2. From $[y_1]_1 = [y_2]_1$ and $[x_1]_t = [x_2]_t$ it follows: $[y_1x_1]_1 + [y_2x_2]_1$. From $[y_1]_r = [y_2]_r$ and $[x_1]_t = [x_2]_t$ it follows $[x_1y_1]_r = [x_2y_2]_r$. From $[y_1]_1 = [y_2]_1$ and $[x_1]_r = [x_2]_r$ it follows $y_1x_1 = y_2x_2$.

For a given medial semigroup $(X, \cdot) = (\{x_1\}, i \in I_{i} \cdot)$ let $F = (F, +) = F(a_1, b_1, c_1, d_1)$, $i \in I$, be the free commutative semigroup with the free system of generators $\{a_1\} \cup \{b_1\} \cup \{a_1\} \cup \{d_1\}$, $i \in I$ $(F \cap X = \emptyset)$. We denote the elements R, S of F by formal infinite sums

$$R = \sum \alpha_{i} a_{i} + \beta_{i} b_{i} + \gamma_{i} c_{i} + \sigma_{i} d_{i}, \quad \sum \alpha_{i} + \beta_{i} + \gamma_{i} + \sigma_{i} \geq 1.$$
Let \sim be the following relation on F

- (1) $R \sim S \iff R = S \text{ or }$
- (2) $R = \sum \sigma_1^i d_1$ and $S = \sum \sigma_1^i d_1$ with $[\prod x_1^{\sigma_1^i}]_t = [\prod x_1^{\sigma_1^i}]_t$ or
- (3) $R = b_h + \sum^* \delta_i d_i$, $S = b_j + \sum^* \delta_i d_i$ with $[x_h \prod^* x_i^{i_1}]_1 = [x_j \prod^* x_i^{i_1}]_1$ or (4) $R = c_h + \sum^* \delta_i d_i$, $S = c_j + \sum^* \delta_i' d_i$ with
- (4) $R = c_h + \sum_{i=1}^{n} d_i$, $S = c_j + \sum_{i=1}^{n} d_i$ with $[(\prod_{i=1}^{n} x_i^{(i)}) x_h]_r = [(\prod_{i=1}^{n} x_i^{(i)}) x_i]_r \text{ or }$
- (5) $R = b_h + c_k + \sum^* \delta_1 d_1$, $S = b_j + c_m + \sum^* \delta_1 d_1$ with $x_h \prod_{x_1 x_1}^{x_1 \delta_1} x_k = x_j \prod_{x_1 x_1}^{x_1 \delta_1} x_m$.

By the starlet at the sums or products we denote the possibility of being empty.

Lemma 3. Let $\Sigma \mu_1 d_1 \sim \Sigma \mu'_1 d_1$.

- a) If $R \sim S$ according to (2), then $\sum (\sigma_1' + \mu_1')d_1 \sim \sum (\sigma_1' + \mu_1')d_1$.
- b) If $R \sim S$ according to (3), then $b_{h} + \sum^{*} (\sigma'_{1} + \mu'_{1}) d_{1} \sim b_{1} + \sum^{*} (\sigma'_{1} + \mu'_{1}) d_{1}.$
- c) If $R \sim S$ according to (4), then $c_h + \sum^* (\delta_i + \mu_i) d_i \sim c_j + \sum^* (\delta_i' + \mu_i') d_i.$
- d) If $R \sim S$ according to (5), then $b_h + c_k + \sum^* (\sigma_i + (u_i)d_i \sim b_j + c_m + \sum^* (\sigma_i^i + \mu_i^i)d_i.$

- Proof. We know $[\Pi x_1^{\mu_1}]_t = [\Pi x_1^{\mu_1}]_t$.

 a) We have $[\Pi x_1^{\sigma_1}]_t = [\Pi x_1^{\sigma_1}]_t$ and therefore $[\Pi x_1^{\sigma_1}]_t [\Pi x_1^{\mu_1}]_t = [\Pi x_1^{\sigma_1}]_t [\Pi x_1^{\sigma_1}]_t = [\Pi x_1^{\sigma_1}]_t$ [[] * 1+4] ...
- b) Using Lemma 2 from $\begin{bmatrix} x_h \Pi^* x_1^{j} \end{bmatrix}_1 = \begin{bmatrix} x_1 \Pi^* x_1^{j} \end{bmatrix}_1$ we have $[x_{i} \pi^{*} x_{i}^{\delta'_{i}+\mu_{i}}]_{1} = [x_{i} \pi^{*} x_{i}^{\delta'_{i}+\mu'_{i}}]_{1}.$
- c) analogous to b)
 d) We have $x_h \prod^* x_i^{-1} x_k = x_j \prod^* x_i^{-1} x_m$. With respect to the condition (*) it follows $x_h \prod^* x_i^{-1} \prod^* x_i^{m_i} x_k =$ = $x_j \prod^* x_i^{\delta_{i_1}^i} x_i^{\alpha_i} x_m$. This is by Lemma 1 equal to

 $x_i \prod^* x_i^{\delta'_i} \prod^* x_i^{\omega'_i} x_m$ and because of the mediality of X we have $x_h \prod^* x_i^{\sigma'_1 + \mu_1} x_k = x_j \prod^* x_i^{\sigma'_1 + \mu'_1} x_m$. Using the relation ~ we define a relation \triangle on (F,+):

 $R = \sum \alpha_{1}^{a_{1}} + \beta_{1}^{b_{1}} + \gamma_{1}^{c_{1}} + \sigma_{1}^{d_{1}} \triangle_{S} = \sum \alpha'_{1}^{a_{1}} + \beta'_{1}^{b_{1}} +$ + $\mathcal{T}_1^i c_1 + \mathcal{T}_1^i d_1$ iff there exist $A_1, \dots, A_n, A_1^i, \dots, A_n^i \in (\mathbb{F}, +)$ with $R = \sum_{i=1}^{m} A_i$, $S = \sum_{i=1}^{m} A_i$ and $A_i \sim A_i$.

The relation is reflexive, symmetric and stable with respect to addition. The transitive closure = is a congruence on (F,+). By [R] = $[\sum \alpha_1 a_1 + \beta_1 b_1 + \gamma_1 c_1 + \sigma_1 d_1]$ we denote the class containing R = \(\Sigma_i a_i + \beta_i b_i + \cappa_i c_i + \) + 6, d1.

Lemma 4. a) [a] = {a}.

b) If $a = b_m + c_n + \Sigma^* d_i d_i$ and A = B, then $A \sim B$ follows.

Proof. a) Since a is an element of the free system of

generators of F, from a \triangle R it follows a \sim R and therefore a = R.

- b) Let A riangleq B; then there exist A_1, \dots, A_n , A_1', \dots, A_n' with $A = \sum A_j$, $B = \sum A_j'$ and $A_j \sim A_j'$ for $j = 1, \dots, n$. b_m and c_n are elements of the free system of generators and therefore only the following two cases are possible.
- 1) One of the elements A_j , say A_1 , is of the form $A_1 = b_m + c_n + \sum^* (w_i d_i)$. It follows $A_1' = b_k + c_n + \sum^* (w_i d_i)$ and all other elements A_1 are of the form $\sum \lambda_i d_i$. In view of Lemma 3 we can write $A = A_1 + A_2$, $B = A_1' + A_2'$, where $A_2 = \sum x_i d_i$, $A_2' = \sum x_i' d_i$ and $A_2 \sim A_2'$. Again in view of Lemma 3 we get $A \sim B$.
- 2) One of the elements A_j , say A_1 , is of the form $A_1 = b_m + \sum^* (u_1 d_1)$, another, say A_2 , of the form $A_2 = c_n + \sum^* (u_1 d_1)$. Then $A_1' = b_k + \sum^* (u_1' d_1)$ and $A_2' + c_n + \sum^* (u_1' d_1)$. In view of Lemma 3 we may write $A = A_1 + A_2 + A_3$, $B = A_1' + A_2' + A_3'$, where $A_3 = \sum^* \lambda_1 d_1$, $A_3' = \sum^* (\lambda_1' d_1)$ and $A_3 \sim A_3'$. We have $[x_m \prod^* x_1^{(m)}]_1 = [x_k \prod^* x_1^{(m)}]_1, [\prod^* x_1' x_1]_r = [\prod^* x_1' x_1]_r$

The relation \sim is transitive, therefore from A = B it follows

therefore we have $A \sim B$.

 $A \sim B$.

2. The theorems. We define homomorphisms φ_0 and ψ_0 from (F,+) into (F,+) by

(6)
$$\varphi_0(a_1) = b_1$$
, $\varphi_0(b_1) = b_1$, $\varphi_0(c_1) = d_1$, $\varphi_0(d_1) = d_1$

(7)
$$\psi_0(a_1) = c_1$$
, $\psi_0(b_1) = d_1$, $\psi_0(c_1) = c_1$, $\psi_0(d_1) = d_1$.

Lemma 5. a) The endomorphisms φ_0 and ψ_0 are idempotent and permutable, $\varphi_0^2 = \varphi_0$, $\psi_0^2 = \psi_0$ and $\varphi_0 \psi_0 = \psi_0 \varphi_0$.

b) $R \equiv S$ implies $\varphi_0(R) = \varphi_0(S)$ and $\psi_0(R) \equiv \psi_0(D)$.

Proof. a) Easy, since the conditions are satisfied for the system of free generators.

b) It suffices to prove that $R \sim S$ implies $\varphi_o(R) \sim \varphi_o(S)$ and $\psi_o(R) \sim \psi_o(S)$. This is clear for the cases 1) R = S and 2) $R = \sum \sigma_i^i d_i$, $S = \sum \sigma_i^i d_i$. Let $R \sim S$ according to (3). Then we have $\varphi_o(R) = R$, $\varphi_o(S) = S$, $\psi_o(R) = d_h + \sum^* \sigma_i^i d_i$, $\psi_o(S) = d_j + \sum^* \sigma_i^i d_i$. In view of Lemma 1 we have $\gamma \leq \gamma$ and thus $\psi_o(R) \sim \psi_o(S)$. Analogously we prove the case 4), $R \sim S$ according to (4). Case 5, let $R \sim S$ according to (5), hence $x_h \prod^* x_i^{\sigma_i^i} x_k = x_j \prod^* x_i^{\sigma_i^i} x_m$. We have $\varphi_o(R) = b_h + d_k + \sum^* \sigma_i^i d_i$, $\varphi_o(S) = b_j + d_m + \sum^* \sigma_i^i d_i$. The relation

 $\varphi_{o}(R) \sim \varphi_{o}(S)$ follows from $[x_{h}x_{k} \prod^{*} x_{i}^{\sigma'_{i}}]_{1} = [x_{h} \prod^{*} x_{i}^{\sigma'_{i}} x_{k}]_{1} = [x_{j} \prod^{*} x_{k}^{\sigma'_{i}} x_{k}]_{1} = [$

We know by Lemma 5b) that the endomorphisms φ_0 and ψ_0 induce endomorphisms φ and ψ of F/\equiv , satisfying again the condition (6) and (7). From this we have by an easy calculation:

Theorem 1 (see [4]). F/ \equiv is a medial semigroup with respect to the multiplication [R][S] = [φ (R)] + [ψ (S)].

If $x_h = x_1 = x_h$, then we denote the class $[b_h + c_k + \sum^* \delta_i d_i]$ by T_n . By the lemmas 4 and 5, this notation

does not depend on the chocie of the representatives.

Theorem 2. a) The set

$$T = \{[a_j] : x_j \notin X^2\} \cup (\cup T_n)$$

is a medial subsemigroup of $(F/\equiv , \cdot)$

b) The mapping o

$$\wp(\mathbf{x}_{j}) = \left\{ \begin{array}{l} [\mathbf{a}_{j}] \text{ if } \mathbf{x}_{j} \notin X^{2} \\ \mathbf{T}_{j} \text{ if } \mathbf{x}_{j} \in X^{2} \end{array} \right.$$

is an isomorphism from X onto $T \subseteq F/\cong$

Proof. a) Let x_j and $x_k \notin X^2$. We have $[a_j][a_k] = \varphi(a_j) + \varphi(a_k) = b_j + c_k$ and thus this expression is of the form (5). Let $x_j \notin X^2$, $T_n = [b_1 + c_k + \sum^* \sigma_i d_i]$. We have $[a_j]T_n = \varphi(a_j) + \psi(b_1 + c_k + \sum^* \sigma_i d_i) = b_j + d_1 + c_k + \sum^* \sigma_i d_i$ and thus this expression is of the form (5). We have $T_n[a_j] = \varphi(b_1 + c_k + \sum^* \sigma_i d_i) + \psi(a_j) = b_1 + d_k + \sum^* \sigma_i d_i + c_j$ and thus this expression is of the form (5). Further we have $[b_1 + c_k + \sum^* \sigma_i d_i][b_j + c_m + \sum^* \sigma_i' d_i] = b_1 + d_k + \sum^* \sigma_i' d_i + d_j + c_m + \sum^* \sigma_i' d_i$ and this expression is of the form (5). The is a subsemigroup of F/\equiv .

- b) φ is a bijection. Let $x_r x_s = x_t$.
- b1) Let $x_r, x_s \notin X^2$. We have $\varphi(x_r) = [a_r]$, $\varphi(x_s) = [a_s]$, $[a_n][a_s] = [\varphi(a_n) + \psi(a_s)] = [b_n + c_n] = T_+$.
- b2) Let $\mathbf{x_r} \notin \mathbb{X}^2$, $\mathbf{x_s} \in \mathbb{X}^2$. We have $\varphi(\mathbf{x_r}) = [\mathbf{a_r}]$ and $\varphi(\mathbf{x_s}) = \mathbf{T_s} = [\mathbf{b_1} + \mathbf{c_k} + \sum^* \sigma_1 \mathbf{d_i}]$, with $\mathbf{x_1}^{\prod^*} \mathbf{x_i}^{\tilde{i}} \mathbf{x_k} = \mathbf{x_s}$. It holds $\varphi(\mathbf{x_r}) \varphi(\mathbf{x_s}) = [\mathbf{a_j}] \mathbf{T_s} = [\mathbf{b_r}] + [\psi(\mathbf{T_s})] = [\mathbf{b_r} + \mathbf{d_1} + \mathbf{c_k} + \sum^* \sigma_1 \mathbf{d_i}] = \mathbf{T_t}$, because of $\mathbf{x_r} \mathbf{x_1}^{\text{of}} \mathbf{x_i}^{\text{of}} \mathbf{x_k} = \mathbf{x_r} \mathbf{x_s} = \mathbf{x_t}$.
- b3) Let $x_r \in X^2$, $x_s \notin X^2$. We have $\varphi(x_r) = T_r = [b_1 + c_k + \sum^* \sigma_i d_i]$, where $x_1 T^* x_i^{\sigma_i} x_k = x_r$. It holds $\varphi(x_r) \varphi(x_s) = T_r [a_s] = [b_1 + d_k + \sum^* \sigma_i d_i] + c_s = T_t = \varphi(x_r x_s)$, because

of $x_1x_k ext{ } e$

Theorem 3. Let $X = \{x_i, i \in I\}$ be a medial and archimedean semigroup. Then $(F/\equiv , \cdot)$ is archimedean, too.

Proof. Let $A = \sum \alpha_1 a_1 + \beta_1 b_1 + \gamma_1 c_1 + \sigma_1 d_1$ and $B = \sum \alpha_1 a_1 + \lambda_1 b_1 + (\alpha_1 c_1 + \nu_1 d_1)$. Since X is archimedean, there exist a natural number $n \ge 1$ and elements x_r and x_g with $x_r \prod x_i^{\alpha_1 + \beta_1 + \gamma_1 + \sigma_1} x_g = (\prod x_i^{\alpha_1 + \lambda_1 + \alpha_1 + \nu_1})^n$. Therefore we have $\varphi_0 \psi_0(d_r A d_g) = d_r + \sum (\alpha_1 + \beta_1 + \gamma_1 + \sigma_1) d_1 + d_g \sim n \ge (\alpha_1 + \lambda_1 + (\alpha_1 + \nu_1) d_1 = \varphi_0 \psi_0(B^n)$. From this $B d_r A d_g B = B^{n+2}$ and consequently $(F/\equiv , \cdot)$ is an archimedean semigroup.

References

- [1] J. JEŽEK and T. KEPKA: Free entropic groupoids, Comment.
 Math. Univ. Carolinae 22(1981), 223-233.
- [2] J. JEŽEK and T. KEPKA: Semigroup representations of medial groupoids, Comment. Math. Univ. Carolinae 22(1981), 513-524.
- [3] R. STRECKER: Uber entropische Gruppoide, Math. Nachr. 64 (1974), 361-371.
- [4] R. STRECKER: Konstruktionen freier medialer Halbgruppen aus kommutativen Halbgruppen, Wiss. Zeitschr. PH Güstrow, math.-mat. Fak. 20(1982), 265-271.
- [5] V. VOLONEC: Extension of Toyoda's theorem on entropic groupoids, Math. Nachr. 102(1981), 183-188.

Sektion Mathematik/Physik Padagogische Hochschule "Liselotte Herrmann" DDR 2600 Güstrow Goldberger Str. 12 German Democratic Republic

(Oblatum 27.7. 1984)

