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Abstract: Several equalities and inequalities concern-
the numbers of occurrences of three-element subgraphs in

directed sr:fh. are used to find the lower bound for the num-

ber of associative triples in finite quasitrivial groupoids.
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Por a positive integer n, let c,(n) denote the maximal
mumber of 3-cycles in an n-element tournament. It is well
kmown that Cy(n) = (o - n)/24 for n 0dd and Cy(n) =
- (0 - 4n)/24 for n even (see [1] and [31). On the other hand,
tournaments are in a close connection with commutative quasi-
trivial groupoids and /he equivalent result is the lower
bound for the number of associative triples (see [2)). Namely,
if G 1s an n-element commtative quasi trivial groupoid them G
contains at least (3n° + n)/4 (resp. (3n° + 4n)/4) associative
triples of elements, provided n is odad (resp. even). The aim
of this short note is to show that the same is true for non-
commutative quasitrivial groupoids (see Theorem 1 (111),(1v)),
however, in this case, the equivalent combinatorisal structure
is that of directed graphs. Several equalities and inequali-
ties concerning the numbers of occurrences of three-element
subgraphs in a directed graph are found and the main result is
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then derived.

1. Quasitrivial groupoids and graphs. Throughout this note,
a graph is & directed graph without loops and multiple edges,

i.e. & finite non-empty set together with an an’cireflexive bi-
nary relation (possible empty).

Let K be a graph, Then V = V(K) will designate the set of
vertices, E = E(K) that of edges and v(K) = card V. Purther,
for any acV, let f(a) = f(K,a) = card {beV; (a,b)c E, (b,a) ¢
¢E}, g(a) = card 1beV; (a,b)4E, (b,a) € E}, h(a) = card {ve v;
(a,b)eE, (b,a)€eE} and k(a) = card {beV; (a,b)&E, (b,a)& Ef.
Now, we put w(1) = w(k,1) = = (2(a)? - £(a))/2, w(2) =
= I (g(2)? - g(a))/2, w(3) = = (n(a)? - n(e))/2, w(4) =
= = (k(a)? - k(a))/2, w(5) = = 2(a)g(a), w(6) = = t(a)n(a),
w(7) = Zt (e)k(a), w(8) = Z g(a)n(a), w(9) = = g(a)k(a),
w(10) = Z h(a)k(a).

We shall say that a graph K is commutative (resp. anticom-
mutative) if h(a) = k(a) = 0 (resp. f(a) a g(a) = 0) for every
a €V, Thus commutative graphs are nothing else than tournaments
and anticommutative graphs are in fact the simple undirected
graphs,

Consider the following three-element graphs L(1),...,L(16)
where V(L(1)) =41,2,3}% for each 141416 and E(L(1)) =
= 1(1,2),01,3),(2,3)%, E(L(2)) = §(1,2),(1,3),(2,3),(3,2)},
B(L(3)) =1(1,2),(1,3)}, E(L(4)) = 101,2),(2,1),01,3),(2,3)%,
E(L(5)) = 4(1,3),(2,3)}, E(L(6)) = {(1,2),¢2,1),(1,3),(3,1),
(2,3),(3,2)3%, E(L(7)) = @, E(L(8)) = 1(1,2),(2,3),(3,1)%,
E(L(9)) = 1(1,2),(2,3)}, E(L(10)) = {(1,2),(2,3),(1,3),(3,1)},
E(L(11)) = $(1,2),(2,3).(3,2)}, E(L(12)) = 101,2),01,3),(3,1)3,
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E(L(13)) = {(1,2),(2,1),(2,3),(3,2)}, E(L(14)) = 101,3),(3,1)¢,
E(L(15)) = {(1,2),(2,1),(2,3),(3,2),(3,1)%, E(L(16)) = 1(1,3)¢.
These graphs are pair-wise non-isomorphic and every three-ele-
ment.sraph is isomorphic to one of them. Now, for a graph K and
141416, we denote by q(1) = q(K,1) the number of induced sub-
graphs of K isomorphic to L(i). Obviously, if v(K)Z 3 then K is
commutative (resp. anticommuative) 1ff q(2) m...= q{7) =.q(9) =
=eeom q(16) = 0 (resp. q(1) =...= q(5) = q(8) =...= q(12) =

= q(15) = q(16) = 0),

Let K be & graph and p = (p,,....p16)e Z16, Z being the
ring of integers. Put q(K,p) = FR pya(i).

A groupoid is a non-empty set with a binary operation (u-
sually denoted multiplicetively), A groupoid G is said to be
commutative (resp. enticommuative) if xy = yx (resp. xy#yx) for
ell x,ye G such that x4y, A groupoid G is said to be quasitri-
vial if xye {x,y} for all x,y €G.

For a groupoid G, let A(G) = {(x,y,2)3X,7,2 6G, x.yz =
= xy.2% end a(G) = card A(G). If G is quasitriviel then olear-
1y (x,x,y),(x,y,%),(y,x,x) € A(G) for all x,y €G.

Let C be a class of groupoids and n a positive integer such
that C contains at least one groupoid with n elements, We defi-
ne a(C,n) = min a(G), G&C, card G = n and b(C,n) = max a(H),
HeC, H non-associative, cerd H = n; b(C,n) = o’ it there exists
no such Hg .

Let G be a finite quasitrivial groupoid. Define a graph
L = L(G) as follows: V(L) = G and (a,b) € E(L) 1ff a+b and ab =
= a. Conversely, let K be a graph, Define a quasitrivial grou-
poid H = H(K) as follows: The underlying set of H is the set V(K)
end for a,bs V(K) we have ab = a if (a,b)e E(K) and ab = b in
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the opposite case. Then G —> L(G) and K —> H(K) are bijective
correspondences between finite quasitrivial groupoids and
graphs preserving underlying sets and injective homomorphisms.
They induce by restriction bijective correspondences between
finite commutative (resp. anticommutative) quasitrivial group-
0oids and commutative (resp. enticommuative) graphs,

For 141416, let P, = 27-a(H(L(1))) and P = (Py). It is
easy to verify that P = (0,...,0,6,3,3,2,2,2,2,1,1),
For a graph K, let q(K) = q(K,P). Notice that this number is
even provided K is commutative (resp. anticommutative). The

following proposition is obvious:

Proposition 1. Let G be a finite quasitrivial groupoid
and n = card G. Then a(G) = n° - q(L(G)).

2. Several equalities and inequalities. In this section,

let K be a graph, n = v(K) and p = (p;) 6 2'6, We have the fol-
lowing ten obvious equalities:
w(1) = q(1) + q(2) + q(3),

w(2) = q(1) + q(4) + q(5),
w(3) = 3q(6) + q(13) + q(15),
w(4) = 3q(7) + q(14) + q(16),

w(5) = q(1) + 3q(8) + q(9) + q(10).

w(6) = 2q(4) + q(10) + q(12) + q(15).
w(7) = 2q(5) + q(9) + q(11) + q(16),
w(8) = 2q(2) + q(10) + q(11) + q(15),

w(9) = 2q(3) + q(9) + q(12) + q(16),
w(10) = q(11) + q(12) + 2q(13) + 2q(14).
From this we get the following equality:
(1) 2w(1) - 2w(2) + w(6) + w(7) - w(8) - w(9) = 0.
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Moreover, it 1is easy to see that:
a(1) = w(1) - w(8)/2 - w(9)/2 + a(9)/2 + q(10)/2 + q(11) 12
+ a(12)/2 + q(15)/2 + q(16)/2,
a(2) = w(8)/2 - q(10)/2 - q(11)/2 - q(15)/2,
a(3) = w(9)/2 - q(9)/2 - q(12)/2 - q(16) /2,
q(4) = w(6)/2 - q(10)/2 + a(12)/2 - g(15)/2,
a(5) = w(7)/2 - q(9)/2 - a(11)/2 - q(16) /2,
q(6) = w(3)/3 - q(13)/3 - a(15)/3,
a(7) = w(4)/3 - w(10)/6 + a(11)/6 + q(12)/6 + q(13)/3 - q(16) /.
a(8) = -w(1)/3 + w(5)/3 + w(8)/6 + w(9)/6 - a(9)/2 - q(10)/2
= a(11)/6 - q(12)/6 - q(15)/6 - a(16)/6,
q(14) = w(10)/2 - q(11)/2 - q(12)/2 - q(13°
and consequently
a(K,p) = w(1)(py-pg/3) + w(3)pg/3 + w(4)p7/3 + w(5)pg/3
*+ w(6)py/2 + w(T)pg/2 + w(8) (=py /2+p, /2+pg/6)
+ w(9)(-p1/2+p3/2+P8/6) + w(ﬂO)(-P7/6+p14/2)
* q(9)(p1/2-p3/2-p5/2-p8/2+p9) + a(10)(p,/2-p, /2
(2) =P4/2-pg/2+p; ) + q(11)(p,/2-92/2-p5/2+p7/6-p8/6
+P11-p14/2) + q(12)(p1/2-p3/2-p4/2+p7/6-p8/6

+P12-P34/2) + q(13)(-95/3+p7/3+p13-p14) +

+ q(15)Pl/z-pz/2_p4/2-p6/3-p9/6+p,5) +

+ q(16)(91/2-p3/2-P5/2-P7/3'P8/6+P16).
Now, using (1) and (2), we have the following result:

Proposition 2. (1) q(K) = -2w(1) + 2w(5) + w(8) + w(9) +
+ w(10).
(11) q(K) = -w(1) - w(2) + 2w(5) + w(6)/2 + w(7)/2 +
+w(8)/2 + w(9)/2 + w(10),
(111) q(K) = -2w(1) + 2w(5), provided K ig commutative,
(iv) q(K) = w(10), provided K is aenticommutative,
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Proposition 3. (1) q(K)g.‘.(u3 - n)/4.

(i1) q(lf)"_-(n3 - 4n)/4, provided n is even.

Proof. PFor any a6V, let r(a) = (f(a)+g(a))2/2-2f(a)g(a),
s(a) = (h(a)+k(a))?/2-2h(a)k(a) end t(a) = £(a)+g(a)+(£(a) +
+g(a)+h(a))2/2-(1(3)-3(3))a-r(a)-s(a). Then t(a)/2 =2f(a)g(a)+
+h(a)k(a)+f(a)h(a)/2+2(a)k(a) /2+g(a)h(a) /2+g(a)k(a) /2-(£(a)2-
-f(a))/z-(g(a)a-g(a))/2, and hence, by Proposition 2(ii), q(K)=
= w§V t(a)/2. On the other hend, for any aeV, we have f(a)+
+g(a)£ n-1, f(a)+g(a)+h(a)+k(a) = n-1, Oé.(f(a)-g(a))a, 04«r(a),
0<s(a) and t(a)% (n%-1)/2. Consequently, q(K)é(nB-n)/4. In
the rest of the proof, suppose that n is even. If f(a)+g(a) is
even then h(a)+k(a) is odd, h(a)+k(a) and 1/2 &s(a). Moreover,
£(a)+g(a) €n-2, and therefore t(a)& (n°-4)/2. If f(a)+g(a) is
odd then 1/2 £r(a), 14 (£(a)-g(a) )2 and again t(a)‘(n2-4)/2.

Proposition 4. Assume that K is anticommutative.

(1) qK)< (0 - 2n% + n)/4.

(11) q(K)é(n3 -2n° 41 - 4)/4, provided n 1is odd and
n = 4m + 3 for some mé& Z,

(111) q(K) & (0’ - 2n2)/4. provided n is even.,

Proof. By Proposition 2(iv), q(K) = = h(a)k(a). Moreo-

ver, q(K) is even and the rest is easy.

Proposi tion 5. Assume that q(K)= 0.

(1) 1<q(K).

(11) 64q(K), provided K is commutative,

(iii) 2n - 44£q(K), provided K is enticommutative.

Proof. Easy.

3. Several examples
Example 1. Let G = G(+) be a finite abelian group of or-

der n and let M be a subset of G such that O ¢ M. Put
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m = card M and k = card {a€M; -ac M}, We define a graph J =
= J(G,M) as follows: V(J) = G and (a,b) GE(J) iff a - beM,
Then q(J) = n°m - nm@ - nk and we have the following particu-
lar cases:

(1) n23 is 0dd, G = 2, =10,1,...,n-13 (the additive
group of integers modulo n) and M = 1,2,...,(n=1)/2}, Then J
is commutative and q(J) = (n° - n)/4. ‘

(11) nz4 is even, G = Z, and M = {1,2,...,(n~2)/2}. Then
J is not commutative and q(J) = (n° - 4n) /4.

(111) nZ5isodd, n=4r + 1, G = Z, md M =1{1,2,,..,r,
n-ryn-r+l,...,n-2,n-1%, Then J is anticommtative and q(J) =
= (2? - 202 + n)/a,

(1v) n>6 is even, n = 4r + 2, G = Z,and N = {1,2,,..,r,
n-Tyn-r+1,...,n~2,n-1¢. Then I is enticommutative and q(J) =
= (0’ - 2n?) /4,

(v) nZ4 is even, n = 4r, G = 2, end M = {1,2,,.,,r,n-r,
n-r+l1,..,,n=-2,n-1}, Then J is anticommutative and q(J) =
= (03 - 2n%)/4,

Example 2, Let nZ4 be even and M = {1 124000,(n=2) /2%,
Define a graph I = I(n) as follows: V(I) = Z, and (e,b) 6 E(I)
iff elther a - beM or acMuiO0t and a = b = n/2, Then I is com=
mutative and q(I) = (n° - 4n) /4.

Example 3. Let nZ7 beodd, n = 4r + 3 and M = 1,2,...,
Tyn-ryn=r+l,...,n-2,n-1}, Define & graph R = R(n) as follows:
V(R) = 2, end (a,b)e E(R) iff either a - be M or 2r + 2£a €én-1
end & - b=2r + 1 or 1€a42r + 1 and & - b = 2r + 2, Then R

is ancticommutative and q(R) = (n® - 2n% + n - 4)/2.

Example 4. Let nZ 3, Define a greph S = S(n) as follows:
V(s) = 2, end (a,b) ¢ E(S) iff either 3<a and b<2 or a =0
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and b = 1, Then q(S) = 1.

Example 5. Let nZ 3, Define a graph T = T(n) as follows:
V(T) = Z, and (a,b)€ E(T) 1ff either b<a and 348 or a = o,
b=1, ora=1, b=2ora=2,b =0, Then T is commutative
and q(T) = 6,

Exemple 6. Let n23. Define a graph Q = Q(n) as follows:
V(Q) =z, and (a,b) € E(Q) 1ff either a =0, b = 1 or a = 1, b =
= O. Then Q is anticommutative and q(Q) = 2n - 4.

4. Summary, In the following theorem, let A (resp. B, C)
denote the class of quasitrivial (commutative, anticommutative)

groupoids,

Iheorem 1. (1) a(A,1) = a(B,1) = a(C,1) = b(A,1) =

b(B,1) = b(C,1) =1,
(11) a(4,2) = a(B,2) = a(C,2) = b(A,2) = b(B,2) = b(C,2) =

= 8,

(ii1) a(A,n) = a(B,n) = (3n° + n)/4 for every odd nz 3,

(iv) a(A,n) = a(B,n) = (3113 + 4n)/4 for every even n 4.

(v) a(C,n) = (3n> + 212 - n)/4 for every odd nZ5,
n=4m+ 1,

(vi) ea(C,n) = (3n3 + 2n2 - n + 4)/4 for every odd nz3,
n = 4m + 3,

(vii) a(C,n) = (3n° + 2n2)/4 for every even n>4,

(viii) ©b(A,n) = n’ -1 for every n=3,

(1x) b(B,n) = n’ - 6 for every n23,

(x) b(C,n) = n’ - 2n + 4 for every n=>3,

Proof. The result follows easily from Propositions 142,3,
4,5 and Examples 1,2,3,4,5,6.
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