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ON THE SET OF WEIGHTED LEAST SQUARES SOLUTIONS
OF SYSTEMS OF CONVEX INEQUALITIES
A. IUSEM, A. DE PIERRO*

Abstract: This paper studies the set of fixed points of a
convex combination of projections on m fixed convex sets, or
equivalently the set of weighted least squares solutions of a
system of convex inequalities. It is proved that such set is
the intersection of translates of the convex sets and that its
interior is empty when the convex sets have empty intersection.
For the case of a system of linear inequalities, the behavior
of the set as a function of the right hand side and the coef-
ficients of the convex combination is discussed.
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l. Introduction

Let Cl,Cz,...,Cm be closed convex sets in a Hilbert space H.

Let Pi: H + Ci be the projection over Ci (i.c. Pix =

m
= arg min ||x-zf|). Let S =(A € R" s.t. ¢ Ay =1, A; >0
Z€Ci i=1

(1< i< m)}. Take )\ € S and define P: H+ H as
z (1)
P = I A.,P.x 1
x i=1 i"4

*
The work of this author was partially supported by CNPq, under
grant n? 301699/81,
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Let F(A) bo the set of fixed points of P:
F(A) = {x € H : Px=x} (2)

Consider now the function fk: H-+ R defined by

mn 2
fx(x) o iz )\i”Pix-x“ (3)
=1
and let G(A) be the set of minimizers of fy+ Let
m
cC= N Cye In [3] it was proved that
i=1
i) F(A) =G(A) wr€ s (%)
ii) If ¢ #¢, then F(A) =G(A) =C v Are S (5)
iii) If Z192, € F(1) then Pizy-2y = P,z -z, (1sism) (G)

The set F(A), din view of (4), can be scen as the set
of weighted (with the xi's) least squares solutions to the
problem of finding a point in C. An important particular

case results when the sets C; are of the form
C; = {x: gi(x) < 0} with €;: H + R convex and continuous. (7)

In this case, the task of finding a point in C is

equivalent to solving the system
*
g;(x) < 0 (1< i< m) (8)

In [2,3,&] it was shown that several iterative algoritns
for solving problems such as (8) have the property that they
converge (whenever the set F(A) is non empty) to a point in
F(A) i.c. to a solution of (8) when it is feasible and to a
weighted (with the A;'s) least squares solution of (8) other-
wisc.

These algorithms, which fall under the category of "row

action methods" introduced by Censor [1], are wideoly uscd in

- 668 -



practice for applications in tho .rea of computerized tomo-
graphy and image reconsl{iuction from projections [5,6]. An
example of such algoritlms consists in taking an arbitrary

x° € H and defining

Thus, the stiudy of tlhie setis F(k) has interestﬂnh con=-
sequences on the understanding of the behaviour of these
iterative algoritluns,

In section 2 of this paper iwo results are established,

namelys:

i) The set F(A) is ihe interscction of translates of the
scts CpsesesC, o
ii) If C =¢, the set I'(A) has cmpty interior.

In section 3 we consider the case when the functions 8;

of (7) are affine and 1 = R™., In this caso (8) becomes

Ax £ b (9)

with A € men, L€ Rm. We are interested in the behaviour

of F(A) as a function of b, The main result is the follow-
ing: If b ds replaced by b < b (di.e. ﬁi < by for all i)
then for cach A ¢ S there is a p € S such that F(u) for
the problem wiih b is contained in F(A) for the problem

with b,

2, Some_results on F(A) for pencral convex scts

We start with a lemma related to the formulation given
by (7), ises we consider convex sets of the form

Cy = {x: g;(x) £ 0} with G; convex.
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Lemma 1, Assunc F(A) £ ¢. Take z € F(A). Dofino Yy =
= z-Piz. Then
F(A) = {x € H: gi(x-yi) < 0}.
Proof: First obsorve that, by virtue of (6), the vector vy

is indopendent of the chosen point =z € F(\)
i) <). Take =z € F(A)

Y; = 2-Pjz = z-y, = P,z = gi(z-yi) = gi(Piz) < 0

because Piz € Ci

ii) D) Take x such that gi(x-yi) <0 (1< i< m). Sot
2 2 2 2
x-y; € Ci =2 ”x-P{c” < ”x'(x'yi)” = ”Yi” = ” Z'Piz" .
From the definition of £, it follows that fx(x) < f)‘(z).
Applying (4) and the definition of G(A) conclude that
x € G(A) = F(1\). [ ]
Now, given a vector y € H, define Ci+y = {x € Hs
x = x;+y with x; € €;}. d.e. C;+y is the translate of cy
by the vector y. We go back to the original formulation

where Ci is just a closed convex set in H.

Theorem 1, There eoxist vectors y; € H (1< i< m) such

m
that F(A) = N (Ci+yi). The vectors vy, can be taken as
1

i=

y; = z-P;z where z is any vector in F(A).

Proof: Consider the functions g;(x) = |P;x-x||. Being dis-
tances to closed convex sets, the functions g; are convex
(sce [7, Pp.28,32]). Since g;(x) < 0 iff xe¢ C; we con-
clude that C; = {x: g;(x) < 0}. Apply Lemma 1:

F(A) = {x € H: [[x-y; - Pi(x-y;) = 0} = {x € H: x=y, = Pibbxg]

m
= {x € H: x-y;, € ¢;} = N (Ci+yi). The second statement of
i i=1
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the thecorem also follows from Lomma 1. (]
Lot, for a set B c H, B denoto tho interior of B.

Theorem 2. C =¢ = F°(A\) =¢ ¥ A € S.

Proof: Suppose F°(A) £ ¢. Tako 1z, € F°(A). So T ¢ >0
faxs-l-t 1

such that
lz=z,ll < ¢ = z¢ F(r). _ (20)
Since C = ¢, @y such that z, ‘4 Cy = Pyz,-z) # o. (11)
Let y = min {1'1ﬁ;757351ﬂ' Take any g € (0,y). (12)
3Z17%

Define 1z, = z, + p(Ple-zl). So

lzy-2)l = p"Ple-zlu <¢=z,€ F(A) (from (10)).
On the other hand, since z, lies in the segment between
z; and Pz, Pz, = Pyz) = 2,-Pjz, = (1-5)(21-szl) #
£ z,-P 2, (using (11) and (12)). This contradicts (6), so
F°(A) = ¢. .
Corollary 1. Consider a system like (8) with gy strictly
convex (1£i<m) and continuous. If the system is infeasible and
F(\) £ ¢, then F(A) is a singleton, i.e. there is a unique

weighted least squares solution of (8).
Proof. Take v,w € F(A). Applying Lemma 1,
g;(v-y;) < o, gi(w-yi) P) (1< i< m)
If v£w, gi(x%! -¥;)<0 (1s i< m), because of

strict convexity.

Since 8y is continuous, for each i, there is a
neighborhood of !%1 contained in Ci’yi' From Thecorem 1,

!§! € FO(A), in contradiction with Theorem 2. So Vv = w.
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If H 4is finite dimonsional, the hypothesis that
F(A) #¢ is redundant. A strictly convex function g in
finite dimension has the property that lim g(x) = ®. So
x|| 4
{x: g(x) £ 0} is bLounded. Then all the slts C; are boundod.
In [3] it was proved that if at least one of the Ci's is

bounded, F(A) Ao

3. Some results on F(A) in the linear case

myxn m
X0 e w™,

Consider now a system like (9). Take A€ R
Let = A0 (1s i< m) be the rows of A. So
¢, = {x e R": (al,x) < b;} and ¢ = {x € R™: Ax s b},

Let us perturbate the right hand side b to b = b-¢
(c € Rm, € 2 0). We are interested in the behaviour of the set
F(A) as a function of €. If P is the operator P with b
substituting for b (same for Ei) let F(A,e) be the set
of fixed points of P and c(¢) = {x € R™: Ax < b-g}. With
this notation F(A) becomes F(A,0) and C becomes c(o).

It is clear that if C(c) # ¢. C(c) = c(0). It follows

from (5) that in such a case

¥ A €S F(u,e) © F(x,0) (13)

We want to extend this result to the case c(e) = 9.
In this case, an arbitrary M € S will not satisfy (13).
In fact, it will be shown that given )\ and g there exists
a u €S (in general depending on )\ and €¢) which makes
(13) true.

We start with another characterization of the set

F(u,e). For x € R™ dofine x* ¢ R as
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if x

120

[0} otherwise

The projection Pi on the half space ci has the well
known formula
(¢at,x)-b,)*
gr m ¥ - =gt (1%)
lla _
From (4):

m
F(u,e) = arg min I |, x-x]|? =
x di=1

m My i +.2
= arg min % '__T7?[(<a ,x)-bi+ci) 1l .
x i=1 "a ”

This minimization problem is equivalent to

min g ——-“:f' 5 Yi
x,y i=1 |ai]
. (15)
sete AXx £ b-g+)
y=0

The feasible set of (15) is non empty, because the system is
feasible for big enough y. So (15) consists in the minimiza-
tion of a quadratic function bounded below on a polyhedron.
Frank-Wolfe'!s theorem (see [7, Cor. 27.3.1]) insures the
existence of a solution, Because the minimand is strictly
convex in y, the y part of the solution is unique. Let us

call it y(n,e). It follows that:
Proposition 1
i) F(use) #8 ~¥peES, €20

ii) F(u,e) = {x € R™: Ax s b-g+y(u,e)} where y(u,e) is
the solution of (15).
Let Q be the projection of the feasible set of (15) on

the y coordinates, i.e.
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Q={ye€ R., Y2 0 and 3x s.t. Ax £ b+y-c].

Take Y€ Q, ¥ 2 y. Clearly any x feasible for (15) re-
mains feasible if ¥ substitutes for Y. We rephrase this

fact as

Proposition 2. Y€ Q, Y2y = ¥yE€ Q.

Lemma 2. ID€ R*™, D20 and c € R® (for some s)
such that

Q-{yen-:byzc, y =2 0}. (16)

Proof: The feasible set of (15) is a polyhedron in R™'P,

So its projection Q is a polyhedron in R™ (see [7,Th.19.3])
.. Qu{yeR M Dyz2c, ya2 0} for some D, c. We still
need to show that D 2 0. If some entry di;l were negative
‘take any y € Q and define ¥ = y-o-MoJ where e € R® is
-3-1. e =0 for 143, Feaq foran
M 2 0 because of Proposition 2, but the i-th constraint is

defined as

violated for big enough M, [ ]

We need some results on systems of inequalities like

sxm with rows ti and entries tiJ 2 0,

(16). Let Te€ R
Let E-{zen-x’rzzu, z 2 0}, For vER-, v > 0 con-

sider the problem

e 2
min I vyE]
i=l

(17)
s.t. Tz 2 u

. za2 0
Assume (17) is feasible. Again, by strict convexity and

Frank-Wolfo's theorem, (17) has a unique solution z(v).

Take any zer, 2° > 0. Let f:-[zentzszo] and
z* = arg min||z| (18)
z€E
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Let I = (ir (t',2" = w]), J = (g zj=0}, K= (31 2% >},
Lemma 3. v k€ K 3 41€ I s.t. t; >0 and t“-ovJEJ.
Proof: Take k € K. Certainly there exists i € I such that
tix > 0. Otherwise z = z*-nok belongs to E for small

enough n in contradiction with (18). Let L= (i€ ty >0}

Assume, by negation, that

¥i€I Tj€T s.t. tyy >0 (19)
Define
0 = min [z';] (20)
1€ jsm
Tt
ij
e
§ =min (= 21)
1T ik ] (
8§ = min [z;,ag}

8 > 0 because of (19). Define 2z as

z'; if j € K-{k}

o if je€ J

1
.
L}

z;-o if j =k

From (21) 2 € E (in the system Tz > u  the increase imn the

columns in J is greater than the decrease in the k-th column),
From (20) 2 € E. So 5 = z* + ¢(2-2%) € E for ¢ € (o,1).

If r is the cardinal of J, |3|? = Hz"ll2 - a[zbz;-a(r02+62)].

~ 28
Hence [Z]| < ||z%| for a <~—:£—2- in contradictjon with (18),
ro”+8

Lemma 4, Given 3z° ¢ E, z°>0. a3y €R™, v>0 such
that z(v) < z°.
Proof: Take 2z® as in (18). Use Lemma 3 to select, for each

k€ K, a row i(k) € I such that ti(k) k> 0 and ti(k)'3=0
?
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“J€J. Let L={i(k): k€ K}]. Lot p = & t*. By cons-
€L
truction pJ =0 if jJ€ J and pJ >0 4if J € K., Also

¥ z€E (p,z*) = & w < (p,z) (22)
4€L
Define
P
J .
=3 e jex
=3

1 if Je g

Take any z € E. From (22)

* =
(Py2™) < (p,z) = jéK vjzj < jgx \J‘jzdz‘1

m
2 2 v.z®2 < 2 5§ . 2% ¢ Z v (2*%42%) =
g=1 973 ge1 3T 0 T3V
m m
z sz;Z < I vjz% o
j=1 j=1 J

So for such v, z¥* = z(v). since z* € E the lemma is

established. ' ]
We prove now the main result of this section:

Theorem 3. ¥ A€ S, € >0 Ty € S such that F(u,e) <
< F(r,0).

Proof: By Proposition 1.ii)
F(2,0) = {x € R": Ax < b + y(1,0)]. (25)

Also 'y(A,0) +¢ is a feasible y for system (15); i.e.
y(r,0)+e € Q. sSince ¢ > 0, ¥(A,0)+¢ > 0 and we may apply
Lemma 4 with z° = y(1,0) + €, T =D and u = c. Conclude

that there exists v > 0O such that the solution z(v) of

m 2
min ¥ VJzJ satisfies
z€EQ j=1

z(v) £ y(1,0) + ¢. (=26)
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Take now
i, R
v, a7

My =~ 2
YUOTovllad
=1

z
So M € S and z(v) solves min I —Ei—%-. It follows from
2€Q i=1 | ai|

Proposition 1.ii) that

F(u,e) = {x € R®: Ax < b-g + z(v)}. ) (27)

Take any x € F(M,e). From (26) and (27) Ax < b+y(1,0).

From (25) x € F(A,0). So F(u,e) c F(A,0). [ ]

Geometrically, the theorem states that by a suitable
change of weights the set of weighted least squares solutions
of the tighter perturbed problem is included in the set of
weighted least squares solutions of the original one, extend-
ing the inclusion relationship between the feasible sets of
both problems. Observe that the result also holds when
C(e) =¢ and c(0) # ¢. 1In such a case the vector p of the
theorem does not depend on A (only on ¢), since F(A,0) =

=C(0) ¥ € s,
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