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ON BOUNDED SOLUTIONS OF A LINEAR DIFFERENTIAL
EQUATION WITH A NONLINEAR PERTURBATION
Bogdan RZEPECKI

Abstract: Let E be a Banach space. Suppose that £:1[0,00)x
»E—>E satisfies the Carathéodory conditions and some regu-
larity ocondition expressed in terms of the measure of noncom-
pactness o . We prove the existence of bounded solutions of
the differential equation y'= A(t)y + f(t,{) under the assump-
tion that the linear equation {'- A(t)y + b(t) has at least
one bounded solution for each b belonging to a function Banach
space Bo‘
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tion spaces, admissibility, measure of noncompactness.
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1. Introduction., Throughout this paper, J denotes the
half-line tZ0, E a Banach space with the norm N+l , and
S (E) the algebra of continuous linear operators from E into
itself with the induced standard norm 1.1 .

Consider the nonlinear differential equation

(+) y'(t) = A(H)y(t) + 2£(t,y(t)),

where te€J, A(t) € £(E), and £ is an E-valued function defined
on JxE.

We are interested in the study of bounded solutions of
(+) when f satisfies the Carathéodory conditions and some re-
gularity Ambrosetti-Szufla type condition (of. [1],[11]) ex-

pressed in terms of the measure of noncompactness oC .
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The method used here is based on the concept of "admissi-
bility" due to Massera and Schaffer [8]., With (+) above we
shall associate the nonhomogeneous linear equation
(x) (1) = A(t)y(t) + d(%)

under the assumption that has at least one bounded solution for
each function b belonging to a function Banach space Bo'

2, Notation end preliminaries, Let o denote the Kuratow-
gki ‘s measure of noncompactness in E. (The measure occ(X) of a
nonempty bounded subset X of E is defined as the infimum of all
€ > 0 such that there exists a finite covering of X by sets of
diameter 4 ¢ .) For properties of the Kuratowski function oC ’
see e.g. [3]1 - (6],([10].

Further, we will use the standard notations. The closure
of a set X, its diameter and its closed convex hull be denoted,
respectively, by X, diam X and oonv X. If X and Y are subsets
of E and t, s are real numbers, then tX + sY is the set of all
tx + sy such that x€X and ye Y. For a set U of mappings defi-
ned on X we write U(t) = {¢(t): ¢ € ¥{; @ [X] will denote
the imege of X under ¢ . Moreover, we use some of the notati-
on, definitions, and results from the book of Massera-Schaffer
[8] and the paper of Boudourides [21.

Let us denote:

by L(J,E) - the vector space of strongly measurable functi-
ons from J into E, Bochner integrable in every finite subinter-
val I of J, with the topology of the convergence in the meen,
on every such I3

by B(J,R) - a Banach space, provided with the nom

I | B(R )» ©Of Teal-valued meesurable functions on J such that
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(1) B(J,R) is stronger than L(J,R) (see [8], p. 35), (2)
B(J,R) contains all essentially bounded functions with comp-
act support, and (3) if ueB(J,R) and v is a real-valued mea-
sureble function on J with |v| 4lul, then v¢B(J,R) emd

v lpegy £ Mully gy
by Bo - the Banach space of all strongly measurable Lunc-
tions u:J—> E such that Null € B(J, R) provided with the norm

by Co - the Banach space of bounded continuous functions
from J to E, with the usual supremum nom.

Let B¥(J, R) be the associate space to B(J,R) i.e.,
B¥*(J,R) is the Banach space of all real-valued measwrable func-

tions u on J such that

“““B*(R) = sup {J; | v(s)u(s)lds: veB(J,R),
l\vl\B(R)e1§<oo

We denote by B¥J,E) the Banach space of all strongly measurab-
le functions u:J—»> E such that lu i € B¥(J,R) provided with
the norm fullggpy =1 lul Y pe(R)"

We introduce the following definitions:

Definition 1. The pair (Bo,co) is called admissible (of.
[8], p. 127), if for every beB, there exists at least one boun-
ded solution of (*) on J.

Definition 2. Given any subinterval I of J, we denote by
A 1 the characteristic function of I. The space B(J,R) 1is
called lean (cf. (8], p. 483 [12], p. 386), 1f for any nonne-
gative function be B(J, R)

2 1Y (4,00) Php(g) = O
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Our result will be proved via the fixed-point theorem gi-
ven below,

Denote by C(J,E) the family of all continuous functions
from J to E. The set C(J,E) will be considered as a vector spa-
ce endowed with the topology of uniform convergence on compact
subsets of J.

We use the following fixed-point theorem (cf. [ 9], Theorem
2):

Let % be a nonempty closed convex subset of C(J,E). Let d
be a function which assigns to each nonempty subset X of ¥ a
nonnegative real number @ (X) with the following properties:

1° &(@x) ¢ $ (X;) whenever X c X,;

2° (xuiyd) = @) tory e %,

® Q@D = O

4° 1if 3 (X) = 0 then X is compact.

Suppose that T is a continuous mapping of ¥ into itself and
$(TIX)) < @ (X) for an arbitrary nonempty set X ¢ £ ach
that & (X)> 0. Under these hypotheses, T has a fixed point in ¥ .

3. Result, TFirst of all, we assume that AeL(J, £(E)), the
pair (no.co) is admissible, and B(J,R) 1is lean.

Let Eo denote the set of all points of E which are values
for t = O of bounded solutions of the differential equation y'a
= A(t)y. Suppose that E, is closed and has a closed complement,
i.e, there exists a closed subspace E; of E such that E is the

direct sum of Bo and E,.

Let P be the projection of E onto E,, and let UsJ —> (E)
be the solution of the equation U'= A(t)U with the initial con-
dition U(0) = I (the identity mapping). For any t 6 J we define
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a function G(t,-) € L(J,L(E)) by

U(t)PU " (8) for 04 s<t,

G(t’l) '{ 1
- U(t)(I - P)U”'(8) for m>t.

Let G(t,-)e B¥(J,{L(E)) and 0 G(t,e)] Ba(g(g))< K for any te g,

Moreover, let us put: (Fu)(t) = £(t,u(t)) for uec(J,E).

Theorem. Suppose f is a function which satisfies ‘tho fol-
lowing conditions:

(1) Por each x¢ E the mapping t > £(t,x) is measurable,
and for each t€ J the mapping x —> £(t,x) is continuous.

(2) N£(t,x) | & A(t) for (t,x)¢ J» E, where A ¢ B(J,R).

(3) P is continuous as a map of any bounded subset of
C(J,B) into the space By.

Let g and h be functions of J into itself such that
86B(J,R) with sup {f: D 6(t,8)] g(s)ds: t€J} &1, and h 18
nondecreasing with h(0) = 0 and h(t)<t for t>0. Assume in ad-
dition that for any ¢ > 0, t >0 and & bounded subset X of E
there exists a closed subset Q of [0,t] such that
mes ([0,t1\ Q)< € and

o (£IIxX1)& sup £8(8): s€I}+h (a (X))
for each closed subset I of Q.
Then for x,€ Eo with a sufficiently small norm there exists

& bounded solution y of (+) on J such that Py(0) = t 38

Proof, By Theorem 4.1 of [ 7], there exists M>0 such that
every bounded solution of y = A(t)y satisfies the estimate
Dy(t)hé& MUy(0)l for t&J. Now, choose a positive number
T>KUANgg) and assume that x 6 B with Ix I £

£ (r - KUAN 3y).
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Denote by ¥ the set of all ueC(J,E) such that lu(t)l|<r

on J and

L7 t
NuCty) - ult)l 4 ¢ |J;"IA(a)ldl|+ |,Q’M.)asl
1 1

for t,,t, in J. Define a mapping T as follows: for u ¢ %,
(Tu)(t) = U(t)x, + [ G(t,8)(Pu)(a)ds.
J
Let u e ¥ . Por t€J, by the Holder inequality ([8],
Theorem 22.M), we obtain

e () < Hu)x i+ [ hets,e ) I (Fu)(a) las 4

£MATO)x, R+ [ NG(t,8) ) A(a)as £
élilxou "'K“]"HB(R)‘ r.

By Theorem 2 of (2] the function Tu is a bounded solution
of the differential equation y' = A(t)y + (Fu)(t). Hence
I (Ta)(ty) = (Tw) () 0

][ M@ ) (e) + Pu)(s) has| <
1

t t
2 2
é;-.UL)A(s)Ids\ + lL1]\.(a)dsl
on J, and therefore Tu ¢ ¥ .
Por u,ve ¥ and teJ,

N(Tu) (%) = (TW(D)U £

< fJ\G(t.s)l I (Pu)(s) - (Fv)(e) dds 4K I Fu = Fv ll 55

FProm this we conclude that T is continuous as a map of ¥ in-
to 1tself.
Put
B(V) = sup $o0 (V(4)): ted}

for a nonempty subset Vof ¥ . It is not hard to see that

- 640 -



the function ¢ has the properties 1° - 4° listed in Section
2. To apply our fixed-point theorem 1t remains to be shown that
® (TLV1) < & (V) whenever ¢ (V)>o0.
Assume V is a nonempty subset of ¥ . Fix t>0 and €& > O.
Since B(J,R) is lean, K “%[a,m) ‘KIIB(R)< € for some a:t.
Let d'= J'(e)>0 be a number such that

Jorecte) 1a(as < €

for each measureble D c [ 0,a] with mes (D) < d° . By the Luzin

theorem there exists a closed subset 2y of [0,a]1 with

mes ([O,a]\z1) < d°/2 and the function g is continuous on 2.
Let X, = U{V(s): 0£84al. By our comparismn condition,

there exists a closed subset Z2 of [0,a] such that

mes ([0,a)\ z2) < /2 and

0 (2II=X 1) < sup {g(8): 8cIfeh(cc (X))

for each closed subset I of Z2.
Define: D = DyUD,, Z = [0,a]\D, where D, = lo,a1N\zy
(1 = 1,2). We have

o« ( {fn G(t,s) (Fu)(s)ds: uev}) &

< diam ( -{jp G(t,8) (Fu)(s)ds: uev}) £
£2.8up {1l ID G(t,8) (Fu)(s)dsll:uecvi <
£2 ‘(n 1 G(t,8) 1 A(s)ds<2e
and
(4 f:G(t.a)(Fu)(s)daz uevl) &
€2+ [P16(t,8) ) A(8)a8 £2K Ny (g o) Alg(g)<2 €

Let
¢y = sup {g(s): se2}, o, = sup {1G(t,8)b:s6e2t.
Since Z is compact, for any given €' > O there exists an>o
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such that |s} - s} l<m  with s;,s;' € Lo,tlnz, |s) - 85 1<
< m with 83,8)' € [t,81n2 and |s' - 5"| < 7 with 8',
8" ¢ Z implies c1oc(x°)|cct,53 ) - G(t,s':" Yl<e' (3 =1,2)
and c, (X)) | g(s’) - g(s")l < &',

Let I, = [ti_1,t1]\D (1 =1.2,...,m), where

0= t°<t <...<t1 = t<...<tm =a

1
with Iti = %541 < M . We shall prove below that

(U L6(t,s)2 LI X): sel;}) &
<sup{BC(t,8) I: 86T}«  (£IT, 1.

In fact, for 2,> 0 there exist a number MNo> 0 and sets
Wyo 3 = 1,2,000,n, such that

~ m
fLIix XO] ="3\=J‘1 ';]' diam WJ < e, t cc(f[Iix XO])

and

1G(t,6') - G(t,6" )k esup Siixll: xefll;xXx 1} < €,

tor 6', 6" e I, with |6'~ &€"| <7 . Divide the interval
I; into r parts 4y< < ese<d.. q in such a way that

1dq - 4.1 <m, (k =1,2,,..,r). Furthermore, let us demote
by xjk (J = 1,2,000y03 k¥ = 1,2,.,.,r) the set of all x6E such
that there exists a point wewd with i x - G(t,dk)w I < 2,

Let ‘s‘ = G(t,so)zo. where s,¢ [dq,dq+11 and z € WP. Then

g - e(tya)z Il £ Halt,8,) - G(t,a) Nz ll < &

hence g € X__. Consequently,

Pq

" v
371 471 Fyxe
It \lx@- G(t,dk)wp Il < €, (ga = 1,2) with x‘ae xdk and

w?s Wj, then
“21 - 12“&“ x1 - G(t'dk)'1“ + “G(t'dk)'1 - G(t’dk)'z)n +
- 642 -
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+ Ne(t,a)wm, - x, Il <
<2g, + sup {16(t,8)]: seIi}-diam ('J) <
<2e,+ [, + o (£II;x X 1)) sup {0G(t,8) : seId.

Therefore,

& (ULG(t,8)fII>xX): scl,})22 e, + g, +
+ L (£[I; <X 1)) esup {8 G(t,8) 0 sel}

and our claim is proved.

Applying the integral mean value theorem, we get
& ( .{fz G(t,8) (Pu)(s)ds: ueV}) <

< oc(;*; mes(I;) & (UL a(t,0)2II,xX 1t seI})) <

N
3

_%g..‘ mes (Ii)&(U€G(t,s)f[Iix X): s€I}) £
< 2, mes (1,)16(t, 61 &( ¥ )n(x(x,)),
where 6’1, T4 are points in Ii such that

16(t, 6,)0 = sup {hG(t,8)0 seI,} end

g(vy) = sup {g(s): seI 3.

Now, from the above, we obtain

< (TLVI(t)) ¢ o ( {fn G(t,8)(Pu)(s)ds: ucVvy) +
+ & {J’z G(t,8)(Pu)(s)ds: ueVy) +

+ o (£f 7 G(t,8)(Fu)(s)ds: ueV}) <
<te +n(x(x)) T L (Ac(t,0) e +

+ °1 'G(tpa) = G(t' di)‘ + Ozlz(s) - 8( Ti)l)d'-

Suppose uc(xo)>o. From the sbove, it follows that
o (TLVI($)) <

<48 + E, fli(lG(t.s)zé(E) + L) max))an <



<4e + h(ou(X,)) [, 16(t,8) 1 g(s)ds + 2€' - mes (2).

Since V is almost equicontinuous and bounded, we can apply
Lemma 2.2 of Ambrosetti [1] to get

(X)) = sup {X(V(8)): 04s5%a}c P (V).
Therefore
& (TIVI(+)) < 4e + h(F(V)) fz 1G(t,s) | g(s)ds + 2¢' . mes (Z),

and we obtain K (TLVI(t))£h(d (V). If « (X)) = O, then
o (TLVI(t))£0 = h(0)<h( H(V)). This proves

L (TLVI(t)) £ h( B (V)) for each teJ;

hence $ (TLV1) £ h(d(V)).
The set X is a closed and convex subset of C(J,E). Thus
all assumptions of our fixed-point theorem are satisfied; T has

a fixed point in % which ends the proof.

Remark. Our result may be applied to the important case,
when Bo is any Orlicz space I.q. generated by a convex ¢ -func-
tion such that lim @(u)/u = 0 and 1im ¢ (u)/u = oo .

w->0 M -»co
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