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Abgtrget: An algorithm translating nonstandard definitions of
notions standard version is given, Counterexamples proving that
our algorithm is in a certain sense the best one are described, It
appears that in general this translation is much more complicated
than in the case when the notion of & limit (and other similar .no-
tions) is translated by £-o method,
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Introduction. The paper is the last of the series of three
papers ([01],(82]) using the same idea but applied in different
branches of nonstandard methods, We find & standard description
of nonstandardly defined notions. Cauchy’s ¢ -o criterion for 1i-
mits and Weierstrass’ ¢-¢ method for exclusion of infinitesi-
mels may serve as the first results in this area, In the paper we
shall describe an algorithm which finds for any nonstandard defi-
nition of a notion its standard counterpart, The algorithm can be
used also for the natural generalization of the notion "to be in-
finitely small", namely for the notion "to be an element of the

monad of a filter", In this case we demand, however, the enlarge-
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ment to be compact and we give some counterexamples proving the
importance of this assumption. The algorithm uses auxiliary va-
riables for subseta of the set we work at. Hence,in genersl,
E-of method does not suffice, An example proving this fact will
be also given here, Notions used@ im the counterexample are only
by one step more complicated (from the syntactical point of view)
than those ones of a limit, a derivation, etc, The counterexample
proves that the given algorithm is from a certain point of view
the best one - it uses namely suxiliary variables just from the
power set of the "basic" set., This choice of variables is urgent
and sufficient. The translation given in[N] uses auxiliary varia-
bles from increasing powersets of the basic set in dependence on
the complexity of the nonstandard definition,

Both translations are complicated emough and one cannot
expect that they contribute to the better understanding of the
nonstandardly defined notions. The author believes that the com=-
plexity of the translation may point out the places that could
be specific for nonstandard methods. Let us give here a notion
of this kind. Let f,, be a sequence of real functions defined in
a neighbourhood of a point x, We call a real number a to be a li-
mit point of the sequence f in touch to x iff (Jy,y=x) (Ve ,IL(ex))
(f.(y)=a), where y=x means that y and x are infinitely close and
IL( <) denotes that o ig an infinitely large natural number (for
a correct definition see §0). Let us note that lin a =a is equi-
valent with (Vo ,IL(c))(8,=a) but the given notion is not equi-
valent to (Ve)(3F y“e(x))(,}iﬂ‘}, f,(y)=a). Some examples of non-
standard notions (syntactically) similar to the given one can be
found in [H],

In the middle part of the paper we shall "word by word" mo-

dificate (using the technique of compact enlargements) the mid-
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dle part of [CZJ: Also the numbering of theorems and definitions
is consistent with this paper. The author believes that the re-
placement of this part by a citation and instructions of modi-
ficetion of [52] would spare the author’s effort and some paper

but could discourage possible readers.

§0 Preliminaries.

Definition 0.1: 1) A structure */ is called an enlargement of U
far ¢ iff c, @fin(c) are from the language of £, *U is an ele-
mentary extension of L and there is ce*(ﬂ’ﬁn(e)) (*¢ @ﬁn(c))
being the interpretation of ﬂ’ﬁn(c) in "Il ) such that (V' x)

(U E xee => *UE xea ).

2) We call the interpretation ¥x of the element x of {L in
¥4/ the enlargement of x. The elements of *(L being such in-
terpretations we call standard ones (St(x) = (3 x)(x=%)), Ele-
ments of UL we call internal and subsets of */L we call extere
nal, ( Thus e.g. N (more exactly {*n;neN} where N denoteg the
set of natural numbers) is an external set,o¢ €X¥N-N is an inter-
nal set ( every natural number n is the set of all natural num-
bers less than n ) and *N is a standard set ( but having nonstan-

dard elements).

Conventions 0.2: Sometimes we shall omit ¥ if there is no danger
of confusion ( which is in use in the literature), We shall omit
* mostly in the case of habitual relations and functions. Thus
we write o €N (instead of o % ™ ), x+y (instead of x*y) etc.
On the other hand we extend the meaning of *G’fin(X) also for

external sets X. We define *@fin(x) = {x;( Y tex)(tex)&*Fin(x)] .

Thus e.g. Cpi () = Ppi (W) < % Pein(®)) = *Pp (*N). Simi-
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larly we extend the meaning of <, N,- etc. for external sets.

Notations 0.3: We use n,m,k,1,... for elements of N (here we
also identify n with ¥n). We use o, 3 vy 14+ for elements of
*X. We use x,¥,t,u,... for internal sets, x,t,g,c',... for

external sets. There are also some exceptions, We use someti-
mes ¢ instead of C for elements of %, but in this case sym-

i »* x
bols ¢ or (mfin

(¢)) occur in its nearnesa.
Definition O.4: 1} A natural number ot e*N is called infinitely
large ( IL(o¢) ) iff oc€™N-N.

2) A real number x€*R is called infinitely swall ( IS(x))
iff (Joe ,IL(ee))(Ix]<1/ce).

3) For ¢ from (L we say that a set ae*((Pﬁn(c)) such that
cCa is c-infinitely large and use the notation ]:Lc(a).

4) Let § from /L be a filter on c. We put M ={xe¥e;
(¥ xe F)(x€*D)} . g is called the monad of F . It would be
also reasonable to use the notation ISg(x) instead of x€ (v, as

Is(x) = XE (Wg ir ¥ denotes the neighbourhood filter of O.
Note that if *L is an enlargement for ¥ then (420 also
in the case that /1% =0,

Lemma 0.5: 1) St(B8) = (Voe,IL(o¢))( B<o2)
2) Let x€% & ™ be an enlargement for c. St(x)&xe¥e
= (Va,IL (a))(xea).

]

Proof: 1) <= is obvious as7n<n, We prove = ., Let <3, Put
M={k;k§oc}. MSN and M is bounded from above (by /3 ), hence M
has the maximal element., Let m=max(M). If m<o¢ then m+1<cc and
m+1€M which is in contradiction with m=max(M). Hence m= o end
St(o¢).
2) => obviously holds. We prove <=, If ILc(a)&xdc then
IL,(a~{x}) ( see the definition of IL,).
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Definition 0.6: An enlargement *f is called compact for ¢ (cell)
iff for every internal set y the following property holds:
(Va,IL (a))(aey) => (J agePrin(c))(V ae®(Pey (e)),a2a))
(aey).

Saying that "4 is an (compact) enlargement we mean that

YU is an (compact) enlargement for every element of W,

Fact: Every enlargement for N is compact for N.

The hint of the proof: @f (N) can be coded in N (e.g. using

in
the dyadic expansion (see e.g. [(’52])). Moreover, a subset is
standard iff its code is standard. Further for every IL( o)
there is B<ot such that B codes an II..N set. For the proof of
compactness use the co-overspreed lemma (consider the least

of codes for sets in y from the definition of compactness).

Now we suppose that {4 has a set structure, toc. By that
we mean that € belongs ta the language of L and extensionali-
ty holds ( sets are equal iff they have the same elements ).
Hence c,n, U,- have usual boolean properties, Furthermore we

suppose that for every c&ll we have Pesple)e L.

Theorem 0.7: If UL is an enlargement compact for ¢ and y is
an internal formula ( only internal sets can be used as para-
meters and quantified - l/ is a formula in the sense of /)
then the following equivalence holds (V a,ILc(a))(V x)

(3 b,IL(B)) i (t,a,b,x,3) = (Vb € Py (€))(T a6 Ppyplc))
(Va2a)(Vx)(Ib2b)) tf(t,a,b,x,?). Furthermore, if Z are
standard then the righthand side of the equivalence can be un-
derstood in the standard’ sense ( as a usual formula of the
structure ().

Proof: see [&].

Note that if we use an analogous equivalence for IL(o¢),
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we obtain ¢-o translations of notions (uniform) continuity,
(uniform) limit, derivation etc. (see [&]).

Theorem 0.7 may be considered as a first form of a transg~
lation algorithm. The form is suitable for the translation of
notiens similar to the notion of limit.

Let us consider (om the other hand) the formula ( Voo yIL(et))
(3 a,IL (a))(card(a) <~). This formula holds in &ny compact
enlargement, But an example proving that there is an enlarge-
ment in which the given formula does not hold can be found in
[L] (it follows the/lemma 2.7.8). Hence to the given formula
there is no standard counterpart which is independent on the
enlargement,

Similarly: Let M be a set of ultrafilters on N described
by the following nonstandard definition: %eM = (Voo ,IL(ce })
(I8 ,B<x)(3 .2 — *NESt(£) ) ( V X6 *F ast(X)) (£( g )€X)o (No-
te that & = Fil(f(B)) in the notation from [CH Hl ). In the
case of compact enlargement M contains all the ultrafilters,
In the general case M depends on the enlargement, That is the
reason why we' restrict ourselvea, in finding the trenslation,
to the case of compact enlargements. It is not known to the
author if there is a natural parameter and a translation algo-
rithm for the general case. In the case of nonstandard models
of arithmetic we use,as such a parameter, the standard system
of the model (see [82]y.

§1 Set considerstions.

Lemma 1.1 (Quantifiers chahging lemma): Let *Fin(a), let Pse
be an external set and let f(t,2) be a set formula. There is
an external set G E”o’ﬁn(a) and a set formula V(t,?) such
that (VteQ) g (t,d) = (3 TeO) Y (E, D).
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Moreover, G ia definable from ¢ »a by the operations *@fin’-’
X * = T ’
Proof: Put G = 0p; (a) - "Ppy (am0), (£, %) = (Vtel) p(t,By

and consider the internal set {tes; ('p(t.,?)}.

Corollary 1.2: Let y(t,st,}f) be @ normal formula (only the
quantification of internal sets is sllowed) using the predica-
te St for elements of ¥e, A set Tormula Y (t,x,%,d,u} can be
found (by an algorithm) such that for any suitably de-f;lned ex—
ternal set G cu and suitably defined parameters 'ﬁ,u we have
t/?(t,st,f) = (3 xeG)«f/(t,x,E’,K,u).G is defined from ¢ (the
external set of all the standard elements of the standard set
*c), and from an arbitrary a such that ILc(a) using the opera-

tions *o)fin’ X y—» Parameters d,u are defined from a using the
operations *yfin’ X
Froof: By the induction based on the complexity of the formula
So. For induction steps let us note the following hints: St(t)=
= (3 xec)(t=x). For conjunction use, in an obvious manner, care
tesian product. For negaticn use the dual formula and Q.ch.l.
(L.l.1). For a quantifier use the commutative law for the ssae
type of quantifiers and Q.ch.l, if necessary.
Remarks: 1) The lemma and its corcllary can be generalized for
several "small* external sets (instead of ¢) and corresponding
"large" sets as parameters (see [82]), As an example let us men-
tion the iterated ultrapower where "small" means enlargements
with small indices and "large" enlargements with large indices.
2) If St occurs only in the prefix of (f then it is suffi-
cient to modify only the prefix, In this case the modification
and the definiticn of G 2nd ¥ are dependent only on the syn-

tactical form of the prefix of Y'
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§2 Topological considerations,

Definition 2.1: Let 7V be an equivalence relation.

1) 3’4.'«3,\, (X) 2 (Vx,y)(xeX&qynx = yeX) (we say that X is a
figure in ~ )},

2) Figu(X) = {y;(J x€X)(y ~x) (the figure of X).

3) Ma(x) = Fig,({x}) (the monad of x).

Fact: %y (Fig(X)).

Definition 2.2: 1) We use « for words defined by the following
inductive definition: (i) The empty word A is a word,

(ii) If "«’1/2 are words, then (Molxwz) is a word,

(iif) If 4~ is a word then Pu is a word,

(iv) Each word is obtained by finitely meny applications
of (ii) and (iii) on empty words.

2) For ae*( 0’ﬁn(c)) (standard or nonstandard) and for a

word s we define the set u: and the (external) equivalence

2
a

on u: by the recursion based on the complexity of wz .,
(1) m‘a'L = *G’fin(a) y X ;:ty 2 xAc=ynec (x,y have the same
standard elements),
(1) ugtr*®e) = wSrxulte, o x> (‘ﬁgu‘)@l”z) =
T x) §8% 5,
(1id) wPe= Py, x%y = Figg(x)Figg(y).
Remark: For ae@fin(c) (i.e. standard and finite) all the equi-

valences are identical with the equality,

Theorem 2.3: 1) (V a,IL (a)) Figrg(e).
2) Sipu (6) > &g (-0,
3 By 2 (Ge &g £2(03) = B tanaim (61X Gy)e
4) g;tgr% (G) ?% %ﬂu ( *O’fin(G‘)).

Proof: Only 4) is not obvious., Let us prove 4), We have to
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show that x<G&y %“x = y<€G- (*finiteness of y follows from the
definition of uM). But y sFigu(y)=Figu(x) <G, as 23 e (6).
z H a

Corollary 2.4: The set u from Cl.2 may be chosen as u;" for
& suitable 4v,e; the external set G- as a figure in ‘a="and uy

from ¥ as u:“' for suitable subwords MY of wv.

Remark: The given step can be done alse for several "input"®
classes, if we suppose that they are figures in suitable equi-

valences.
§3 A construetion of standard equivalent formulas.

Theorem 3.1: If beae’( Pp; (c)) then uf cu and (V x,yeuly
(=fr = xfy).

Proof: By the induction based on the complexity of 4r, Only
the step for @ is not obvious. Let us prove this step. Let
x,yeu;"' »X 'g‘y and téx, There is sey such that ag‘t. As x,yeu‘;“"
we have s,teu:. Usding the induction assumption we obtain

sg't and hence Figbg(x) sFigg(y). The praoof of the assertion

where x,¥ are changed and the proof of = are analogous,

Definition 3.2: For a,be*(@ﬁn(c)) such that bsa and & word
A we define the function Bfg:uggu:. We proceed by the re-
cursion based on the complexity of « .

(i) af{;(x) =xnb

(11) Gl (2x) ,xp)) = GEM(x)), fi%(x,) >

(iid) tfax) = ( rx,
Lemma 3.3: 1) af’{,‘ is described by a set formula with parameters
a,b, s,

2) For xEu.g we have af“:(x) = X,

3) If asb<d then bf: odfg's @f:;

Proof: By the induction based on the complexity of «t,
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Theorem 3.4: 1) For a,be™ ®.. (c)) such that bea, and for

fin
x,yeu: the following implication holds: xgy > .fg(x)g!t‘g(y).

2) It ILc(b) then the opposite implication holds, toa.

3) If IL (a) and x,yeuy then x5y = (V bel,; (€))(, fi(x)=
=, T5(¥)) = (I b,IL (b)) (b < &k FR(X)=,PE¥)).

Froof: 1) By the induction based on the complexity of ~. On-
1y the induction step for P« is not obwious. Let us prove
this step. Let t€ f%(x) and let Texn (( )71 {t}). There is
vey such that w‘lgt'. By the inductiomn assumption we have tg’.fb(vy
and hence Figg( a1‘.‘{}"(){)) sFigg(afg""(y)). If we change x,y then
we proceed analogously.

2) We use again the induction and only the step for Puw
is not obvious. Let téx., It is sufficient to find 8¢y suech that
tgi. Let seafg(y) be such that sg‘-"af;(t) (the existence follows
from the assumption of the implicatien). Let Bey be such that
szafg('s'). By the induction assumption we have Egt.

3) The fact that the second assertion is implied by the
first one can be proved by 1) and by the fact that for be 0fin@
gs"is the identity., The fact that the third assertion is imp-
lied by the second one follows from the compact enlargement
property. Using 2) we prove that the first asgsertion is imp-

lied by the third one.

Corollary 3.5: If ccbcae™ d’ﬁn(c))&IEug‘ then af:(x)gx.
Proof: Put yzaf‘g(x). yeu;”‘ hence af:(y)ﬂ=afg(x) (see L3.3.2)).
Thus yg% (see T3.4.3)).
Theorem 3.6: Let b<a and IL (b),IL (a). If Gb/asug;. are
figures in b?a then (af‘b‘)-" G‘a= G‘anu.b and (afb)-l"obz
=Fige(G y). Hence G-y = (£ ™ "(( "G p) and G-y =
= (LI e,
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Proof: For xeG’s we have xgafb(x)eﬁ‘anu:. The assertions are

now easy consequences of this fact.

Theorem 3.7: The operations -, X ,® commute with £ in the
following sense: Let bcacd and let ILe(a),IL&(h),ILc(dj.
1) If Gl/Z Eu:' are figures in gthen af‘;’(,‘l—afg'(;'z =
afg.(Gl-G-z)o

"

2) If Gy p Eu:'”' are figurea then ((afg”t)'@“l) X
X ((LPEe)Gp) = ((E5**))"(G 1X G
3) If G‘su‘; is a figure then *0>fin((8fg)"6‘) =
(gfPay" *Pp; ((G)e
For (d.f‘a‘l)'l assertions analogous to 1),2),3) hold.

Proof: We use T3.6. We prove only the most complicated case,
nemely 3). Let xe 0, (( £8%G) = *Ppy (G Nup)e Thus x=G &
gxeul > x= £2(x) (see 13.3.2)) > xe( 20" *Pp; (G )o Let
on the other hand x=afg"(y) & y€6G o We have to prove that
(Vtsx)(te(afg)"o (=G'n ug)). Let for an grbitrary téx an ele-
ment sey be such that t=afl‘;( 8) (see the definition of f£%).
We have tg’s (see C3.5), tEug hence tGG"nu:as G 1is a figure,

. My ~L * -1
We now give the proof for (dfa) . Let x€ fin((df:) ") =
= *Ofin(Figi-(G)) (i.e. x&Pigg(G )=G ), We have to prove that
dfﬁ"‘(x):(df:)"xsc‘. If t is an arbitrary element of x then
df‘;‘(t)EG:n u:=0‘ (see T3,6). Let on the other hand x¢
e((df:“l)"l"( *mﬁn(o*))). Hence (df:vxeer. If t is an arbit-
rary element of x then df"g(t)eG’. Thus xe*o’fin((df‘:)'l‘ Gle

Definition 3.8: Let IL,(a) and let G', Su’be a figure in 5.
We define an external set ch,;‘ of standard functioms F such
that dom(F)=¢ in the folleowing manner: F&RG"!' (3 xeG‘a)

(Y bePp; () (F(b)=,fp(x))e

Remark: The system J¢g, will play an essential rcle in the
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elimination method. Fe3s are functions: from Peinle) inta
sets obtained by operations x and Ofin applied successively
on finite subsets of ¢ and hence may be usually identified
(e.g8. if choice is at disposal) with subsets of c. On this faect
layas the strengthening of our method in comparison with the
method in [N] .

Theorem 3.9: Let ILc(a) and let Ga Su;t be a figure in :a-{‘.
1) t €6, = (I FeXg)(Vae Pp;p(c))(F(d)=, 24 t)ateus),
2) For b2 a&IL (b) let us put G‘b=F1gs(G‘ e We have
}CG‘ «(X does not depend on the choice of a - it has a
standard sense.)
Proof: 1) => see the definition of Ko, «<= For t satisfying
the righthand side let te G-, be such that (V de d’ﬁn(c))
f“(t)- (t)) (for the existence of t see the definition of
Hg, )+ Ve have tgf (see T3.4) and hence teG, (as g:"az%((fa))-
2) For x€6° and de P, (c) we have pTalx) = L5 % x))
(see L3.3.3)) and bf;'(x)eG‘a ( see T3.6 ),

Corollary 3.10: For each normal formula cf(x,st,'z') (using the
predicate St - "to be a standard element of ¢") there are a
set formula (/(x,y,?) and a set K (¢() of functions
F: 0fln(c)—+4l(c) (where (R(c) denotes d’f‘in(@fin"'(@f’in(c))
eeo) for a suitable number of iterations) such that for every
Z,t (internal sets) p(t,st,Z) = (3 FeX)(V ae@Ppip(e))
I,U(t,F(a),?).

Moreover, if Z=*} (2 are standard) then we have
(,p(*t SET) = (FFeH)(V 8 € By (c) St M, F(a) X7) (where
W means Y’ in the standerd sense - all the quantifiers are

restricted to standard elements) as the enlargement is an ele-

mentary extension. The formula on the righthand side is stan-
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dar@ - it is a standard definition of the predicate defined
nongtandardly on the lefthand side of the equivalence,

Proof: Let us denote (1),(2) the lefthand side and the rights
hand side of the equivalence, respectively. Using Cl.2 and
C2.4 we find an equivalent formula to (1) of the form
(Hieca)?(t,'t',?) for an arbitrary chosen & such that IL (a).
We know that G‘e&u: is a figure in ;—ffor a suitable word v,
Using T3.9 we obtain an equivalent formula of the form

(3) (FFeXg)(VaePpy (c))P(F(),a,a,T).

We know that 3661 is not dependent on the choice of g and that
(by T3.9.2),T1.3,T3.6)

(1) ajcay > (P (RD),8,a,t,HP(FA),4,8,t,D).

a does not occur in the formula ,0. Using the logical law
VE(ll(a) [ ({)5(3 a)yl(a) we obtain the equivalent formula

(4y (9 PGRQ-‘)(E a,IL (&))(V de Q.in(c))?(l'(tf),d,a,t,?).

We prove that (4) is equivalent to (5).

) (I Fe¥ ) (Va6 Ppyp(e))(F aePpyp(c) a5 dp(R(d),a,0,t,2).
(4)=>(5) is obvious, Let us prove (5)=>(4). Let us fix F, U~
sing (i) we obtain from (5) the formula (V¥ me ﬂﬂn( J’ﬁn(c)))
(3 ae¥( G’ﬁn(c)j)((.Vdm)(ap d)&?), Using the compact enlar-
gement argument we obtain that there is m,IL(f (c)(m) such
that (3 ae’pfm(c))((Vcrem)(apd)&?(*r(a),d a t,?)) Now as
dca for every ded’nn(c), we have a>c and therefore (4)
holds.For completeness of the proof it is sufficient now to put
t//(x,y,'z’) = (3 3090(5=41 9 &(F aélPy, (e))ady,)e
P(31,95,8,5,2)) and X ={F;don(F)= By, (c)&(T Fe Xg)

(VbePpy (€))(F(B)=EF(B),b))} .

To finish the whole procedure it suffices only to give a
description of J'CG-'» in the usual set theoretical standard lan-

guage. This is done in the section 4.
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§4 Standard description of X,

In this section we have to solve & problem typical for
the beginning of the é-d  method in the calculus. Nemely :
How to find new definitions of notions defined with the help
of infinitesimals, The new definitions may be more complicated,
msy be less objective, but must nat use infinitesimals, In our
case we consider the operations -, X ,*6” for parts of formally

finite sets.

Theorem 4.3: Let Ihc(a).

1) Xyl xany) = {Fidom(Fy= By, (e)a(3 FeX u,)
(IFeH ) (V @€ Poy (e)) (F()=(Fy (@) ,Fp(a)) )]

2) X fn = {F don(®)= Ppy (e)a(V ac P,y _(e))(F(a) & ug)&
8(Vb,de P oy (e))(bed > F(by=,thtr(d)))
Proof: It is an easy application of the definition of }Ce; and

the assertions from §3.

Definition 4.4: 1) }c1®xz = {F;dom(F)= Ofin(c)&(a FieX,)
(3 Fp€36,)(V G €Ppy ()N (F(@N=CF, (3),F,o(a)>)} .

2) For FeX( n and HeJ?* let us define FOH = (Vded’ﬁn(c)
(F(d)eH(a)).

3) For X ¢ xu: let us define W@ ={He3£uo:;(vrgn)
(FeX)).

Theorem 4.5: Let ae™( Poin(e)) & csa,
1) If 6*1/'z§u: are figures in ;=‘then JCG,_QfJ(O;‘]Co;'
2) If 64y, gu:”‘ are figures in ’?" then Xg;xg =

- ¥,
3) If G su;" is a figure in £ then 3"'*0,(,. (6= :K;@.

Proaf: Only the proof of 3) is not obvious and hence we prove

ouy

ite € - let HE.'FC”““(G.), let yeu:“'- be an element correspon-
ding to H ((Vd 60fin(c))(H(d)=.f:,"‘(y))), hence y€6-, Let
- 628 -



FOH. We know that for every d € (py (e), dca & *F(dre R (y) &
& (V1>Cd)(*F(b)=dfb(*F(d)). Using the compact enlargement
property we obtain that the last formula is satisfied alse far
d such that IL,(d)&d sa. Hence *F(d)€,f%4y)cG and Fe s,
Thus He K&, 2 - let He XZ® and 1et yeu be an element
corresponding to H. We have to prove y¢G, Let x be an arbit-
rary element of y., Let FEJCur.be a function corresponding to x.
For any '€ Gp;p(c) we have P()eH(d) as F(2)=,fa(x)e £24(y)=
=H(d). Hence FOH and Fe X . Hence x€G (see T3.9).

In the theorem we have given the inductive steps for a
standard definitien of the set X used in C3.10, which comple-

tes our procedure.
§5 Counterexsmples.

In the last section we' give two examples, The first one
proves that the usage of auxiliary variables from the powerset
of the basic set is necessary. The second one gives reasons

for our restriction on compact enlargements.,

Example 1, Let Sat™ denote the satisfactory relation on N for
formulas of the arithmetic of the order n+l. E.g. Sat® is the
relation such that (Sat®)n( 1) = {d;¢ () , where 07 de-
notes the G8del’s number of the formula 1/ of the first order
arithmetic and R are (evaluation of) free variables of Y"
Satl is defined analogously for formulas 99 where the quanti-
fication of subsets of N is &llowed, An easy diagonal conside-
ration proves that Sat® cannot be defined by a formula of the
n+l order arithmetic, We prove that Sat™ is defined by a "twa
changes of quantification" formula using the generalized IL
predicate in any compact enlargement of O’D(N).

For the description of Sat® we use the set theoretical
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formulaa replacing N by HF (hereditarily finite sets) as this
is technically much easier. From technical reasons we also iden-
tify c with G’ﬁ_n(c) for iterated powersets of HF, Further we
use x € (f’fin(@n(m")) Just to stress that we have in our mind
the set structure of x (as a finite set). This identification
can be described by a standard formula and hence it preserves
the predicate "to be standard", Remember that:

1) xe*P™(HF)ast(x) = x}e *@ L (uryast({x})

2) St(<=,y>) = St(x)&St(y)

3) If we put ILn(x) = IL(P”(KF)(X) then we obtain (using

[}

the compact enlargement argument) (Vx,ILn(x)) ?(x,z)
* I x e O (PTHR) (V xeX( P, (#™(HF))),x2 x)) ¢ (x,%)
for every internal formula V and every internal parameters 7%,

Let (1) GS('(’:") denote the generating sequence of ’;0"

(the sequence of G#del’s numbers of elements of the generating
sequence of ).

(2) ?GFV( "p’) means that € are (evaluation of) free varia-
bles of f o Let t/FV(’p') be the restriction (of the evaluation
mapping) on free variables of 50 s

(3) ?“tk be the prolongation of the sequence ?. (If we
use e.g. functions for the representation then '{\,tk;tfu{tk,k),)

Let us now give the definition for x to code the satig-

factory relation.

Definition 5.1: Cdsat™(x) = x ¢X @ pin( ® H(HF) ))&

& (V'y’e*N&St(’tp"))('(p'edom(x)) &

& (Vy'e dom(X))(GS(’yT) & dom(x)) &

& (V"akeai ed’om(x),st("akéaf NVt ,tp »St(LE, 1))
(‘<tk,t1>ex"{"akeal1} Eget)) &

& (VY ")ol& y;gedom(x) ,st(ryl& YNV t’,St(t)&'t'eFV("yl& #2))
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Gex~{"p1a p2} = @/ vy pexfTy} st wve p2rexfipsh &
& (V7 1€ dom(x),5t(" ")) (Y T, 5t(R)aTerv(r 1))
Rex{"p’} = ey vh &
& (V73 ) g7 edonlx), 5613 8)¢")) (¥ T,st(Daterv((3 a,) P
Ctexr{13 a) P = (3 t,,st80) Ftexfyrpy).

Let us now consider the syntactical form of ihe given for-
mula. The formula is a conjunction of formulas ef the form
(¥ =,5t(2)) ¢ (t,2) and (V'3,5t(2)) (1 (£,8)2(F y,St(3) ), (t,5,0)
where y/ are set formulas. Using prenex operations and the men-
tioned facts, we can find an equivalent formula of the form
(Vz,5t(z))(3 y,St(y))V«t,y,z). ir ILsatn(x) then Cdsat®(x).
Thus we have for any standard (t,’y)"}:(t,’so‘}eSatn = (I x)
(Cdsetn(x)&<t,@pU>ex). Another use of the prenex operations
gives an equivalent formuwla of the form (3 x)(V z,5t(=2))
(3 y,st(y)) y(t,x,ygz) = (I x)(Vz,st(z))( Ty VT , IL(F))
(ye¥& ) = (using comp. enl. arg.) (I x)(V z,5t(2))(Vy,L(F))
EGeFey) = (3 0V5,LMIN V2,582, = (Ix
(Vy,1L%))(3 2,ILND) 5o

Note that the formula on the righthand side is only by
one step more complicated tham formulas having the "easy" tran-
slation mentioned in §0.

The following counterexample uses ideas of such great ma-

thematicians as Sochor, Keisler and Luxemburg,

Example 2, We prove that the set M of ultrafilters on N des-
cribed by the nonstandard definition M = {% ;(Vx,IL(<))
(IB<ec)(F £N—> NY(VX:F)(*F(A3)€*X)} is dependent on the
enlargement which is used end hence there is no standard formu-

la equivalent to the definition of M,

Ve prove firstly that, for any compact enlargement, M
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consists of all ultrafilters. For this it suffices, at first,
to prove that for every ultrafilter % on N the formula

(Vz Eo’fin( F))(*(/l 2)noe £0) holds. Then we shall use the com-
pact enlargement argument and we shall put f to be the identi-
ty mapping. To prove the above mentioned formula let us note
that Nc o« for every IL(ocs).

Now we construct an example of an enlargement in which M
consists only of principal ultrafilters and ultrafilters equi-
valent, in the Rudin-Keisler ordering of ultrafilters, to a
minimal ultrafilter. Let us note at first that the ultrapower
of an enlargement is an enlarggment (see [L] the place mentio-
ned in §0). To see this fact it suffices to realize that the
constant of an ILc element of the enlargement (being the basic
structure for the ultrapower) is an ILc element in the sense
of ultrapover. Remember some notation and facts from (CH HJ.
For xe€*c we put Fil(x) = {X¢ P(cy;xex}. I % is en ultrafil-
ter on ¢ then % =Fil(x) for every xem(F). Let 9'1,9:2 be two
ultrefilters on c. ?1R£K 9-_2 (the Rudin-Keisler ordering on ul-
trafilters) iff there is f:e—>¢ such that for one (and alsc
for all) xepd §,) we have *(x)e4(¥F ). A1l the mentioned
facts are immediate consequences of properties of enlargements,
Now we construct the promised enlargement. Let'_g/: be a minimal
(in }T<K ) ultrafilter on N (thus ¥ is a selective ultrafilter).
Let’U(_ be an enlargement for ultrafilters on N. We put *n =
= Ulg(¥UL) which is the ultrapower of ¥, Let J&€™N be the
equivalence class containing IdA N, It is obvious that Fil(d)=
=%. Let oc&™N and oc< o, Let f:N—>¥¥N be a function contained
in the equivalence class of . Thus we have X={n;f(n)< n}e .
W¥ithout loss of the generality we may suppose that X=§¥. Hence
(¥n)(f(n)eN) and f:N—>N. Considering the construction of ul-
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\rapower we may see that (o )=o¢, Prom the selectivity of &

we obtain that on a certain set from f, f is either constant

or cne-one. Hence oeN or d'="g(oc) for a suitable g:N —> N,

Thus,in our example, the set M consists from principal ultra-

filters and ultrafilters equivalent (in ) with ¥,

[v)

1]

[52]
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