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Abstract: 1In this paper, we present two models of the
alternative set theory with the negation of the axiom of choicey
in the second model even the negation of the weak axiom of choi-
ce is valid. The constructions which in several agpects remind
the clessical method of symmetric models, 1lie, however, basic-
ally on topological means of AST and the fact (also proved here)
that there exists an increasing sequence of endomorphic univer-
ses with standard extension,

Key words: Alternative set theory, basic equivalence, fi-
gure, fully revealed class, endomerphic universe, standard ex-
tension, ultraproduct, model.
Clageification: Primary O03E70
Secondary 03E35, O3E25

The axiom of choice (AC) is in fact in the alternative
set theory (AST) equivalent with the exiom of extensional cod-
ing (see LV], ch, II, § 3). However, its independence on the
other axioms of AST was, for a long time, an open question. A
partial answer, not yet published, was given by the filrst au-
thor who constructed a model of AST in which the Godel ‘s sche-
me, the weak form of the axiom of cardinelities (i.e. every two
infinite sets are equivalent) and the negation of the axiom ol
choice hold. A further contribution to this problem comes from
A, Vencovskd, Her paper (quite recently published): "Indepen-
dence of the axiom of choice in AST" contains a model of the

whole AST with the negation of the axiom of choice in which
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the weak axiom of choice (WAC) is valid. The construction uses
the axiom of reflection (see [S8-V3)). Some notions and results
from this paper will be used later.
Here, we give two interpretations in AST,
The first one is a model of
AST - AC + T AC + WAC,
the second one is a model of
AST - AC + ") WAC,
In addition, in both models the following assertion holda:
(X) Each uncountable class of the model contains a countable

class which is not a class of the model,

The following intuitive image gives a good picture of the
nature of both constructed models, Let us iterate countably ma-
ny times the ultraproduct construction on the universal class
V (the index set is FN). The "enlargements" of classes obtain-
ed from finite iterations and other "suitable" classes (e.g. so-
me countable classes) will represent classes of our models,

Just for the description of these "suitable" classes, we shall
use subatantially topological techniques of AST, Into the se-
cond model, we add, moreover, a special class FR (and, of cour-
se, other classes which are obtained from FR, e.g. by Godelian
operations) such that dom (FR) = FN and for each nePN the class
FR" {n} is the "enlargement" of FN from the n-th iteration of
the ultraproduct. This class prevents the validity of WAC.

As to the validity of other axioms in our models, we shall
show that:

Axioms for sets follow from the fact the the ultraproduct
is an elementary superstructure of the starting structure;

the Morse ‘s scheme will be obtained by a technique similar

- 556 -



to symmetric models;

T1AC and the axiom of cardinalities result from the fact
that the cardinality of the "enlargement" of every infinite
cless (in clessical sense, of every infinite set) is the con-
tinuums

the axiom of prolongation is the consequence of the selec-
tion of countable classes. In our models, there are namely only
the countable classes which one can obtain already on a éertain
step of the iteration. This circumstance implies also the vali-
dity of the assertion (X% ).

Up to now, we have quoted the notion of the iterated ultra-
product which is more currently used in mathematical literature.
In our article we shall work, however, with another technique,
specifio for AST, namely with creating a system of endomorphic
universes with standard extension. This method lies in the exis-
tence (proved in § 4) of an increasing sequence of endomorphioc
universes with standard extension., We shall understand the "small-
est" member of the sequence as the universal class V and the fol-
lowing endomorphic universes as successive iterations of the ul-

traproduct construction.

Now we shall briefly recall some notions concerning our pro-
blems (see [V],[s-V1]),

A function F is an endomorphism iff dom (F) = V and for e-
very set-formula y(zl,....zn) of the language FL, the normal
formula
(1) Vop(P) ~ (Vxy,000,x, € dom (F))(p(xg,000,x) =

=@ (F(xy),...,P(x))
holds.
If F is an endomorphism and rng (F) = V, we call F an auto-
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morphisgm,

A class A is an endomorphic universe iff there is an endo-
morphism P with rng (F) = A.

Let A be an endomorphic universe., An operation Ex defined
for all subclasses of A is called a standard extension on A iff
for an arbitrary normal formula f,'J(Zl,...,Zn)e.I"LA and arbitra-
ry Il,...,anA we have

g Xy X)) = @ (Bx (X),...,Ex (x,)),

where g’A denotes the formula resulting from ® by the restric-
tion ot all quantifiers binding set variables to the elements
of A and all quantifiers binding class variables to the subclag-

ses of A,

Let A, B be endomorphic universes, Ac B. An operation Ex
defined for all subclasses A is called a standard extension on
A with regpect to B x) iff for an arbitrary normal formula
go(Zl,... ,Zn)e FL, and arbitrary Xiseee »X,€ A we have Ex (Xi)s B
(1 =1,...,n) and

q‘<x1,...,xn) = ¢ DB(Ex (Xy),0..,Bx (X)),

If an endomorphic universe A has a standard extension (for
necessary and sufficient conditions see [S-V11), the extension
is uniquely determined - we shall denote it ExA. Analogousdly,
we denote by EXA—»B the uniquely determined standard extension
on A with respect to B,

x) The notion was introduced by A. Vencovské4. Some of her (recen-
tly published) results will be used later here and denoted
by LAV].
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From [S-V1] let us recall seversl assertions:

Let A3V be an endomorphic universe with standard exten-
sion, X,YS A, Then

(A1) IEEIA(X)

(a2) X =Ex,(X)nA

(A3) Ex,(A) =V

(a4) Ex, (FN)+ FN

(A5)  Ex,(dom (X)) = dom (Ex,(X))

(A6)  Ex,(Y"X) = (Fx,(¥))" Ex,(X)

(A7) (Va)(acd = Ex,(and) = a)

(A8) Let FiX <= Yj then Bx,(P): Ex,(X) <> Ex,(Y)
(A9) X<s Y= Ex, (X)< Ex,(Y)

(A10) If x is definable by & normsl formula from Ex,(X),
then x is definable, in A, by a normal formula from X

and x€ A.

All these facts, except (A4), are immediate consequences
of the definition of Ex. The assertion (A4) follows from the
facts that A can be ordered by the type L and A<V,

§ 1. Some properties of endomorphic universe. In this

section we shall prove several assertions concerning endomorph-
ic universes and fully revealed classes, which we shall use la-
ter,

Up to the end of this paper let A, Al' Az,... denote en-

domorphic universes with standard extension.

Lemma 1. [AV] TLet (P be an automorphism)‘, XS A and
P X = X, Then ExA(I') is an sutomorphism and the condition

(Ex, (F))" Ex,(X) = Ex,(X)
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holds,

Proof., Let y?(r) be formulas (1) from the definition of
endomorphisn. Since (P is an automorphi-m)“ the formulas
\V?‘(P) are valid. From the definition of standard extension
we obtain
y;(r) = ¥, (Bx,mM),
which implies that Ex‘(l‘) is & similarity. Since dom (F) = A,
the following equality holds (mee (A5),(A3))

dom (Exl(r)) = Ex, (dom (P)) = Ex,(a) = V.

Hence Ex‘(l‘) is an automorphism. Therefore - notice that P X =
= X - we have
(Ex‘(l‘))" Ex,(X) = Ex, (X).

Lemma 2, Let (P be an automorphim)‘, XS A, F" X = X,
Then we have the following:
(1) (Ex,(F))" (X) = X
(i1) (Ex, (F))" (A) = A
(111)  (Ex,(F)) } Ex,(Def) is an identity.

Proof, Por (i) and (ii) notice that Ex,(F)2 F (see (Al1));
hence (ExA(r))" (X) = X. The assertion (1ii) follows from the
fact that PP Def is an identity.

Lemma 3, Let ‘1' A, be such endomorphic universes that
A1C A2 and let XGL]_. Then the following holds:

(1) Ex‘z(ExAl_, A2(I)) = ExLl(x) (commutativity of Ex)
(i1) Ex‘1"‘2(n = Ex‘l(x)n Ay

Proof. Since Ex, (Ex (X)) is a standard extemsion
EE— A
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assertion is an immediate consequence of (A7),(A9) and (1):
Since ac A and anA ¢ N A, acoording to our assumption, we
have

a=Ex(anMsEx,(und)sw.

Por proving (1ii) notice that « -“.'f‘\r_.“ k‘(li),

where YIE A and !13 !23 ece 18 & descending sequencs of classes
definable from X and hence (rona.lcd)‘. Then, according to The-
orem 1, we obtain that N Y,3+ @ and hence (see (1)) alse
@ n A+d,

This completes the proof.

Lemma 7. Let (X be fully revealed)d, a,be 4 ana

a s W (b). Then a ¢ w (v).

&, 00 18, B0, Ex, (FNIE

Proof, To prove our statement by contrediction, let us as-

sume that there is te a such that ¢ b).
¢ (“'uxA&s,aA(Fm; Lo

Then for a normal formula y both -y (%,Ex, (X) ,Ex, (F¥)) end
¥ (b,Ex, (X) ,Ex, (FN)) hold. Demote

¢ (8,Bx, (X) ,Bx, (FH)) ~ (Ftca)(q v (t,Bx, (X) ,EBx, (F¥));
obviously ® 1is & normal formula,
Since

g (8,Bx, (X),Bx, (M) = pi(a,x,m),
we obtain that there is tcanA sich that

4 v (%,Bx, (X) ,Bx, (7).

We shall show that this fact is in contradiction with the

assumption a € “{Euf“ﬂ (b). To this end, notice that the

existence of t implies that {a § w (0))4, But aceors-
ing to Lemma 6

o Bruy
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e (b) = (b)
4X; FN} “ {f;

A
and thu b))%,
-(u#,u.{,)%}())

Por completing the proof it suffices to show that
ac (b)) =(a (b))4,
“edoos “ety
To see this, notice (use Theorem 3) that

(a = (u‘{f} (0)A= ana = 0, (Mna =

FS
Ex, (X%

a & (b) .
(u&e«': (X3

]

§ 2._Model of AST - AC + 1 AC + WAC., In this pert, we

shall construct the first model. For creating it we suppose to
have an increasing sequence Alc Lac eee of endomorphic univer-
ses with standard extension (for its construction see § 4). Let
us denote
Ve U{ Ay ;neFRi,
The definition of classes in this model (we shall denote
them X*, Y%, x{ seeey otc.) lies substantially on the relation

2 h t1 = « F
{7.3 » more precimely, on the relation -tExA“(Z)} or an ea~

sier typing we shall write further only Exn(z) instead ot
ExAn(Z) and similarly Ex, ,p (Z) will be the abbreviation for

By L4, (2.

Definition, C£s*(X) 1ff X = XnV*, where X 1s & figure in
& L ]
an equivalence LEx, (20} Z_G_Ln Moreover,

(XX c» Y¥) = (X* u xnV* & xc YY)
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(X* =¥ Y¥) = (X* = Y¥),

Por the reader s convenience we ghall - when there is no
danger of oconfusion - speak sometimes (when using the definiti-
on of CLs*(X)) only of X instead of X,

Remark, It is easy to see that, for each xeV*, xnV* is
a class in our model: Let xeV”*, then X€A, for a suitable 2 .
According to (A7) we have x = Exz(x). But x is a figure in
(see the note behind the definition of ). Thus
CLs¥(xn V¥),

Purthermore, we shall denote by @* the formula which is
obtained from the formula ¢ by restiricting all its quantifiers
to classes of our model and € to e€* , If ¢ does not oontain
subformulas of the type Xc Y, then ¢* is obtained by the res-
triction of all its quantifiers binding classes of our model

2
ixt

2
ixi

and sets to sets of our model.

Before proving the validity of the above mentioned axioms
for our model, we shall formulate several lemmas which will ma-

ke the proofs easier.

Lemma 1. Let Ces*(X,) .cll“(lz)....,ctl*(ln). Then there
18 kc PN and a class Yc A, such that (Y is fully revealed)

x » S
and xi = xinv s Where !1 are figures in {E.x:(Y)} .

Proof. It follows directly from commutativity of Ex (see

Lemma 3, § 1) that we can suppose that !1 are figures in
2' L]
-(Ea;_'; (% ° ZysA, _, for a certain k¢ PN, But the finite se-

quence of zi can be coded by one class - let us denote it 2.
Put now Y = Ex, , ,,(Z). According to (All) we have that (Y is
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fully rcnalod)‘k, which completes the proof.

Lemma 2, Let t,u€d, , £ > k. Let further t 2 3 U

{E.xhcz)
Then there exists an automorphism P such that P(t) = u and
™ Ex, (2) = Ex, (Z2). Moreover P* V¥ = V¥ and OZs*(FAV¥).

Proof. Since (Ex, 52 (2) 1s fully rovoaled)“‘ ~ see (All),
and since ¢t _ = u we have (owing to commutativity of Ex)
{EuL(Z)i

that ¢ B, (B, g2t ™ Therefore (see Theorem 3(i), § 1) we

obtain that (t u)Az. Prom Theorem 2, § 1 we know that

Y
-(Euh*‘(l)}
there exists (an automorphism (I)“c such that G(t) = u and

G» (Bxk_d(z)) =-Ex, , (Z). Put now 7 = Ex, (G) and use Lemma 2,
$ 1.

Lemma 3, Let F be such an mitomorphism that P" V* o 7*
and C2s* (PN V*), Then
CLs*(X) = CLs*(P* X).

Proof. It suffices to prove the following statements:

(1) (Ces*(Y) & CLs*(X)) =» Cea*(YI" X)
(2)  cLs*(X) => cea*(x~1),

We shall show only the validity of (1); the proof of (2)
is analogous.

Since X, Y are classes of our model, they are figures in
{E;:——(Z“ (see Lemma 1).

Let now ucY" X, tc V¥ and u t. Then for a suit-

2
{Ex, (203}
able £ >k it is true that u,tcAy . Let P be an sutomorphism
from Lemma 2, This autdworphism “keeps® obviously also figures
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on ‘1' the formula (i) is valid. The assertion (ii) follews
immediately from (A2).

The existence of endomorphic universes with properties
mentioned in Lemma 3 will be proved in the fourth section.

Por the following oonsiderations we shall recall two no-
tions (see [ V] end [S-V1]).

A class X is revealed iff for each countable YS X there is
a set u such that Ycuc<X.

A class X is called fully revealed iff for every normal
formula ¢(z,Z)c FLy the class ix3 (x,X)} is revealed.

Remark, Note that classes definable by normal formulas

of the language I'Lv from & fully revealed class play the role
of a generalization of Sd classes. We shall often use this ane~
logy for our proofs. Instead of giving precise argumentations,
we shall only quote the corresponding assertions from [ V] and
leave it to the reader to replace the words "a set formula of
the language PL" by "a normal formula of the language nm ia
their proofs.

The following assertion is proved in [S-V1]:
(A11) The class Ex,(X) is fully revealed for every XcA.

To see this fact notice that Y is fully revealed iff FN
cennot be defined by any normal formula of the language !I.' from
Y.

An immediate consequence of (All) asserts that: If A< A,

A
XE€A,, then (Ex‘f’*z(x) is fully revealed) 2.

Theorem 1. Let X be a fully revealed class and let 11:7
3X53..0 be a descending sequence of classes definable from X
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by a normel formula (and thus revealed)., Then ﬂxi is a non-
eapty and revealed class.

M. 8.. [V). Gho II' ’ 5.

To the construction of our models we shall need & new ty-
pe of the equivalence of indiseernibility,

Defipition [AV]. Let X be & class. We put x {%i y iff for

each normal formula ?(:,z)e FL we have ¢(x,X) = ¢ (y,X).

Notice that each class X is a figure in {% o

Bemerk, It follows from Theorem 1 that for eny fully re-
vealed class X the equivalence ‘i is ocompact. In other words,

the equivalence &-‘ hag, in this case (from topological point

of view), ap "sensible" properties as the equivalence £ ,
Leasma 4,
(1) Monads in {%‘ are elther trivial or they contain an

infinite set.
(11)  Let (u-§ = {al, then a is definable by a normal for-
3

mla from X.
(111)  There are only countably many trivial monads in ‘%} .

Excof. See an "amlogous" theorem in [V], ch. V, § 1.

Lomma 5. Let P be such an sutomorphism that P* X = X. Then

(Vx) P(x) 0%} X

Pxoof. See [V], oh. V, § 1 and adapt the proof of the
"analogous” theorem,

Lemma 5 implies that each sutomorphism which “preserves"
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the class X, “preserves"” also monads and figures in &‘e} .

Theorem 2 [AV]. Let x {;)‘;—.} ¥, X be fully revealed. Then

there exists an automorphism F such that P(x) = y and ™ X = X,

Proof. Use the back and forth method. In greater details
- adapt the proof of the theorem on the existence of an auto-
morphism from [V], ch. V, § 1.

Lemma 6. Let X be fully revealed. Then
o T o
Proof. Suppose at first x ‘j} Y. We have to prove that
for every normsl formula ¢ (x,X,FN)& FL the formula
(2) ¢ (x,X,F¥) = ¢(y,X,MN)
holds.
From our assumption it follows (see Theorem 2) that there
is an eutomorphism P such that P(x) = y and " X = X, But
¢ (x,X,¥N) is a normal formula. Therefore (since F is an auto-
morphism) we obtain
¢ (x,X,FPN) = ¢ (P(x),P" X, P" FN),
(see [V], ch.V, § 1). We know, moreover, that F(x) =y, F* X =
=X and P* PN = PN (which is the consequence of the assertion
that FX < Def). Therefore the formula (2) is valid.
Since the relation &X%FN% is finer than {%; , the

converse implication is obvious.

Remark., Replacing FN by Ex (PN) in the previous lemma,
we obtain an uncorrect statement: It suffices now to put X = V3
(-]
we have then that Ex (FN) is a figure in SESTENIL ° But the
class is not a figure in £ since Ex (FN) is not a reel class
(for details see [(-V]).
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Corollary., Let X be a fully revealed class. Then it is
possible to define a from X and FN if and only if a is definable
only from X.

Proof. Notice that {a} is a monad in = itf fa3 1s
X, FN}

o
a monad in {75 .

Our next observations will deal with a special type of the
equivalence of indiscernibility, i.e. with {5:500} , which we
A

shall use substantially in the next two sections,

Theorem 3. Let (4 be & monad in -{E.x:(X)} s XA, Then we
have
(1) @NAegor (uni 1s & monad in {%} )4, moreover,
Ex,(vnA)s w.
(11) If aeA, then

acUsanAis unA,

(111) If (X 1s fully revealed)’, then wn A+44.

Proof. Por (1) it is sufficient to prove:
Let (Y = {¢3 g’(t.x)k)‘, where ¢ is & normal formula; then

(Tn(@wnd)g = Ya(wn a)4,

Suppose therefore YN ( @ N A)%@. Then Ex,(Y) n @ +@. Prom this
it follows (since W 1s & monad in {Exf()()} end Ex,(Y) is

definable from kA(x)) that nx‘(!) 2 o Thus Y = k‘(Y)n A2
2 WNA,

Since w N AgY, we have that Ex, (@ n Mg Ex, (Y) - see
(A9). The validity of Ex,(n A) s ¢ follows now from the
fact that w =, N\ Ex,(Y,) for suitable Y; definable from X,

The implication ==p in (i1) is trivial. The converse
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o o
in {Ex:iZ)} = {E’i (ﬁke g(Z)Sand therefore te¥Y" X. Thus
" 2 L] E I 2
Y" X 18 a figure in {Eoc;(zu . A F" V V* we have hence
Ces*(Y™ X),

(Morse s _scheme)¥ . For every formula gp(x,Il,...,Lr_)e FL

and for every X{,...,X; there exists a claas Y such that
C£a*(Y) and 5
(Vxe)(xcY = ¥ (x,XThe. 0, XX ) o

Proof. We can suppose (see Lemma 1) that xl,...,xn are
o
figures in an equivalence $Esg (223 where 2= A, and (Z is ful-

A

1y revealed) ~,

Define

Y =3 Vv (x,X5,... XX )1,
We shall prove C2s*(Y). To this end, it suffices to show that
Y is a figure in {Exf(Z)} » 1l.e. that for every uc Y and te v*

such that t u we have teY,

-[E.xf(i)}
Let £ > k be such & number that t,uedy . Let further »
be an automorphism from Lemma 2, Since ucY, the formula
ga"‘(u,xi‘,... XX ) holds.
We show the validity of the formula
(3) @*(0,XT,e 00 XE) = @¥ (P(w),Xf,... X} ).
Notice that (I3X¥)y means (3 X)(CLs*(X) & y ). Since (see
Lemma 3) C£8™(X) = CLs™(F" X) and P" V¥ = V¥, according to
Lemme 2, § 1, we can replace (3 X)CLs*(X) by (I Pr X)Cee*(P* X)
eand (3x) xe V* by (3 x)F(x)e V¥ But then
@* (U, XTyeee XX ) = ¥ (P(u) A STITR LL> )

-~ seeLV], ch. V, § 1., Formula (3) follows now immediately from
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the fact that P™X, = XX (i = 1,...,n). This completes the
proof,

Further we shall investigate countable classes in our model.

Lemma 4. FNX* = FN,

Eroof. Since FNcDef (see LV1, ch, V, § 1), the class FN
is a figure in each equivalence {7%5 « Moreover, FNEAE for
every £ ; this follows from the fact that Def is a subclass of
each endomorphic universe (see [S-V1])., Therefore FN<V*. Hen-
ce CLs*(PFN). For proving FN* = FN notice that FN¥* ¢ FN, since

in our model there is a smaller amount of classes than in AST,

Theorem 1. Let X* be a countable class of V¥, Then there

exists an endomorphic universe Ak such that X* ¢ Ak'

* =
Proof. Since C£s*(X), the class X is a figure 1n{EkaZ)}

for ZEAk and (2 fully revealed)Ak. Moreover, since X* ig a
countable class, all monads in = there are trivial - see
Lemma 4, § 1. Suppose now tc X* , Then {t} = 4 1is a monad in
{Eu%tzﬂ + From Theorem 3, § 1 it follows that ( wn A is a

©
monad in 5 ) ®. Hence te Alt'

Corollary. The property "to be countable" is absolute for

the classes of our model;i.e.
Count * (X*) = Count (X*),

Proof. From Lemme 4 we know that FN* = PN, Suppose at
first Count ® (X*). Then there exists P™ :FN<> X* . But F* is
& one-one mapping in AST, too.

1f we assume Count (X*) we obtain - in accordance with
Theorem 3, § 1 - that X* c Ak for a suitable k. Therefore there
is such a mapping P that P:FN<—>X* and moreover, F<A,. From
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the axiom of prolongation in AST 1t follows that F = £} FN for
a certain fe Ay e But fe V* which completes the proof.

(Axiom of Eologgationz* o Let (P* be a countable funo-

tion)* , then there is a function £* such that Prc ¥

Proof. Prom the Corollery of Theorem 1 it follows that F*
is a countable function, Now proceed similarly as in the second

part of the proof of the Corollary.

Before proving the axiom of cardinalities, we shall formu-

late & useful assertion.

Theorem 2, For each uncountable class X* there is a set
aeA.k, for a suiteble k€ FN, such that a<X* and a 1s an infi-
nite set.

Proof. The c};sa X* ipg a figure in -{Exf‘(z)} » Where Z< A,
(Z fully revealed) X, Since X* is an uncountable class and sin-

3
ce there is only & countable emount of triviel monads m{&za);

(see Lemma 4, § 1), the class X* has to contein a non-trivial

monad. Such a monad contains, however, an infinite get = this

follows from Lemma 4, § 1 and Theorem 3, § 1.

(Axiom of cardimlitiasz* « Each uncountable class X* can

be mapped by & one-one function onto V¥,

Proof. Owing to Theorem 2 and Cantor-Bernstein’s theorem
it is sufficient to prove: If ac V¥ and a is an infinite set,
then there exists P* :a<> V*,

Let ac Ay . Then there is (G:a aAz)Az. Put now F* =
=Ex, (G)nV*,
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(Negation of the axiom of choice)¥ , (There is no class X

such that e I X 1s &an orderiang of the type £Q.)¥

Zroof. Such a class X would have to be uncountable and
could not contain anmy infinite set, at the same time (gee Iv],
c¢he IT, § 3 and Theorem Z),

(Wenk axiom of choice)* , Let R* be a relation, dom (R*) =

= FN. Then there is & functiua #%*< R¥ gueh that dom (F¥) = PN.

o ~ f 2 ; ;
Proof. R is & figure in fEx%CZ)f for Zc Ak’ (2 fully

revealed)Ak. ¥e claim that dom (R* Ak) = FN. For thisg, 1t
suffices to realize that for each nc FN the class R" { n% i3 a
fizure ard moreover (see Theorem 3, (iii), § 1) RE" L nin A+ 4.
3ince the axiom of choice holdsin the endomorphic universe
A’g {and, obvicusly, the weak axiom of choice, too), there exists
a function ge ‘\k such that
gMNFNSR*n A CR¥.

Put now F¥ = g } FN,
Theorem 3. Each uncountable class X ¥ contains a countab-
le class Y such that 7 Cls* (Y).

Proof. Let T ={a,8;,...} where 81€ Ay, B€A - A
m=2,3,,.. « Obviously Tc V¥.
Ve shall prove at first that - Cgs* (T). The class T is,

g1 LOT

evidently, countable, Suppo'se C£s*(T). Then - according to The-
orem 1 - there exists Ay such that Tc A, . From the construction
of T it follows, however, that 841 Apyy = 4, dee CWOR - Ay,
and simultaneously 8,41 € Ty which is a contradiction,

Since X¥ is an uncountable class, there is F* ;V* ¢ 5 X* :

Put now Y = F¥ v 1,
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Remark. The previous theorem implies that there exismts a
countable systen of cleeses in our model which zannot be coded,
This circumsience raiges hopes thet it could be pessible to
create & model in whicn even the wesk axiom of choice does not

hold. Such & model iz described ir +he following section,

§ 3. Model of AST - A + 1 WAC., This model will contain

all the classes from the first model. In addition, we join here
a gpeclal clags (and *here?ire TAny other clasees that we can
obtain from it, e.z., oy 35delian scverations) which prevents
the validity of WAC. The claes will be denoted FR (in fact, PR
is a relation created from standard extensions of PN) and defi-

ned ag followa:
Definition. FR is such & claes that dom (PR) = P¥ and
(VnePN) FR"{ni = Exn(nl).

Note that the larger the endomorphic universe ‘n is, the
smaller is the extension Exn(FN).

Lemme 1. Por sach ne FN

FRMn = Exn(Z).
A
where (Z is a fully revealed cless) ".

Proof. From the definition of FR, (A2), Lemwma 3, § 1 and
(A11) it follows that

FRMn = Ex (Ex (FRFnnA 1))

n-l-n

this completes the proof.

Now we shall introduce new relations of indiscernibility
in which the class FR will be a figure.

wo

o
Let us denote {y,FRhnkby {7}
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Corollary. (YneFN) "2 . =2
Y 1Y3 iy3
for a suitable Y,

Proof. It follows directly from Lemma 1,

Definition. Let us put

Do . !
1Yy mQFN 1Y}

The relation “{’:3; is obviously a refinement of all rela-

Mo
ti = € FN,
ons o n

o

Lemma 2, The class FR is, for each Y, a figure in ‘:i -

Proof. It 1s sufficient to realize (see the definition of

{7} ) that for each ne FN the class FRMn + 1 ig a tigure in
mo

3
The next assertion that will further be used substantially,

is a generalization of Lemma 7, § 1,

Theorem 1. Let (X be fully revealed)An, 8,bEA , Y =

= Ex (X) and & & ,, (b). Then a ¢ W, (B)e
n £ o
iy Y3

Proof. Obviously it suffices to prove that for each ke PN,

k>n, the inclusion a ¢ (wh& (b) holds. This fact follows -
1Yi
using induction - from Lemma 7, § 1 and the equality (see the

definition of FR):
FPRMKk + 1 = Exk((l'R} k)n Lk)u Exk(FNx{k}).

We shall create now the second model. The definitions of
classes, relations =* and ¢* are similar to those ones in the

first model. We have only to substitute there {E“écz)} by
mn
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; é:f(Z)§ - We leave the detailed reformulation to the reader,

Notice that X"‘, ¥*,... will mean now classes in the second
model. To prevent any misunderstanding when further speaking
about classes of the first model, we then shall express this
explicitly.

Remark, Note that the definition of classes in thfs model
really ensures that each classg in the first model is also a
class in the second one (the converse assertion is not, of cour-
se, true owing to FR). This fact will help us to verify here
the individuel axioms (end auxiliary statements, too). If it is
possible, we shall not give further detailed argumentations but

only modify procedures of the analogous assertions from § 2,
Lemma 3. Let t,uedy , £ > k. Then
@, o t%
1Exg @ M =¥ qpS2yy Y

Proof. The assertion is an obvious consequence of Theorem

1. Put there e.g. a =<$t%¥and b = u,

A
Lemma 4. Let (Z be fully revealed) k. Then

(1) 1t x{E:;f—Ez\’; ¥y X+y and if x,ye A, , where £ = k, then

there is a ¢ Fin, ac A, such thata & @g (x).
{Exg, (D)3
(11) It (W Q& (x) -{x}, then xeAko

{Ex Y %

Proof. For (i), at first, notice (see Lemme 3) that

@ £
x 2 =x 2 . We claim that (x) is a
e @3 ¥ = Fieng iy 7 Mﬁf‘i(lﬁ

non-trivial monad which contains an infinite set from A.C « This
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\

assertion follows (see Lemma 1 and Corollary) from the fact
for a suitable Z, (I fully revealed) X,

that '(F‘X&=(_Z); = At
end theorem 3, § 1.

end from Lemma 4, §
let us essume that £ , ( / = k), 1s the
by contrediction,

(x)n Ap =

£, i
X (Z)}

1

)

For proving (ii
smallest number fcr wniecl xe hy « We ahow,
that £ = k. Suppoee therefore £ > k. Then
= 11} since for T,uc A, we have - in accordance with Lemma 3 -

~ £
{E.\j:(Z)g

that
t == = t = le
iExg 223 ¥ 1Exg 23} °
Hence x is definable in Ap from Ex, o (Z) and Exz-—l-»l (FRIME )N
NAg 1. Thus, using commutativity of Ex and (A1C), we obtain

that x is definable in Ag_q from Ex, . ,(Z) end (FRIMn A1)

which contradicts ihe choice of £ .
@ o
let tyue AZ » ¥ > k. Let further 1 {Ex‘:—_czﬂ u,

Lemua 5.
Then there is un eutomorphism F such that F(t) = u and Fn Exk(2)=

= Ex, (Z). Moreover, F" VX a V¥ and Cls¥(Fn V™.
Proof. Prom the definition of m—:i.i and Lemma 1 it followa

that
‘o = 2 = JLs _
1Ex,, (2),FRT LY {E.X&LZ),EQ‘Z(Z)} 5

'{E.x:(Z)E
- Ay
where (Z is fully revealed) « Moreover, commitativity of Ex

flo

implies that
1Ex, (Ex, o (Zn,Ex, (Z)H%

1Ex, (2),Ex, (Z)}

are both standard extensgions Ex t(zi)

£-1>

Since Ex, _ ,(2Z) and Z
for suitable Zi’ the same is valid for their couple. This coup-

A
le is therefore (a fully revealed class) % .
Now put in mind Lemma 3 and proceed analogoudsly to Lemma
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2, § 2. Let F be that automorphism. Then F(t) = u and also

Fn Exk(Z) = Exk(Z) since Exk(Z) is the first component of tihe
couple which is "preserved" by F. As V¥ ig the same in both
models, we have that F" V* = V¥ , The agsertion CZs*(FA V¥) fol-
lows from the fact that PAV* is even a class of the first ino-

del.

Lemma 6. Let F be such an autoworphism that F* V* = V¥ und
CLa*(FA VX), Then
CLe*(X) = Ces¥(F" X).

Proof. Modify the proof of Lemma 3, § 2 in such a way:

replace and note that (there is, of courns,

L by “2
{Exg (203 Y {Exg(Z)}
Ay, L>k, such that t,ue iy )

w £
t -2 u iff t =3 u
1Exg (20 {Exg (Z)}
Hence t £_ u (see Corollary of Lemma 1).

{Exg (Z)}

(Morse s scheme)¥*. For every formula q:(x,xl,...,xn)e FL

and for every X’{,...,X: there exists & class Y such that CLs*(Y)
and

(VxeV¥)(xeY = Lf“(x,xi‘,...,xg )).

Proof. It is enough to modify the proof of the lorse ‘s

scheme in the first model. Substitute there by

o
{Exk(lYﬁ

w
{Ew%(l)} end instead of Lemmas 2, 3 of § 2, consider now Lem-

mas 5, 6.
Lemma 7. PFN* = FN,

Proof. Since FN is the class of the first model (see Lem-
ma 4, § 1), we have here CLs*(FN), too. The assertion FN* = Fi
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follows now from the came o4 ::1ity in the first model and from
the fact that the seconi ..»3el contains a greatar opount of

classes,

Theorem 2. Let X* be a countable class of V¥, Then the-

re is an endomorphic univer:e Ay such that X* ¢ Ap.

w g
2 * =
Proof. C£8#(X) implies that X is a figure in {Exg (2)3 for

A
ZEA,, (2 fully revealed) X, Put X¥ 1s & countable class. The-
refore (see Lemma 4 (1)) all monads of X* are trivial. For
proving the fact that X*c Ak' apply the second assertion of Lem-

ma 4.

Corollary. Count* (X*) = Count (XX),
lroof., Modify, using Lemma 7 and the previous theorem, the
rroof of the analogous assertion from the first model.

Since sets and countable classes are the same in both mo-

dels, we obtain immediately that the following statement holds:

(Axiom of prolongation)* . Let (F¥ be a countable func-

tion)* , then there exisis & funotion £* such that P*c £*,

(Axiom of cardinalities)* . Each uncountable class X* can

be mapped by a one-one function onto V¥,

Proof. Lemma 4 (i) implies that each uncountable class of
our model contains an infinite sety let us denote it a, Since,
in the first model, there exists a function F such that F:a «—
«—>V* , this function is also a class in the second model. Now

see the proof of the axiom of cardinalities in the first model,

{Negation of weak axiom of choice)* , There is such a
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relation R* with dom (R¥) = PN that for any function P+ with
dom (F¥) = PN, the condition F*c R¥™ does not hold.

Proof. Put R¥ = FR - (FNxFN) and suppose that F* ig such
& function that dom (F*¥) = FN and F*< R* ., Let us prolong F*
and denote the new function by g¥ ., Then F* = g¥*PM PN, Since
g¥e A, for a suitaeble n, we have g¥(n)e¢ 4, (notice that ne ALt
Therefore (Exn(FN) - FN)r\An4=¢ (according to (A2) we knéw tuea
Exn(FN)r\An = FN), which is & contradiction.

Theorem 3. Each uncountable clags X* contains a counte .-
le class Y such that -1 Cge*(Y).

Proof. As both models have the same countable classes,

Theorem 3 follows directly from the validity of the anslogous
agsertion in the first model and from the axiom of cardinali-
ties,

§ 4. The construction of an increasing sequence of endo-

morphic universes with standard extension. The con-

struction of both the models mentioned above lies substantial--
ly on the existence of an increasing sequence of endomorphic
universes with standard extension. The last section of our pa-~
per will be devoted just to proving that such a sequence ex-
ists. If the following text will remind someone of the const-
ruction of the iterated ultraproduct, we stress that the simi-
larity is quite accidental and that its content is but a pure
fiction.

At first we shall recall several notions and results from

[s-v1], we shall further need.
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For an arbitrary class A and arbitrary set 4 we put
Ald) = {£(d); feAl,

Theorem (A). Let A be en endomorphic universe and let
de U A, Then Ald) is the smallest endomorphic universe, the
subclass of which is the class Au{dij.

Prom the definition of 4[d] it follows now:

Lemma 1, Let A be an endomorphic universe. Then for each
function fe A ani ~1ch d € U A the condition
A Lf£(d)] ¢ Ald]
holdsa,

Theorem (B). Let A be an endomorphic universe and let
c,d € UA, Then Alc] = A[d) iff there is a one-one mapping fe A
with o = £(d).

If A is en endomorphic universe, then we put for each XS A

E,(X) = N{uea; Xsuk

Theoren (C). An endomorphic universe A has e standard ex-
tension iff
V= U{E,(X), XeA & X< FNL

Now we shall introduce some notions which make our next
considerationg easier,

Definition. An ultrafilter 4 is called an ultrafilter on
EN iff

(VX e %) FNnX+d.

Since we sghall be further interested only in ultrafilters
on semisets (nemely on the countable ones), we shall restrict
ourselves only on sets; ultrafilters are nowfully determined

by their sets,

- 580 -



For ultrafilters on rfll we «h"1 defire An oxderviryg (iu
fact, it is Rudin-Keealer ‘s orde: rg; on ultrafiliora; ef,
[c-H1).

Definition. Tet ’fl, ;‘2 be nitrafilters on PN, We shall

say that .‘Fz is_strorgser Lhon @'J with reaspect to n fru-‘ion ¢
. ¥ )
(denotation 51"5 #,) 1ff dom (f) 2 FN, I"FNS BN td, icv e wh
XE (fz, f"x e ’:}Jl. We any, moreover, that ’3'2 is slropeiy thon
'fl (denotation ’fl =4 lf“?) i1£f there exists a function f such
s 2
2
that &, 2 ¥,
Let further A denote, similarly to previous paregraphs, an
endomorphic universe with standard extension.
Definition. Let erxA(FN). The clasgs
{ys xeEx,(Finy)}
will be called a filter determined by x snd denoted by Ff (x),

Obviously, for each x€ Ex,(F¥), the class G2 (x) is en
ultrafilter on FN.

Lemma 2, Let fe A be a function. Then
(Vasdom (£) 50 (2(a) & g0 (o).
Proof is evident.

Definition. Let % be an ultrafilter on FN. Then the class
N{Ex,(ynF); y e ¥}

is celled a monad of ultrafilter ¥ end denoted by R (5).

Let us note that there is an ultrafilter ¥ on FN such that
‘L(, (,}'J) = ¢-

From the definitions of ordering on ultrafilters and mon-

ads of ultrafilters, the next two assertions follow immediately.

Theorem 1. (i) Let xe ExA(FN). Then x € @ ( Fl (x)).
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(11) Let 7 be an ultrefilter on Fll. Then

LVXE el 7)) £ = £ v,

Iheorem 2. Let § bLe an ultrafilter on FY, xe ExA(FN).

Then
FL Pl (x) == (Zfehifn,. (2FNQIFNZFL & 7 = 22 (£(x)).

Theorem 3. For eucl ultrafilter ¥ on FU there exists an
endomorphic universe A w: i atandard extension) and xeAExA(FN)
such that

Vo= Alx) a5 = RS (2.

Proof. BSee 'S-Vliy, ; 3J.

Definition. We say the ¢ io much gwaller than sy (de=-
notation ey << c,) iff

R - o
()€ Bxy(FUNA (722 4) e,z ux, (¢ FN))
= =(ee.) e Mlivtic,)~ ¢ ).

Definition. let «o ¢ Ex,(FN) end let f& A be a function

with dom (f)-) Fii, ve say that 3¢ ExA(FN) is the second com-

ponent of « with regpect to f iff ¢ ig the /3 -th element of
1 ()t

Let xekx,(«), where & 1is a countable subclass of A.
Let f» 2 be a function with dom (f) o & ., We call Be ExA(tY)

v

the second component of x with respect to f and v iff x is

. LI
the (@-th element of £~ t£(x)j in & fixed chosen ordering of

€ by the type < .

Remark, Notice that all the above mentioned definitions

and assertions concerning ultrafilters on FN can be, in an ob-
vious menner, reformulated for ultrafilters on countable sub-

classes of A, We shall further suppose to have such modifica-
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tions,.

Lemma 3., i1et xekx i), « = :suntable smibclags of A, le
fe A be a function with dom (£) o« |, Then f{x)e By(fm (0 Y.

Proof i3 2asv il can o left ty {lie rerder,

Theorem 4o et A'd1 = 'y wiioo o Ex, () Al -« 4 iy
countable, Let L& & Je¢ o functlion with dom (f) > % i let i

€ Bx, (&) be the secenl component of 4 with respeci to £ and o .,
If 3<< £(d), then AL f\a): ig An endomorphic universe with
standard extension.

Proof., A{f(d)] i1s evidently =n endomorphic universe; the-

refore it remains to prove that A’f(d)] can be standardly ext-
ended. Without loss of generality, we can suppose that & = FN
end £"FNS FN, Then deExA(FN). Tut ¢ = f(d). We show that 3 €
5 EA[c] (FN). To this end it is necessary and sufficient to pro-

ve

(1)

(xeAlel & x0oFN) = 3= x.
Put ¥ = max {d’'; 9"z xi. Then I & Alc) and thus for a su-
itable function ge A, we have o = g(e). Since 3<<c, we ob-

tain 3¢ & (4> FN). But J' = x; hence 3 e x.

Now we show that for suitable 61, where 51 is a countab-
le subclass of Alc], it is true that de Epcer (&51). In nccordan-
ce with Lemma 3 it suffices to prove that there is such a func-
tion g that ge Alc) and d = g(3).

Let the function g be defined as follows: g(t,) is the
& -th element of £~1 {t}. Obviously g & A. Put now g(w) =
= 8(c,cx ),

For completing the proof it is now enough to realize that

for every x&eV we have x = h(d), for suiteble he Ac Alcl, and
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apply once more Lemma 3,

Remark. Let us stress the fact that if £(d) < < /3 , then
AL£(d)] has no standard extension. This result is not quite ob-
vious.

For the construction of an increasing sequence of endomor-
phic universes with standard extension it suffices now to find
a suitable endomorphic universe A with standard extension, a
suitable element d€V and such a sequence of functions "'1':2"“
from A for which the second component {.’ai (1€ FN) of d with
regpect to £f; and 5 (&5 is a countable subclassA of A such that
deE,(6))is much smaller ;ha.n £;(d) and £,(d) < £i41(d)e

We define the symbol < as follows:
y=(3fed) x = £(y);
y=x 6\4 Yy end there is no function gé& A such that g

A

x

x
is a one-one mapping and x = g(y).

If we put nwA; = A[fi(d)] , we obtain a sequence of endo-

morphic universes with standard extension for which Al i

SF A.2$= eees o« The ideas, just described, will be now precised.

Firstly, we give a definition.

Definition. Let JF,; be ultrafilters on &';, ¥ be an
ultrafilter on 6 , where 6 , € 4 are countable classes (i€
& ). Then the ultrafilter ¥ = § - = &, is called n & -
sum of ultrafilters %, and defined in such a way:

# 1is an ultrafilter on > 6'1 ={{x,17; x ¢ 6, %1e FN $
L eb
and

(YwueFr= (VO(toiuiilie Fii=t e &),

If F; ere equal we write instead of Fowif - = ’5"1
only ? = F X ¥
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Theorem 5. Let & c A be a ocountable class. Let F 10 Fou
respectively, be non-trivial ultrafilters on & , FN resp. and
g = F, X 7. Let further d€Ex, (6 FN) and ¥ = FcL ().
Then (Pr denotes the projection function)

(1) Pry(d)<<Pr (d)

(11) Pr (0% a

(111) Prz(d) is the second component of d with respect to Pry
and 6 x< PN,

Proof. At first we shall prove an auxiliary assertion:
Under the assumptions of Theorem 5 it is true that
&, = FL (Pry(d)) (1 =1,2).
We have to show that
(Vwue ¥, = us Pr,(d) (1 = 1,2),
Let i = 1, Then

ux FN3 9= uxFfi2d= ue Pr,(d).

For i = 2, substitute PN by & and proceed analogously.

To prove (i) suppose that fc A is such a function that
2(Pr,(d))< Pry(d). Then the same is valid for a set of the ul-
tratilter ¥ . Thus, for a certain component j, we have (see the
definition of F'= &, X F,) u"fj} e £,. Hence un{3¥a Pr, (a)
end therefore f(Pr;(d)) = £(Pry (< Pry(d),J7)) < J. Since je PN,
the validity of (i) is demonstrated.

We prove the assertion (ii) by contradiction. Let gg A be
& one-one mapping for which Pry(d) = g(d). Then Pry(a) =
- Pra(g'l(Prl(d))) which contradicts Pr,(d) << Pry(d) - see (1),

The statement (iii) is obvious.

It follows from [ V], ch., II, § 4 that there is a non-tri-
vial ultrafilter ¥ on FN,
Let us put

- 585 -



Iy

Hi = FNx FNx eeoe X FN
i-times

and define ultrafilters &£, on FN' in such & way:
g‘l - 5" ’ 51,*1 = /flx g’ i

Y i
Purther put F = 5 - = 3’1 and denote o =£e>§N FN*. The
class S‘a is, evidently, countable. From Theorem 3 we know that
for ¥ on @ there is an endomorphic universe A (with standard

extension) and d€ Ex,(p ) such that V = ALd) and 7 = %<2 (q).

On ¥ » we shell define functions Iiz It x € o are such
elements that Przs(x)> : 1 (Pr,Zs denotes the lest projection),
then £, (x) ={Pry(x),... WPy (x)).

Denote Pry(d) = 4; and put oy = <d1,...,di> . We would like
to show that, for every i, the class Alc;] 1s en endomorphic uni-
verse with standard extension.

Put further d = <¢ dygeceydy Y, dy,9s0ee >> . Then Ald) =
= A[d) since there exists a one-one mapping g& A such that 4 =
= g(d). If we denote B=<dy 15000 , we obtain that q =
=<cy, B>

Under the above stated denotations we prove

Lemma 4., Zc2(d) = FL(R) X 3il (ey)e

Eroof. Let, at first, u € 4¢2(d), Then u=> d Let mz A be
such that

m=29x¢cdom (®); urixys eyt

(grs 1s obtained from © by an obvious manner).

We prove that me Si8(f3); 1.e. that m » 3 . Since Cegyf3> =
= d, we have u"{f} o ¢; end hence @€ m. Thus u € %2 (B)X
X FLL (ey).
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For proving the statement:
uel(B) X 3L (ey) = u ¢ 32 (J),

follow the proof of the first part going "from bottom to top".

Theorem 6. A[oi] is, for each 1, an endomorphic universe

with standard extension (c:i are defined above),

Proof. Owing to Lemma 4 and Theorem 5 (ii1i), we know that
{5 is the second component of ¢y with respect to Pry. Due to
Theorem 5 (i), we have further that ﬁ< < ¢4 Hence (see Theo-
rem 4) A[ci] is an endomorphic universe with standard extensi-
on, Moreover Alc,] § Ald) = V - since, in accordance with The-
orem 5 (ii) - we have oiA< d.

Theorem 7. (Vi¢ FN) Aloy) § aley ;).

Proof. The inclusion Afe,l = Aley 1] follows from the facts
that oy =< Pry(Coyy),1+1)),e0s Pry(Coy,;,4+1>)) and projecti-
ons are functions from A. For proving A[ci]*—- A[ci+1] it suffi-
ces to realize that

BiL(ey,q) = %L (d447) X Fel(oy)s
1t 1s namely cy .y =<e¢y,d;,,) and (see Theorem 5 (ii))
°:LAJ' Ci41°

Remark, In [AV] there is comstructed a model similar to

our first one, Its construction lies there on an increasing se-
quence {A b O E Fo IR Y 4 endomorphic universes with standard
extension, The existence of such a sequence is not, however,
shown there explicitly. If one supposes the second order choice,

i.e.

(Vx)(3Y) ¢ (x,Y) = (AT (¥x) 9 (x, ¥ "x3),
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1t is possible to prove the existence of {A, 3 < € 2% in such
& way: Starting from a fixed non-trivial ultrafilter on FN we
can create in AST the structure YL which is {L -times iterat-
ed ultraproduct., This structure is saturated, elementarily e-
quivalent to V end has cardinality L ., But V is, owing to the
axiom of prolongation, also a saturated structure. Therefore
there is an isomorphism Pr ¥/ <> V. Now we obtain A, as ima-
ges of K -th steps of the iteration process.

We have preferred in our pesper, § 4, to avoid the second
order choice and, in addition, we have used the methods being
more fit for AST.

Problem. Thanks to WAC, in the first model, we know that
each countable union of countable classes is a countable class.
This assertion is also valid in the second model. A question
arigsess Is there such a model of AST - AC in which V is the
union of countably many countable classes ? Or, in a weaker
form, is it possible for V to be a union of countably many se-

misets there ? The answers are unknown to us.
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