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Introduction. In his study on Boolean lattices R-genera-
ted by distributive lattices, Gratzer considers particular
10,1} -sublattices of e given bounded distributive lattice, na-
mely those which are closed under relative complementation.
The purpose of this paper is to study these sublattices, which
we call R-subalgebras. It turns out that Priestley’s duslity
is a well-adapted tool to achieve this aim.

In Section 1, we introduce the concept of congruence on
@ Priestley space, which is dusl to that of R-subalgebra; the
lettice of all R-subalgebras of a bounded distributive lattice
is dually isomorphic to the lattice Con(X) of all congruences
on the dual X of L.



Section 2 is devoted to the study of Con(X). In pertieular
we characterize those Priestley spaces whose eongruence lattice
is semi-moduler, moduler or distributive respectively. We trens-
late these results in terms of R-subalgebras in Section 3.

We adopt standard set theoretic ‘notations. Let us however
recall some of them. For a set X, we denote by |X| its cardinsl
and by Eq(X) its equivalence lattice. If 9 e Eq(x), xeX and
EcX, we write x© for the 8-class of x and E® = U§x%| x €E$;

E is ©-gaturated if E° = g, If X = (X,£) is a poset, P-<q means
that q covers p and p li q means that P and q are not comparable.
We say that EcX is convex if x< z£y end x,ycE imply that zgE.
An order connected component (o.c.c.) of X is a subset E of X
which is minimel with respect to the property of being both ine
creasing and decreasing. Finelly, th? n-element chain is denoted

by n.

1. A_Duality for R-subalgebres of a bounded distributive

lattice

1.1. Definition. Let D denote the category of bounded dis-
tributive lattices anda {0, 1¢ ~homomorphisms. If Le® and A is a
{0,1t-sublattice of L, then A is said to be ean R-subalgebra of L
if it is closed under relative complementation (when the latter
is defined). Other ways of defining R-subalgebras are given in
[4]. The set of all R-subalgebras of e lattice L in D , ordered
by inclusion, is an algebraic lattice, the study of which is the

purpose of the present paper. We denote it by ?R(L).

In [6], H.A. Priestley establishes a duality between D and
the category P of Priestley (i.e. compact totally order discon-

nected) spaces and order-preserving continuous maps. The functors



3:D—>P end (": P—D which realize the duality are des-
cribed as follows: if L e D , (L) is the ordered set of all
prime ideals of L, suitably topologized , whereas, for X ¢ P,
((X) is the lattice of all clopen order-ideals of X. If f is
a morphism in D (resp. P ), its dusl map is defined by P(f) =
= £~ (resp. 0'(£) = £7'). We refer to [7) for the fundamental
facts on Priestley’s duality but we usually follow the notati-
ons of [2].

1.2. Definition. Let X ¢ P . Suppose (X’, z’) is e topolo-

gicel space and s is an onto cortinuous map X — X’. An order
<’ on X" is seid to be compatible with ¢’ and & if X' =
= (X",2’,2”) 1s in P and if o is order-preserving (hence a

morphism in P ).

1.3, Lemma. Let LD gand A€ Ef’R(L). Denote by X =
= (X, ,£) the dual of A and by o the duel mep of the inclusi-

on map A —> L., Then <« is the least order on X which is compati-

ble with v and « .

Proof. Suppose </ is an order on X which is compatible
with ¥ end & . Denote by A° the duel lattice of (X, =, <”),
congidered as a {0,1f-sublattice of L. By [7), both A and A° R-
generate the Boolean algebra whose dual is (X, ). Since A is
closed under relative complementation, it follows from [ 3], p.
89ythat A contains A’. In other words, (¥(X,z, ’) 2
2 0'((X, T, 4£"), which implies that = is contained in <’ .

By 1.3, the dual of an R-subalgebra A of a lettice L € P
is determined by the canonical epimorphism x : L) — P(A).
Therefore, the genersal concept of separating set [1] mey be ad-

Vantageously repleced by the simpler one of congruence.



1.4, Definition. Let X e and @€ Eq(X). Then & deserves
the name of congruence if there exists a topology =’ and an order
47 on X such that

1) the natural map aor:X —> X/@ 1is continuous, and

11) <7 is compatible with =’ gnd -
We denote oy Con(X) the set of all congruences on X.Obvious-

1y, @ (the identity relation) and L (the universal relation)are
always congruences,Since the intersection of any subfamily of
Con(X) is again a congruence,Con(X) is a complete lattice,but it
need not be a sublattice of Eq(X).It is also worth to note that,
1?2 @eCon(X),the topology ¥‘of the definition is neeeasarily the
quotient topology,which we shall denote by % +NMoreover, among all
orders £’ compatible with ¥'and & ,there always exists a least one,
that we shall denote by ‘6 (it suffices to conasider the R-subal-
gebra of ((X) generated by 0((X/0,%’,4’)) and to apply 1.3). We
shall now describe £4 .

1.5. Notation. Let X e P and © € Eq(X). We denote by
0’(X,6 ) the set of all clopen order-ideals of X which are ©-sa-
turated end we define on X/6 a quasi-order =4, as follows:

x®<, y° 1f, for 11 Us 0(X,6), Usy implies Usx.

1.6. Lemma. Let X ¢ P and © € Eq(X). The following asser-
tions sre equivelent:
(1) O s Con(X);

(11) <o is antis tric;
(111) <5 4is the lesst order compatible with 7, and o ;
(iv) 1if x O y fails, then x and y can be sepergted by some mem-
ber of (X, ).

Proof. (i) => (ii). Let =/ be =n order on X/6 which is
compatible with Ty end or . If x€ &/ y© , there exists
Veo(X/8,7,,2’)) with Vav®ana v3x® . Ir U = &' (V), then



U&0(X,0), Usy and UPx, which shows that x€ 4-9 ye . Conse-
quently, <, is contained in <’ gnd therefore is antisyamatric.

(41) =» (1ii). It is clear that =5 is an order on X/8
which is compatible with 74 and & . The proof of (i) => (ii)
shows that it is the least one.

Finally, (i1ii) == (i) and (ii) <= (iv) are trivial.

1.7. Theorem. If L €D gand if X is its dual space, then .
there exists @ canonicel duel isomorphism (L) — Con(X). In
articuler, Con(X) is duelly algebraic.

Proof. We may assume that L = (*(X). Let us define
h:Con(X} — 9’R(L) by h(8) = 0(X,8 ). Clearly, h is one-tp~one
and order-preserving (see 1.6(iv)).

Let now Ae ¥(L). Define © to be the kernel of P(id) ,
where id is the inclusion mep A —> L. In other words, x @ y if
and only if Uax <= U3y for all UeA. We wish to show that
h(6) = A. It is clear that Ach(©6 ). Let Ush(B ). For each
x €U end y¢ U, there exists by 1.6(iv) either nyeA such that
Uqax and U!y$y, or nysA such that V“ay and nyéx. Ity
is fixed, the sets UW and -ny(xell) form an open covering of
U which, by compactness, has a finite subcover. This gives rise
to elements UycA, VycA such that UQU’u-vys-{ ¥% . Hence,
-U = U{Vyn- U’Iy 4¢U . Again by compactness, it follows that U
is the intersection of finitely many Uyu -V_. Therefore, U is

y
in the Boolean algebra R-generated by A. Since U €0(X), Us A

by [33.

The map A = 6 is obviously order-preserving and the proof
is over.



2. The congruence lattice of a Prigstley space

2.1. Notation. Let X 6 P . If EcX, we denote by A(E)

the equivalence on X generated hy EXxE snd by @(E) the equi-
velence O(E) U O(-E). If L = {p,q? we write O(p.q) irstead of
0 (fp,q}).

2.2. Lemma, If XcP @gnd EcX, then ©(E)e Con(X) if end

only if F is closed and convex.

Froof. Any congruence cless is closed and convex. Hence

the condition is necessary. Suppose now that (x,y) ¢ G(E) where

E 18 closed and convex. Tov find U ¢ 9(X,6 ) separating x and ¥y,

it suffices to distinguish the possible positions ot x and y re-
latively to E.

2.3. theorem. If X € P , then Con(X) is stomistic. Its
otoms_are the eguivalences d(p,q; where pllq or p<q.

Proof. Let us first show that eny closed and convex subset

E of X which is not reduced tc a singleten contains a pair fp,qt
where r 1 q or p<q. This is clesr if £ is not a chain. If T is
a2 chain. it is & Booleun chain, in which jumps n<q exist in a-
bendance ([5]).

To prove atomisticity noce that one has €=VI(O(E)]| E 1s
a 0 -clsss} for esch €€ Conli). Hence it remains tc orove that,
if E is closed &nd convex, 9 (F) =V40 {p.q)c Con(X) } p,qeES.
Let § ¢ Con/X) be such thai © = 8(p,q) for all p,q€ = with
9 (p,q)€ Con(X}s If % ©(3), there cxist x, y “n E for whish
x$ y fails. Consequently, x and ¥ 220 be s:purated by some
Te J(X,§ ). If p is maximel ir U~ L enj v ninimal in -Un 2,
ther c.qe Z and O(p,q'e (on(X) when-e O(p.;)2 § , 8 contra-

‘lction,



2.4, Theorem. If X € P , then Con(X) is duslly atomistic.
Its dual atoms ere the equivalences ¢ (U), where U e 0°(X) -
- -i¢ rx}'

Proof. It is clear that ¢ (U)e Con(X) if and only if

U e (X)) (use 1.6(iv). It suffices now to show that, if

6 e Con(X), then 8 =AL P (V)| U e 0'(X,0)}. If U 0(X,6), then
@ « $(U). Conversely, if d = $(U) for each U € 0(X,8 ), and
if xd y, then x 8 y by 1.6(iv) . Hence § « € | which complétes
the proof.

The following result shows that the semimodulerity of Con(X)
depends only on the order on X =nd not on its topology. (A latti-
ce L is called semimoduler if end only if it satisfies the follow-
ing condition for all a,b&eL:anb<a = b<avb.)

2.5. Theorem. If X € P , then Con(X) is semimodular if end
only if either
(1) X is order-isomorphic to an ordina)l sum A® C@® A’ , where
A and A® are (possibly empty) entichains and C is a bounded chain,

or

i1) X = MinXu MexX gnd either |X-MinX|£ 1 or |X-MexX|& 1.

Proof. Suppose first that Con(X) is semimodular. We proceed
in four steps.

a) There cennot exist in X elements x,y,z,t with x<y, z< t,
xlt end y) z (otherwise Q(x,t) > 0 (y,z) An@(x,t) =w end @ (y,=)
v 8(x,t) >0 ([x,yluiz})> O(y,z)). In particular, there oxists
at most one o0.c.c. which is not reduced to a singleton. Let us
denote it by xo.

b) If p,qé€ X, end plgq, then for each xeX,, x>p (resp.
x<p) implies x>q (resp. x<q). Suppose on the contrary that,



for some reX,, one has r>p and r$q (which implies riiq). We
distinguish three possibilities.

If[p)ALq)#@, it contains some minimal element t. Neces-
sarily, either rit or r<t. In the first case, we have
9 (lp,t1) v O (q,r) >0 ([p,tlulqg,t]) > ([p,t]). In the second
case, we have © ([q,t]) v @(p,q) > 9([q,t]u [r,t)) > ([q,t]).
Both inequalities contradict the fact that Con(X) is semimodulsr.

If [p)nlq) = @ end (rln(ql#+@, choose some maximal element
t in (r1n(ql. If t<p, then ©([t,q)1) v O (q,r)> @ ([t,q) uLt,p])>
> 6 ([t,q]). If t{ p, then B(Lt,r1)v (p,q)> B ([t,rIv(p,r])>
> 8(It,r]). Here again this is not possible becsuse of the semi-
modularity of Con(X).

It remains to consider the case where [p)n[q) = @ and
(r1n(ql = @. Since q€ X, there exists in MinX U MaxX some ele--
ment t+q which is comparable with q, say q<t. The existence of
the elements p,r,q,t contradicts a).

c) Suppose now X-+4MinX vMaxX. The only o.c.c. of X are @
and X itself. Otherwise choose x<y< 2z and some t not belonging
to the same o.c.c. as x. Then O(x,t)v 8 (z,t)> O ([x,y)] U it})>
> 0 (x,t), which is not possible.

Moreover, C = X-(MinXvMexX) s a chain. Indeed if p, q are
non comparable elements of C, let t (resp. u) be minimal (resp.
maximal) in [p)ALq) (resp. (pln (ql) (these sets are not empty
by b)). Then O(p,t)V6 (p,u)> B (ip,q,t}) > O(p,t) and this a-
gein is not possible.

As a consequence, X is of the type 1) as required.

d) If X = MinXu MaxX, we have to prove that |X-MinX|< 1 eor
| X-MaxX) < 1. Suppose on the contrary that there exist distinct
elements x,y in MinX-MaxX end z,t in MaxX-MinX. By b), we may as-
sume that x<z, x<t, y<z end y<t. Then O(x,z)v 6 (y,t)>



> Bi(x,yz)} > 8(x,z) which is absurd.

Assume now that X satisfies either i) or ii). We have to
prove thet if ¢ ,0 & ConiX), then AO< O implies$A €@ 6.

It 418 not difficult to show that the third isomorphism theorem
holds in P and we mey assume $ A @ = . We shall prove the
following stronger result: if ¢ € Con(X) and if 6 is an atom
in Con(X), then the supremum 4>Aqe of  end € in Eq(X) is
a congruence. To achieve this result, let us suppose 6 = 6 (p,q)
where pll @ or p<q. We first show that it is not possible to ha-
ve (%) pQ < yé < q@ for some y€ X (here, < is written instead
of <§ ). The proof is carried on gb sbsurdo.

a) Suppose first that X satisfies i). If pj q, then
{p,ql < MinX or {p,q¥ S MexX, sey {p,q} < MinX. It results from
(X) that pQ V) yQG MinX. Let t be the least element of X-MinX.
Then ;yé < t? , and there exists V& O0(X,$) such that V3y and
V $ t. Moreover, since p¥ < yQ , there exists W € 0°(X, ® ) such
thet Wap and Wpy. If U = V-W, then U e 0(X,d ), Uay and Upp,
which contradicts p" < yé .

If p<q and pe MinX, then q = t and we have seen that
1>Q < y° < t.Q is not possible. Hence we may assume that peX -

- (MinXy MaxX). In the same way, we may assume that q&X =
- (MinX UMaxX). Since X-(MinXuMaxX) is a chain, y is comparab-
le with p and q and (% ) implies p<y<q, which contradicts p=<q.

b) Suppose now that X satisfies (1i). Obviously, () pre-
vents X from being an antichain. By (ii), we may assume that
X-MaxX = {m} for some m. Let us show that < yq implies x m
(end this contradicts (% )). If not, then either x? < n? or
!¥m. The first possibility cannot occur becsuse, if U e 0'(X)
end U$ m, then -U € 0(X). Hence there exists V& O'(X,d ) such



that V3m end V3 x. Since x¥< y§ , there 2135 exists
WeO0(X,®) such that Wax and Wy. If U = Vu-W, then
Ue 0(X,$), Usy and U$px, which contradicts x% < ,yQ 5

We are now in a position to prove that Qveq 0(p,q) €
€ Con(X). Let « = & veqe(p.q) end suppose that x o«c y fails.
To separate x and y by some member of ('(X,o¢) we have to con-
sider the various positions of x and y relative to p end q. As
an example, let us assume xQ = pé ¥ y‘i = pq’ end ’Q* q§ .

g4 p‘pJ- yQ and q‘b4’= Y, there exists Ue 0(X,®) such that
Usy, U$x end {p,q}& -U, which implies U € (X, ). If pP< y?¥
(same argument if q‘b < y‘b ), then y{"di pQ and y4q§ (otherwi-
se p9< y¢< q‘k ) and we may argue as sbove.

Theorem 2.5 ensbles us to characterize those X e P for
which Con(X) is geometric (i.e. Con(X) is semimodular, complete,

atomistic and ell atoms of Con(X) are compact).

2.6. Theorem. Let X € P . Then Con(X) is geometric if and

only if it has one of the forms (i) or (ii) of 2,5 end moreover,
MinXu MaxX is_finite.

Proof., Suppose Con(X) is geometric. By 2.5, it remains to
prove that MinXou MaxX is finite. Assume on the contrary that
MinX is infinite. If MinX is not closed, let p& MinX and let q
be the lesst element of X-MinX. Then ©(p,q) is not compact sin-
ce 8(p,q)£V'T, where T = {8 (x,y) | x,yc MinX} whereas O(p,q)£
£ T° for any finite subset T of T.

If MinX is closed and thus compact, there exists p € MinX
such that ip} is rot open. Let q be an element of MinX- {p}. If
T = {8 (x,y)) x,ye MinX- 1p}} , we conciude as above.

Conversely, if X satisfies i) (case ii) is trivial) of 2.5

snd Min XuMax X is finite, then each atom is compact. Tc show

- 10 -



this, let T be a set of utoms in Con(X) such that B(p,q) < T.
We consider two possibilities.

a) If {F,qt<(t] where t is the least element of X-MinX,
then O(p,q)=Vvi® (x,y)eTiix,yt<S(t1¢ .

b) If {p,qf<c C where C is the Boolean chain described in
2.5 1), then necessarily ©O(p,q)& T because (pl€0(X,6 ) for any
8 e T - £6(p,q)}.

We now study the modularity of Con(X). We first need to ob-
serve that 8 €& Con(X) is dually compact if end only if X/6 is
finite (use Priestley’s duality).

2.7. Theorem. Let X€P . If X is not the ordinal sum of

two 2-element entichains, then the following assertions sre e-
quivalent:

(1) Con(X) is moduler;

(11) Con(X) is dually semimoduler;

(111) Con(X) is_dually geometric;

(iv) 1if ¢ end y sre dusl atoms of Con(X), then $Ay< ¢ (and
Ay < vy );

(v)" either {X| <3 or X is isomorphic to & subspace of A® C@® A’
where A gnd A’ are two-element anticheins and C is a bounded

chain.

Proof. The implications (i) = (ii) = (iii) = (iv) are
trivial. Let us prove (iv) ~» (v). We proceed in three steps, as-
suming that (lv) holds.

a) As an ordered set, C = X-(MinXy MaxX) is a chein. If not,
let x,y6 C be such that x N y. Choose x,€ MinXn (x1 end Yo € MexX N
NLy). There exists U,V e ("{X) such that VD{xo,y}, -V;{x,yO}.
UD{xo,yi, -Vaix,x}, U24x,x} end -U24y,y,}. Hence

< 11 =



PMABM< (DM AB(W)vE(Y)< $(V),which 1s ebsurd by (iv).

b) If |X\>3, then [MinX|42 (and in the same way, [MaxX | £
£2 . Otherwise, let x,y,56MinX and t€X-{x,y,z}. There exists
U,V € 0(X) suoh that U24x,y3 and ~U2{2,43,v2¢x,2} and -V >
24{y,tt. A contradiction arises as in a).

6) If [X|>3 and pliq, then for each xeX,x>p (resp. x <
<p) implies x>q (resp. x< q). Taking into account that any ele-
ment of X dominates a minimal element and is dominated by a maxi-
mal one, we may dssume by a) that {p,q}<S MinX or 1Py} < Maxx,
say {p,q}S MinX. Suppose that x>p and x}q (which implies xlq).
Ohoose ye X-{p,q,x¥. If y4x, there exist U,V € 0(X) such that
U24p,x}t,~U24q,y}, V2 {p,q} ana -V 24{x,5% and we conclude as
in a), The same argument holds if x4y (interchanging x and v).

Let us now prove that (v) = (1). It IX1£3, then clearly
Con(X) is modular and we mey assume that X = A ®C® A  where A
and A” are two-element antichains and C is s bounded chain
(with least element o and greatest element d). The congruence
lattice of C, is dually isomorphic to the lattice of all {0,1}-
sublattices of (¥(C), hence it is Boolean. The congruence lat-
tice of (o] (and similarly that of [4)) is isomorphic with Mg,
the five-elements modular non distributive lattice. It remains
to observe that the map 6 (8] (010 © s el(_‘d)) is an igo-
Rorphism from Con(X) onto Con((o]x= Con(C)x Con([d)). This is a
routine exercise.

Remark. If X is the ordinal sum of two 2-element anti-
chaing, it is easy to see that (11),(111) eand (iv) hold but
Con(X) is not modular, Indeed, let XY, (resp. X1+¥y) be the
minimal (resp. maximal) elements of X. We have

W =g (xo.yl) AB (yo ’y]_)4 9 (xo |x1)

- 12 =



while

6(’1'y°)< 6({10',0.’1})< G(zo.yl)ve(yo,yl) =1,

2.8, Theorem. Let X ¢ P . The following assertions are
equivalent:
1) Con(X) is Booleans
i1) Con(X) is distributive;

111) Con(X) is unigueiy complemented;
iv) either |X|£2 or X i1s a Boolean chain,

Proof. It is clear that (1) => (11) and (1) => (111) and 1t
has been said in the proof of 2.7 that (1iv)=> (1),

Let us prove (i1) =>(iv), By 2.7, either |X|< 3 or X is iso-
morphic to a subspace of A C ® A where L,A' are two-element
antichains and C is a bounded chain., It is not difficult to check
that, 1f |X| = 3, thenX must be a three-element chein. We may
therefore suppase that |X|>3. In this case, X has a least ele-
ment (and for a similar reason a greatest one).

Indeed, suppose that p,qe MinX, Let r¢ X-{p,q}. There exist

U,V € 0'(X) such that Uaq, -U2{p,r}, Vo5p and -V24{q,r}. Then
(PN A 8(p,@)) V(P (U)AOB(p,q) = w and (§(V)v $ (0)né(p,q)=
= 8(p,q), which is impossible since Con(X) is distributive.

We now prove that (111i) = (iv). First observe that, if U ¢
€ 0(X) - {0t and a € MaxX-U, then O (-Uu{a}) is a complement
of 6(U). By (1i1), any Ue 0(X) - {#,X} has a greatest element
and, for dual reasons, -U has a least element. Now let X, y be
non-comparable elements of X, There exist U,V € ("(X) such that
x €U~V and ye U-V, We claim that {U,V} is a partition of X, If
not, then for instance UuV#X and UuV has a greatest element,

-13 -



which implies USV or VS U and this is impossible. Let p be
the least element of U and q the least element of V. To end
the proof, we shall show that X = {p,ql. If not, let
reX-{p,qt and suppose for instance that p £ r. There exist
U’V 'c 0'(X) such that U’2 {p,q}, U #$r, V'2{q,rtand
V'3 p. Then =(U'NV’) has a least element and this implies
UcV’ or v'c U°, a contradiction.

3. The lattice of R-subslgebras of a bounded disgtributive
lattice
In this section, we dualize the results of the previous sec-
tion to obtain results on EfR(L), for Le D . We omit the

proofs which are straightforward.

3.1. Theorem. IfL €D , ‘:fR(L) is algebraic, atomistic
end dusally atomistic.

3.2. Thecrem. If L €D , then ¥ (L) is dually semimodu-
lar if and only if either

(1) L is isomorphic to en ordinal sum L’® C@ L, where L’ and
L gre ossibly empty) relative complemented distribut at-

tices and C is a chain or
(11) all prime ideals of L are meximal, except possibly one,

or

(11°) all prime idesls of L gre minimal, exce

Let L., be the T-element lattice of figure 1.
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Figure 1

Since the dual of L., is the ordinal sum ef twa 2-element

entichains, Theorem 2 7 duslizes as follows.

3.3. Theorem. If L €D , then ¥,(L) is dually geomeiric
if and only if L is igomorphic to (B@® 1)xB or to B@C®B’,
where B and B” sre finjte Boolean algebras aend C is a not empty
chain,

3.4, Theorem. Let L € D.
8) If L is not isomorphic to L., then the following sssertions
are equivalent:
(1)  FR(L) is modular:
(11) “JR(L) is semimodular;
(114) ‘fR(L) is geometric;
(iv) 4in ‘?R(L), the supremum of two atoms covers each of t
atoms;
(v) L is isomorphic to a sublattice of 2°@ C @ 2° (for same
chein C), or to 23 or to 2x 3.

b) If L is isomorphic to L., then (ii),(iii) end (iv) hold but
gR(L) is not moduler.

3.5. Theorem. Let L € D . Then the following ere equiwa-
lent:
(1) ?R(L) is Boolesn;
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(11) “!R(L) is distributive;
(111) (L) is uniquely complemented;
(iv) L is a chein or a four-element Booleen algebra.

We conclude by two corollaries of the above results which
shed some light on the problem of the characterization of
‘!R(L). We are concerned here with the sbstract characterizati-
on, but there is no difficulty to adept our results to have

information on the concrete cheracterization problem.

3.6. Theorem. Let § € I . Then S is isomorphic_to

ch(L) for some L €D if ond only if S is a complete atomic
Boolean lattice.

Proof. If < (L) is distributive, then it is Boolean, com-
plete and atomic by 3.1 and 3.5.

Conversely, let C be a set such that S is isomorphic to
the power set of C. Consider any linear ordering on C and defi-
ne L to be C with supplementary bounds O and 1. Then VR(L) is
isomorphic to S.

3.7. Theorem. Let S be a modular lattice, Then S is is&o-
morphic to ¥ (L) for some L if and only if S is of ong of the
forms B, Bx M5, or Bx Mg < Il5, where B is a complete atomic Boo-
lean lattice,

Proof. Theorem 3.4 (and an easy computation) shows that

the condition is necessary.

To prove that it is sufficient, let C be = bounded chain,
given by 3.6, such that VR(C) is isomorphic to B. Disregarding
the case where B is trivial, we choose L to be C (resp.

c® 2%, 22® C® 2°) and 1t follows that ¥ (L) is isomorphic
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to B (resp. Bxls, Bxlsr.ls).

m

[2l

[3]

[4]
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