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definition of the weighted space if the weight functions do not L.~
long to the class mentioned.

Key words: Linear function space, Banach space, Sobolev space,
weighteﬁ Sobolev space, weight function.

Classification: 46E35

O. Introduction

Let ke N, 12ps<=, let a ¢ (NO)N be multi-indices of
length |a| <k and S a set of weight functions wo» ol 2k,
defined on an open set o C RN . The Sobolev weight space

Wk’p(ﬂ;s)

is usually defined as the (linear) set of all functions u = u(x)
on @ such that D‘]‘u-wg‘/p e LP(2) for lal <k

For various reasons one needs Wk’p(n;S) to be a normed 1i-
near space and moreover, a complete normed space, i.e. a Banach
Space. However, in some cases (i.e. for some weight functions wu )
not even this is guaranteed, and therefore the question arises for
what classes of weight functions v, it is possible to define a
weighted Sobolev space in such a way that it is a Banach space.
Here, such classes are described.
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1. Weights o f class Bp(n)

1.1. DEFINITION. Let @ be an open set in RN . By the symbol
(1.1 w(a)

we denote the set of all measurable, a.e. in positive and fini-
te functions w =w(x) , x € 9 . Elements of W(R) will be called
weight functions.

1.2. DEFINITION. Let @CR', p> 1, weW®) . By the symbol

(1.2) LP(a;w)

we denote the set of all measurable functions u = u(x) , x€2a,
such that

(1.3) HallB Lo = (190 P weo ax < = .
Q

For w(x) = 1 we obtain the usual Lebesgue space Lp(n) ; in
this case we write ||u||p o Ainstead of
’

ol 1y w0

The following assertion is well known (see, e.g., [1], Theorem
III. 6.6):

1.3. THEOREM. The space Lp(n;w) equipped with the norm
Il'llp,w,n from (1.3) is a Banach space.

1.4. DEFINITION. Let p > 1 . We shall say that a weight function
w € W(R) satisfies condition Bp(n) and write

(1.4) W € Bp(ﬂ) »
if
(1.5) w /@) e 11 gy .

loc

1.5. THEOREM. Let 2 C R be an open set, p > 1, we€ Bp(n) o
Q a compact set in &Y , QC 9 . Then
(1.6) P@;w) G 1l .

(Here C; stands for a continuous imbedding.)

Pr oo f: The assertion follows immediately from the H8lder ine-
quality, since for u €& Lp(n;w) we hﬁve
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J[u(x)| dx I|u(x)| w1/P(x) w-1/p(x) dx <
Q Q
p=1
Hullg 0w ® Vw0 ax) P cellully,,
Q

[

s
with c¢ independent of u

1.6. COROLLARY. Under the assumptions of Theorem 1.5 we have
Lp(ﬂ;w) C Lloc(n) - Using the usual identification of a regular
distribution from ©?’(Q) with a function from Lloc(n) we conclu-
de that

1

P(q;
(1.7) LE(a;w) C Ly o

(2) C ' (2)

for w € Bp(ﬂ) Therefore, for functions u € Lp(ﬂ;w) with w €
€ Bp(n) , the distributional derivatives D%u of u have sense.

If w ¢'Bp(ﬂ) , then the inclusion (1.7) need not hold. This
follows from

1.7. EXAMPLE. For N =1, Q= (-1/2,1/2) , p > 1 and w(x) =
= |x[p_1 we have w ¢ Bp(n) since w-l/(p_1)(x)= |x|-1 . Let us

take u(x) = |x|_1|ln|x||x with A € (-1,-1/p) . Then
L 'l
Ilu]|® o = J|x|“P|1n|x||*P|x!P" dax = lexl"lln x|*P ax =
p’wln
-1 0

=2 I t)‘p dt < » since A < -1/p , i.e. Ap < -1 , and consequent-
1In 2

ly, u € Lp(n;w) . On the other hand, u ¢ L1

loc(n) since we have

K ®
X > -1 and so, J]u(x)| dx = 2 J th gk ==,
= h

1n 4
1.8. REMARK. Let w €B (2) , ¢ Ecg(n) (=0(a2) ) and let a
multi-index y € (NO)N be fixed. Then the formula
(1.8) L () = J'uDY‘p dx , ue P@;w ,
Q
defines a continuous linear functional LY on Lp(h;w) . Indeed,

if we denote Q = supp ¢ , then Q = Q(C & and the H5lder inequa-
lity implies
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m @ | <flulw!/Pip7yw™17P ax ¢
Q

- Bt
£l 18l I, o[ [10741%/ ® D1/ 1) )8
Q
p-1
cllullp g max DY) [[u1/®=1) g P,

Q

here, the last integral is finite in view of €1.5).

J-3. PRELIMINARY DEFINITION OF THE WEIGHTED SOBOLEV SPACE. Let

w C RN be an open set, p > 1 . Let m1 be a nonempty set of
multi-indices of length 1 and let T = {e} U m1 with o =
(0,0,...,0) . Denote S = {wu € W(R) , o € M} and let us define

the Sobolev space with weight S ,

w''P(a;s) ,

1oc(n) such that

their distributional derivatives D% with o € m1 are again ele-

P, 1
ments of L (Q,wa) r‘Lloc

as the set of all functions u e LP(Q;wO) NL

(2) (i.e., D% are regular distribu-
tions).

The expression

_ . b 1/p
19 = by D
) el p,s,0 = (2 110a11B )

obviously is a norm on the linear space w"p(n;S) .

1.10. REMARK. If certain of the weight functions Yo satisfy the
condition Bp(Q) » then the assumption D% € Lp(Q;wa) N Lloc(n)
in Definition 1.9 can be replaced in view of (1.7) by the assump-

tion

(1.10) p%u € Lp(Q;wa) .

1.11. THEOREM. I[et W, € B,(®) for all o€ N . Then W Pass)
is a Banach space if equipped with the norm (1.9).

Proof : Let (un) be a Cauchy sequence in w1’p(n;s) . Then

{D“un} is a Cauchy sequence in Lp(n;wu) for every a € M , and

by Theorem 1.3 there exist functi~- € Lp(n;wa) i L = lim D“un
n-wo
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: Po.
in L (Q,wa)

For a fixed o € m1 and a fixed ¢ e C;(ﬂ) , let us consider
the functional Lu from (1.8). It is a continuous linear functio-
nal on Lp(n;wo) , and consequently,

Lu(un) — Lu(ue) for n — = .

At the same time, Le(v) defines a continuous linear functional on

Lp(ﬂ;wa) , and consequently,
a
Le(D un) — Le(uu) for n — 3

By the definition of the distributional derivative we have
L (u) = - LG(D“un) (notice that |a| = 1), and by a limiting
process this formula yields

Lu(ue) = = Lo(ua) .

This relation holds for every ¢ € C;(n) and therefore, uu is

the distributional derivative of ug =

— a
ucl =D ue .

Since D“u0 € Lp(n;wq) = Lp(n;wn) NnL
e w''P(a;s) and

1

loc(ﬂ) , we have u_ €

[¢]

[, = u |1} = L |[|p% - D% ||P =
n e''1,p,S,q el n o''p,w ,a
_ a P
gl 1P " Sallp o =0

for n — « . Hence the Cauchy sequence (un) converges to u

(3]
in w''P(a;s) , i.e., wW''P(a;s) is complete.

The condition v, € Bp(Q) in Theorem 1.11 is essential. This
follows from

1.12. EXAMPLE. Let us take N =1, g = (-1,1) , p=2, =
={0,1}, A, weR and S = (w (x) = [x|*, w,(x) = [x|")} . Obvi-
ously Wos Wy € W(e) , but for A > 1, yu > 1 we have L '3 Bz(ﬂ),

v, g B,(a) . The space W1’2(n;S) is noncomplete if the parameters

A, u are suitably chosen - we will show this by constructing a
Cauchy sequence {un} in w1’2(n;5) which has no limit in this
space.

For this purpose, let us consider **- “Iinction
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0 for x < Q) ,
(1.11) u(x) =

xY for x> 0
with ye R . If
(1.12) y £ -1
then
1

(1.13) u ¢ Lloc(n) -
Let us denote 91 = (-1,0) , 02 = (0,1) . Obviously u €

1,2 1:2
€ W ’'%(a,;8) and I'“,|1,2,s,n1 = 0 . Further, ue w' (2,38)

if and only if

(1.14) Y > - % =

2

2

1 1

since ||u||¥’2’s‘92 = J x2Y ¥ ax + 2 I x272 ¥ gy |
0 0

For § € (0,1) we define

for x € (-1, §/2> ,

gd(x) x -1 for x € (§/2, ) ,
for x € <¢, 1)

and denote
Ve (x) = u(x)g,(x) .

Easy computation shows that if (1.14) holds then

(1.15) lim ||u - v || =0 for i=1,2.
520 s'l1,2,8,0,

If we denote u, = V1/n , then evidently u, € w”z(n;s) and
(1.15) implies that {u } is a Cauchy sequence in w1’2(ni;S)
for both i =1 and i = 2 . But then {u } is a Cauchy sequence
. V52 . 2 _ 2
in w (2;8) , too, since ||v||1.2’s,n = ||v|]1,2,s’ﬂ1 +
2
+ ||V||1’2,S,92 .

Let us suppose that W1’2(Q;S) is complete. Then there exists
an element u* ¢ w1’2(n;5) such that
(1.16) | [ux - un"1,2,s,n — 0 for n — = ,

A fortiori, this relation takes place if we replace g by @
and then in view of (1.15) we have u = u* a.e. in Q
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i.e. u =u* a.e. in Q . The function u* belongs to w1'2(n;5)
and therefore u* € Lloc(n) . Hence also u g Lloc(n) and this
leads to a contradiction with (1.13). Since the conditions (1.12)
and (1.14) can be satisfied e.g. by choosing A =2, yu =4 and

Yy € (-3/2, —1> , the contradiction mentioned shows that in this case
the space W »2 (2;8) is not complete.

1.13. REMARK. In Example 1.12 we have constructed, for a given
function u € w (Q S) , a Cauchy sequence {u ]C: W1 ‘(n S)

which approximates u in both W o (Q 3S) and W (n 3S) . Let
us mention that we can choose another sequence (u;) with the same
properties but, moreover, such that ug € c(R) . This can be done
by using the imbedding

2y g W' 2 a;s)

which holds for 20, w20, and the facts that the above
functions u, belong even to w1'2(n) and that C”(2) 4is dense
in w2 .

2. Weakening t he conditions on w

In Theorem 1.11 we have assumed that w, € B (@) for all
a € R . These conditions can be weakened, namely, we can omit this
assumption for a =6 .

2.1. THEOREM. Let p>1, w € B () for a € m1 A € w(me) .
Then w1'p(n;5) 18 a Banach space zf equipped with the norm (1.9).

2.2. REMARK. For the proof of Theorem 2.1 we need a "one-dimen-
sional" lemma. To this end, let us introduce - for an open set
GC®Y - the set

AC(G)

of all functions absolutely continuous on every compact interval
I CcaG. Every function u € AC(G) has a derivative a.e. in G
we will denote it by

L]
u .

2.3. LEMMA. Let G be an open get in R, R = {0,1} , S =
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= {wo,w1} , P> 1 . Let

(2.1) W, € Bp(G) > Wy € w(G)

and let (un} be a Cauchy sequence in W1’p(G;S) such that

: Pa.

€323 un — u in L (G,wo) .
' : Pia.

u, —u in L (G,w1) .

0

Then the function u can be changed on a set of zero measure so
that it satisfies

(2.3) W e ace) ,
L]
(2.4) u0 = u1
Proof : Since for an open set GCR we have G = U 1.

i=1 J
where Ij are disjoint open intervals, we can assume thgt1 G is
an (open) interval. It follows from the definition of the space
w'P(G;s) that u, € W'P(G;s) implies u € wlég(c) . So we can
change u,  on a set of zsro measure in such a way that u, € AC(G)
and that the derivative u, coincides a.e. in G with the distri-

butional derivative u’ of u ~ (see, e.g., [2], Theorem 5.6.3).

From (2.2) it follows that there exists a subsequence {un }

of {u } such that, for n — = ,

u,. —* u0 a.e. in G ,
(2.5) k 1
u’ — u a.e. in G
Mk

Now let X be a point from G such that
(2.6) u X)) — u'&) for n —
Y
Since un € AC(G) , we have
k

X
(2.7) u_ (x) = J u’ (t) dt + u_ (%)
N Ny Dy

x
for x € G . Let us define the function u* on G by

X
(2.8) u*(x) = I ul(t) at + 0 .
x
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Since w, € Bp(G) , in view of (2.2) and of Corollary 1.6 we have

u1 € Lloc(G) » and consequently, u* € AC(G) , too.

In view of (2.7) and (2.8) we have, for every x € G

(2.9) [u, x) - ur(x)| <
Py

X X
< |Ju (%) - u°(§)| + H|u’ (t) - u1(t)| at| .
- n n
k o k

X
Since the closed interval with the endpoints x and X is con-
tained in G , by virtue of Theorem 1.5 it follows from the second
relation in (2.2) that the last term in (2.9) tends to zero for

n, — « . This combined with (2.6) yields, in view of (2.9), that

u (x) — u*(x) , x € G
Oy

( x is arbitrary but fixed), and this together with (2.5) implies
uo(x) = u*(x) a.e. in G .

If we change u0 in such a way that uo(x) = u*(x) for all x € G
then we have (2.3) since u* € AC(G)

Further, for the derivatives we have
. .
wl = u* = u1 s

the last equality being a consequence of (2.8), and hence (2.4) is
pProved as well.

2.4. PROOF OF THEOREM 2.1. Let (un} be a Cauchy sequence in

W1’p(n;s) . Then for every o € M there exists a function u,

= a Pia.
(2.10) u, = lim D u in L (Q,WG) s

ne

For o ¢ m1 we have, moreover, u, € Lloc(n) . It remains to prove

that

1
(2.11) uee Lloc(n) ’
2. = p%_ .
(2.12) u, D ug
For i e {1,2,...,N} 1let us write X = (x1,...,xi_1,xi,xi+1,..

+»x) € RV in the form x = (x{,x;) with x/eRV ' . 1f ® is
an open set in RN » then we denote by Pl(H) the projection of H
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onto the hyperplane x, =0 and by H(xi) the cut
H(x]) = {t € R, (x{,t) € H} , x] € P, (H)
Let o € m1 be fixed, so that o = (0,...,0,1,0,...,0) with
the component one on the i-th place. If we denote
O L ry — a ’ - P
(2.13) fn(xi) |D un(xi,t) uu(xi,t)l wa(xi,t) dt
Q(xi)

for xi € Pi(n) then we can rewrite (2.10) as follows:

a - P — a ’ e
(2.14) J]D un(x) uu(x)l wu(x) dx J fn(xi) dxi — 0 ,
Q P, ()
i.e. fg(xi) — 0 in L1(Pi(9)) . Therefore, there exists

a subsequence {f“ } such that f£° (x!) — 0 a.e. in P,.(Q) , and
n, n Ui i
in view of (2.13), this implies that for a.e. x; € Pi(Q) 5

o . oLy g P ry. ro.
D unk(xi, ) — u (x{,+) in LP(a(x{); w (x], )) .

This relation also holds if we replace o by ©

For a fixed xi € Pi(Q) , let us denote uo(t) = ue(xi,t) 5

u1(t) = uu(xi,t) , t€ Q(xi)(: R . Using Lemma 2.3, we can change
u® on a set of zero measure so that u’e€ Ac(a(x})) and

.0 a ’ j ’
(2.15) u =D ue(xi,-) =u = uu(xi,-)

(note that D% means o/dxi Yo

Now, let Q be an arbitrary but fixed bounded open set, QC
COoCa, let ¢ =¢.¢, with ¢ € c;(n) such that ¢ (x) = 1
on Q and ¢, (x) = x; [so that ¢ e CS(Q) and
(2.16) D% (x) = 1 for x€0Q].

Further, let H be an open set with diam H < = and such that
supp ¢ C HC HC @ . Then we have

[lugh ax = [luy1-0% ax < [lugl-[p%| ax =
Q Q H

= j [ J |u0(xi,t)|-lDu¢(x£,t)| at| ax =
P, (H) TH(x])
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t
= - J { J' D% Jug (x],t) | I|D"¢(xi,t)| dt dt] dx{ <
P, (H) H(x]) —=

A

.Dulue(xi,t)|, diam H - max |D%| dt] ax{ <
H
’
Pi(H) H(xi)

. a . ’ a
2 cq J f |D ue(xi,t)l dt] ax} cOJID uel dx
'
Pi(H) H(Xi) ¢!
with cq = diam H . max |Du¢| . In view of (2.15),
H
J|ue| dx < c0J|uu| dx < =
Q H

1°c(n) . However, this implies that u_, € L1 Q)

since ua € L o e
and so, (2.11) is proved.

Finally, (2.12) follows from the fact that, for every ¢ &
(= c‘;(n) , (2.15) and (2.11) imply

(2.17) JueD“¢ dx = [ ue(x;,t)n%(xi,t) dt] ax =
P, (@) ‘a(x])

It

a r 7 8 '
- D ue(xi,t)¢(xi,t) dt] dxi =
Po(R) a(x))

]

- j [ J ua(xi,t)¢(x;,t) dt] dxi = - Jua¢ dx .
P, () Q(xi) Q

The following example shows that the condition Y € BP(Q)
cannot be omitted for a € m1 :

2.5. EXAMPLE. Let us consider the space W1’2(Q;S) from Example

1.12, but now with X € <0,1) , wu > 1 . Then W, € B2(Q) - Wy

é Bz(ﬂ) . Let us consider the function u(x) from (1.11) with
y=0, i.e.

(2.18) u(x) =0 for x <0, ux) =1 for x>0 .
Let us mention that now the conditions (1.14) have the form

(2.19) A >=-1, p>1.
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Proceeding analogously as in Example 1.12 we construct a Cauchy
sequence {un) in w1’2(n;s) » and the assumption of completeness

of this space implies the existence of the function u* = lim u,
new

in w1’2(n;S) such that u = u* a.e. in @ . But this leads to a

contradiction: The function u* as an element of w1’2(n;S) has

the distributional derivative (ux)'’ € Lloc(ﬂ) N Lz(ﬂ;w1) . How~

ever, the distributional derivative of the function u from (2.18)

does not belong to Lloc(n), since it is the Dirac distribution.
Consequently, the space w1’2(n;5) %s not complete for

(2.20) AE <0,1) , pne (1,=) .

2.6. EXAMPLE. All the foregoing examples have been one-dimensio-
nal, but it is easy to construct more-dimensional examples. For
instance, if we take p=2, N = 2 sy 2= (-1,1) x (-1,1) , R =
= {00,0,(1,00, 0,1}, w6y = x|t Wip,0yG0y) = [x*,
w(0,1)(x,y) =1, with X, pu f£from (2.20), shgn w(0,0)’ w(0’1) €
€ By(2) , w(1,0) ¢ Bz(n) and the space W ’“(2;S) s not comp-
lete since the distributional derivative du/dx of the function

u defined by u(x,y) =0 if x € (-1,0> , u(x,y) =1 if x €

T (@,

€ (0,1) , Zs not a regular distribution, so that du/ox ¢ Lloc

3. Exceptional s ets Definition o f
the weighted Sobolev s pace

In Example 2.6, the "bad" set which causes the noncompleteness
of w1'2(n;5) was the open segment {[0,y]; -1 <y < 1} . So, we
are led to

3.1. DEFINITION. Let w € () , p > 1 and denote
(3.1) Mp(w) = {x € g; w_1/(p_1)(y) dy = = for every
an U(x)

neighbourhood U(x) of x} .

Obviously, Mp(w) =@ for weE Bp(n) . Now, we have

3.2. LEMMA. [Let @ (C RN be open, p>1, weEWR , we Bp(n).
Then
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(i) Mp(w) is a nonempty closed set in Q ;

(ii) we Bp(n - Mp(w))

Proof : Let us denote M = Mp(w) . Definition 3.1 implies
that if x € o - M, then there exists a ball U(x,e) = {z e &Y
|x = z| < e} such that

(3.2) WP gy ay < w .
QnU(x,e)

Now, let X be a compact set, KC @ - M . The system of all
balls U(x,e) from (3.2) with x € K forms an open cgvering of
K ; from this covering we select a finite covering ;j]Ui , and
since
-1/ (1) = -1/(p~1)
Jw ¥) dy;.§1fw (y) dy < =,
K 1 Uy

we have w 1/(P~1) € L1(K) - The set KC @ - M was arbitrary,

which proves the assertion (ii).

The assumption M = ¢ implies by (ii) that w € Bp(n) , and
this contradicts the assumption w & Bp(n) . Consequently, M is
nonempty. Further, let x € @ - M . Then there exists a neighbour-
hood U(x) such that U(x)C 2 - M , namely, the ball U(x,¢)
from (3.2) with € > 0 such that U(x,e¢) C @ : Indeed, for every
z € U(x,e) we have z € 2 - M since

w /@1 gy dy < =
anu(z,s)

for § = e - |x - z| . Consequently, @ - M is open in R and
the assertion (i) is proved, too.

Another property of the exceptional set M _(w) is described
by the following theorem, whose proof is left to the reader:

3.3. THEOREM. Let o C &Y be open, p > 1 Let weE W(Q) be
continuous a.e. in Q . Then

(3.3) meas (Mp(w)) =0 .

3.4. REMARK. Let W1'p(n;S) be the space from Definition 1.9.
Let us denote
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(3.4) B = U] M _(w )
ae]fl1 P

w, & Bp(ﬂ)
with Mp(wu) from (3.1). Theorem 1.11 implies that if B = ¢ ,

then W1’p(n;s) is a Banach space, while Examples 2.5 and 2.6 in-
dicate that if B # @ , then wl’p(Q;S) need not be complete.
Therefore, we are led to the following definition of the weighted
Sobolev space!

3.5. DEFINITION. Let ¢ , P, m1 » M and S be as in Definition
1.9, with v, € W(Q) for o« €M . Let B be the set from (3.4).
Then we define the Sobolev space with weight S

w'Pea;s)

as the space W1’p(n - B; S) , considered in the sense of Defini-
tion 1.9.

It follows from the assertion (ii) of Lemma 3.2 that w €
€ Bp(ﬂ - B) for every a € m1 . Hence, by Theorem 2.1, the space

W1’p(9 - B; S) and, consequently, the space W"p(ﬂ;s) (in the
sense of Definition 3.5) is complete, i.e. a Banach space.

3.6. REMARK. Another way how to guarantee the completeness of the
weighted Sobolev space is to define it as the completion of the set
w1’p(n;S) from Definition 1.9 with respect to the norm (1.9). How-
ever, in this case the completion could contain nonregular distri-
butions (see Example 1.12) or functions whose distributional deri-
vatives are not regular distributions (see Examples 2.5, 2.6, which
indicate that it is the set B (C @ which makes difficulties).
Therefore, Definition 3.5 seems to be more natural.

4. Concluding remarks. T h e s pace

w)>P(a;s)

4.1. REMARK. The classical Sobolev space w1’p(n) is often defi-
ned (for a "reasonable" domain Q ) as the closure of the set
c”(@) in the corresponding norm H-th,Q . If we want to pro-
ceed analogously in the case of weighted spaces, we need first of
all that
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(4.1) c”@ C w''P(a;s)

hold. This relation excludes a great number of weight functions,
e.g. weights of the type |x - xol—A with large X >0, x,e€ Q
fixed. On the other hand, such weight functions evidently belong
to the class Bp(ﬂ)

At the same time, Remark 1.13 shows that even if the condi-
tion (4.1) is fulfilled, the completion could lead to spaces as in
Remark 3.6, i.e. to Banach spaces with elements which are nonfegu—
lar distributions.

4.2. THE SPACE wl'p(n;S) . In various applications, in particu-
v

lar, for the investigation of the Dirichlet problem for elliptic
partial differential equations, we need the space w;’p(Q;S) de-
fined as the closure of Cg(n) with respect to the norm (1.9). In
order to be able to introduce this space, we need the inclusion

(4.2) e {a)'c WP (q;s)

which is evidently fulfilled if

1

(4.3) wa € Lloc

() for all q e .

Hence we are able to introduce the following

4.3. PRELIMINARY DEFINITION OF THE SPACE wl’p(n;s) . Let @, p,
M1 , T and S be as in Definition 1.9. Let wu E Bp(n) for o e

S m1 and w & L1
a

loc(sz) for o € M . Then we define

1,pq. = g%
(4.4) Wy H(e;8) = Ccp(a) ,

the closure being taken with respect to the norm |
from (1.9).

|1.p.S.Q

Condition (4.3) is not only sufficient but also necessary for
(4.2):

4 4 LEMMA. The inclusion (4.2) is fulfilled if and only if (4.3)
holds.

Proof: Ifthe condition (4.3) holds then evidently (4.2) is
fulfilled. Conversely, let us suppose that (4.2) holds. Let o € N
and let Q C @ be a compact set. Then there exists a function
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¢ € c‘;(n) such that D% (x) = 1 for x € Q (see (2.16)), and
this identity together with (4.2) implies

0 s fu, ax = [10%[Pu, ax < [10% [P ax < 114118, 5 o < =
Q Q

1
and consequently, W € Lloc(n)

It follows from Lemma 4.4 that for some weights S the in-
clusion (4.2) need not hold. So we are led to the notion of anot-
her exceptional set:

4.5. DEFINITION. Let w € W(R) and denote

(4.5) My(w) = {x € a; J w(t) dt = = for every
Q NU(x)
neighbourhood Ufx) of x} .

This set is an analogue of the set Mp(w) from Definition
3.2 (we obtain it formally by setting p = 0 in (3.1)). Obviously
Myw) = ¢ for we€ L]

loc(Q) . Similarly to Lemma 3.3 and Theorem
3.4, we have

N 1

4.6. LEMMA. Let QCR 166

Then

be open, w € W(Q) and w &L Q) .

(i) MO(W) is a nonempty closed set in Q ,

i3 1
(ii) w € Lloc(ﬂ = Mo(w)) .

If w <8 continuous a.e. in Q , then
meas(Mo(w)] =0 .

Now, we are able to introduce the definition of the wedghteg
Sobolev space w;’p(n;S)

4.7. DEFINITION. Let Q , p , m1 , M and S be as in Definition
1.9. Denoting

(4.6) Cc = aLe)m Mg (W)
w(! é L}.OC(Q)

with Mo(wa) from (4.5) we define

(4.7 Wo'P(ass) = ¥

where
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V=it f=9|,5, gecia- 0}

with B from (3.11), the closure in (4.7) being taken with res-
pect to the norm '|'||1,p,s,n from (1.9).

Thus we have obtained again a Banach space, which is a sub-
space of w1’p(n;s) £)

4.8. REMARK. If wu € Bp(n) for every a ¢ m1 , then B = ¢ and
(4.7) yields

1P 0.5y = c® (0 -
WO (Q;8) CO(Q C)

100(9) for every o € M ,

then C = @ and the space wg’p(n;s) from (4.7) coincides with
the space w;’p(n;S) from (4.4).

If we suppose in addition that w, €L

4.9. REMARK. For various purposes, in particular in weighted ine-
qualities for maximal functions and other (integral) operators,

the class A, of weight functions introduced by B. MUCKENHOUPT [3]
plays an important role. Here w € Ap means that

= < p-
(4.8) sup (—l— w(x) dx][—l~ Iw 1/(p 1)(x) dx) < const
CHTY el 4

for w e w(RN) where Q C RN are arbitrary cubes with edges pa-
rallel to the coordinate axes and |o] is the volume of Q . For-
mula (4.8) indicates a close connection between the class A and
the classes Bp(RN) and Lioc(RN) essentially used in the fore-
going considerations. In particular, we have

1

N N
ApC Lloc(a yn BP(R ) e

4.10. REMARK. In this paper, we have considered for simplicity
the case of spaces of order one only. Nevertheless, our considera-
tions can be extended to the space Wk’p(ﬂ;S) with k > 1 men-
tioned in Introduction. If we introduce the set M of multi-indi-
ces containing some o with |a| = k , the weight § = {wu € W),
@ € M} and define Wk’p(ﬂ;S) as the set of all functions u =

= u(x) such that D% e Lp(n;wu) for o« € M , then analogous

assertions as in the case k = 1 can be obtained at least for
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certain special sets M . For example, M should have the follo-
wing structure: If we denote T, = {a € Ng, |a] = i} , then

1) AW F P
(ii) o € ;

(iii) if o« €N o, 1 < |il £ k , then there exists at
least one B € M r\mi_1 such that

a - B E m1
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