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Introduction

Recently many new existence results have been obtained in
the theory of partial differential equations by means of the
Nash’s iteration procedure which is a modification of the
classical Newton'’s method. From a more general point of view it
was developed e.g. by Schwartz [15], Moser [81,[9), Ptak [13],
Craven and Nashed [3], Shatah [16], Altman [1], issuing from the
original Nash’s paper [10]. These results are applied in the
theory of PDE’s for proving the existence of small solutions in
the cases when one has some apriori estimates, but with a "lost
of derivatives". This situation:occurs frequently in the theory
of nonlinear hyperbolic equations. The existence proofs are based
either on the use of Moser’s theorem (Rabinowitz [14], Craig [2],
Petzeltovd [12]), or on a direct application of the Nash’s scheme
(Hormander [5], Klainerman [6], Shibata [17],[18]). A1l these
results are obtained under tg;lgssumption that the data (i.e.



right-hand side, initial conditions, if any, etc.) are
sufficiently small and sufficiently smooth.

In the present paper we want to emphasize that in fact,
this theory can be put in a rather elementary framework. In the
firat part we derive sufficient conditions for the solvability
of the abstract equation F(u) = h in a system of Banach spaces
{xp'L!. Our aim is to minimize the requirements on the smallness
and "smoothness" of the data. In the second part we apply the i
abstract theorem for proving the existence of classical periodic
solutions to the equation

¢(u, du, Bxu.aiu,Biu, bxbtu) = h(t,x)

with zero Dirichlet boundary conditions on (_'0,1], where 49 and
h are given functions.

Throughout the paper, we denote all constants whose values
depend essentielly only on quantities a,b,... by °a,b,...
Especially, L, denotes any constant depending essentially
only on L. (

I. Operator equation

1. Statement of the main theorem

(1.1) Assumptions.

(N) Let 2£q=§ be given real numbers and let N"”Nq’N&’ “
N+.N_,N°,N be nonnegative integers such that

N, = max {N_,N_}

N,z Ny = N

q !
N = max{N++No+Nq+Nq—2N_; N+N,; N +N_-N_}
and put
Moo= 2N+14N#N_-N-N -Ng .

(X) Let {XP’L, P=2,Q,4,00 , 1=0,1,2, ...} be a system of
Banach spaces endowed with norms |[.| L and let the
following relations hold (the symbol & denotes the
continuous embedding):

xPr I+l xP L 521.E)or each p and each L&O




L g ¥l por pzp, LzO

XZ'HNP < xPlb for p=q,d,e , L&=O .
Let Xi’N- be a closed subspace of XZ’N- and for L&N_
put  x20F o xBN o gI

(S) Let r>1 be a given real number and let {Sn}n_o be a
sequence of "smoothing operators"™ such that for each LgO,
K=0, uexp’K there is Snuexp’L and there exist con-

stants g, such that

s1) Ispul ;. & cf r(I-K)n lul, g » LZK, n&o0

(s2) l(x-spul ;= ¢ prE)n lul) ¢+ L&K=MN_, nZ0.

(F) Let é; > 0 be a given number and let F: D (F) —x=D,
where DL(F) = {uex"'L"'N+ s lul.,‘N < 50 } , be a continuous
mapping for OsL=M, F(0) = O, which is twice Fréchet
differentiable for OiLﬁm-N+—N~+N_ and such that

(F1) for each veD (F), uj,u,eX™*Ny 041 gu-N N 4N
L 1272 + -
there is

IF’(V)(u1 1“2)!2'1‘ = °L % Q] +|vloo,),+N°)‘lu1lq.A:‘No.

IA\[=L+N B, . luzl . ot
1] o ’

(F2) there exists some 5_>0 such that for every ve

e po M+ N _ 2,M

, l"lm.N°+N_< §_ end for every heX
there exists a unique solution u eKﬁ’M"'N- to the
equation F'(v) u = h , such that

luly iy & o (lh,2,L + 1l 'hlz,o)

holds for each L, OSLEM.
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{1,2) THEOREM. Let (1.1) hold . Then there exists some 5N7>0

auch that for each h.eXz’M, lhlz'M < éﬁ there exists at least

2,N+N_

one solution ueXo

to the equation F(u) = h.

(1.3) Remarks.

(+) Since there is x2 NN o g N, , the value of F(u)
in the theorem is well defined.

{1i) In the applications, the number N, characterizes the
"order" of the equation, N+-N_ is the number of "lost
derivatives", No is the highest order occurring in the
"grgument of the nonlinearity".

2., Iteration scheme

The iteration process is almost the same as in [s1, [6] or
[17] . Ve are to solve the following sequence of linear equations

(2.1) 7! (0) uy =
(2.2), F'(Souo) w,

"

(2.2) F'(Snun) w = h

n
: n-1
where u, = u, + E= Wi
- - 0 !
ho = Soe0 i e, = P(uo) + F(0) ug
n-1
h, = Spe, # (5= Sn-1) %;% %k
én ~ fat e
- )
L, = Plu,) + Flu _4) + F (up_q) w4

8, = (F'(Sn_1un_1) - F'(un_1)) Wo_q e
‘ie check easily that one has

n
(2.3) Plupq) = h = ey - (I-5,) %;% k
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First, let heX>'¥ pe arbitrary. Following (1.1)(F2) we
find the unique solution uoexi’m'm- of (2.1). There is

(2.4) luly & op lnly o b oSLENM .
For the solvability of (2.2)0 we require

(2.5) lso“o'»,no < &

luolw,No < ‘So
lsouolon,No+N_ < 4 .

These conditions are satisfied if h is taken sufficiently
small, say |[hl, ;; < &, . On the other hand there is
»

1
n
(2.6) Ingly = Iseeola,r = °L4[ [P (euy) (ugu)dl, o dr s
s °p :lAI=N+'N°(1 ¢ l“oleo.}\ﬂio)l“ol q-A;Nol“olﬁ.).;No '
so that the unique solution woexi"“"- of (2.2)o satisfies

lwola,pen_ s ©p (gla,n + Tugla,o IBgla,o) » O&TEM.

Let € >0 be for the present arbitrarily chosen. From
(2.4) and (2.6) 1t follows that one can find some &, 0<& =&
such that if

2.1 Inlyy < &

then there is
(2.8) =

Put
(2.9) 'x‘ = N + ; .

lwlo, oy & € » O£LEN

Our next goal is to choose € in (2.8), in such a way that
the inequalities

(2.8),  lwlp ey = g (T

hold for arbitrary integers kO and O=£LZ£1l. The constant
r>1 1is introduced in (1.1)(S).
oy
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For this purpose we proceed by induction over k. We make
the following assumption:

(2.10) For some & >0 and n&0 there exists the sequence
fweb 2o € X2 or golutions of {(2.2),, k=0,1, ... ,n},

respectively, satisfying (2‘8)1:’ k=0,1, ... ,n.

3. Estimates

(3.1) Proposition. Let (2.10) hold . Then there is

IN

cLE 3 O=LSN

(1) lux1+1l2.L+H_
op, € G L D

A0 lupqly pew_ =

(111) lwply .y = c &€, O&LSEN

(iv) l"n|2,L+N: =

M) @8l p ey & o e TRIED ogrgy
(—3'+L)(n+1)'

cp € r('xﬂ')(nﬂ), N<L=M

(vi) ,(I"Sn)”hl2,1.+N = cpfr 0SL=EM

(vii) Ifn“'z’LscLazr(-2[+L+N++N0+Nq+Nq—2N_)(n+1),oﬂ‘s

M-N_ =N +N_
(vidi) | €1 ’2,L % CLE2r(-23'+L+N ++N°+Nq+Nq-2N_) (n+1),O$L$M-N+-N°°+N_

(1x) ey, 4|, 1 &op Br(T2R+IMN #NHN NG00 ) (ne1) or oy Nt

€n+1

n

(x) ]E ekl = ¢ e » OSLLM-N -N#N_
=0 2,L
n

(x1) l}: ekl £ c€? r(n+1)/3
k=0 2,M=N -N N _
n
(xi1) I(I-sn) > ekl < CLEZI,(-23‘+L+N++N0+Nq+Né-2N_)(n+1)’
L 0 2L &M-N ~N +_

n
(x111) |(I-5, ;) . eklz > op E2r (~2F+LHT # 4N 402N ) (ne1)
- ’ 0 & LS M-N, ~N+N_

(xiv) lhn+1‘2,L & &2r('27+L+N++No+Nq+Ni-2N-)(n+1), 0&L .
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Pr oo f. Using (2.10), (2.4) and (2.6) we obtain

n n -
l“ole,mn_ + E lwkIZ,L+N_ < € (°L+ s Zf+L)k')

k=0
n 00
. (=r+L)x (-¥+L)k
In the case LSN there is r <) r c
E=O k=0 = 7L

for L>N we have é r("r"’l')k = pi-L r("ZF"L)(nH) ir(T'L)ks

k=0
£ cp r(—?f+L)(n+1), and (1) - (iv) follow easily.

For proving the inequalities (v) and (vi) we use (1.1)(8) and
(ii), (iv). There is

I(I-Sn)unlz'MN_ £ ¢ r{Iin gl oy & op € £(=T+L) (n+1)

which yields (vi) ((v) is analogous).
Next, we express

b 4

1
o -'0/(1-0') F”(un+ a'wn)(wn.wn) do

&ni1
Using (1.1)(F1), (X) and (N) we obtain for OLL=M-N -N_+N_

7
- F g e (5 - D) (3-8 Ju,w ) ao

£l a,1 & o %O“ + l“nlz,x,mom. & l"nlz,;\'momw Yo
: l"nl2,1L+No+Nq l"nl"”"a*No*N:‘
l&nyal 2, & of W’I“’:‘H'“o“ + lun|2,>\1+N°+N“) l"nlz,:\ﬁrwomq’
: |(I'Sn)un12,13+No+N& .
Therefore, we estimate both lfn+1l2,L and l3n+1l2,L (and
hence Ien+1|2,L) from above by

2 1+ r('W+7‘1+N°+N.,-N_)(n+1)).

e € ——
|A|=L+I\:+-1\°

. p(=2p+ 21+A3+2N°+Nq+nd -2N_) (n+1)

£ o 2 r(-23'+L+N++N°+Nq+Nd =-2N_)(n+1)

which is (vii). (wid4) /(=)

The assertions (x) and (xi) are similar to (i) - (iv)
Ve use the fact that the estimate

2 _(=2y+L+N 4N _+XN o i
,ekIE,L < °I_, 3 r T + 595 q'.’Nq 2N_) k

holds for each k=0,1,; «o: n+1525a.nd that one has



MeN,-N#N_ = 2N-N,-N N -Ne +2N_+1 .

The proof of (xii) and (xiii) is analogous to (v) and (vi)
and we don’t reproduce it here. For proving the last assertion
(xiv) we observe that

L(n+1)
lSm+1"‘m~1l2,1, S cpr legsala,o
holds for arbitrary L=&0. Further, for LEW-N -N+N_ we have
n n n

(s -s))‘_“el < l(I-S)}Ze] +I(I-S )2:e|

l o+ "0t 5 kle,n T 2" =0 *l2,1 o145 £z,
so that we can use (xii) and (xiii), for L >N-N_-N +N_ we obtain
( 51 n n n
S .1 ; e IS > e I + IS > e
n+1 n = k 2,L n+1 =0 k 2,L

n %20 klZ.L
v n
£ o r(L—M+1‘I++I\I,,,-1\_)(n+1) |Zek|
k=0 <12,M-N =N +N_

and using (xi) the proof is complete.

4. Proof of the main theorem.

Up to now we have shown that for an arbitrarily chosen
€ >0 we can find some & >0 such that if lhl2 u< O » the
’

equations (2.1) and (2.2)  have solutions u,, w, € xi’M"'N-

respectively, satisfying 'uolz,L+L- & ¢ €, lwol2,L+N < &,

0%L=k. Further, assuming (2.10) we have derived the estimates
(3.1).

By (1.1)(F2) the sufficient conditions for the solvability
of (2.2)n+1 are

(4.1) lSn+1“‘n+1l oo ,N°+N_ < 'S_
lanl g, < 4,
lsnunl oo, N < &
lapql 00s 1, < 4

Since there is 1 + N_ & U  + N+ N_ , we see that by (3.1)
(1), (iii) the conditions (}.1) are fulfilled provided € is
taken sufficiently small.

_5(6-



. 2,M+N
Following (1.1)(F2) the solution W1 € X5 - of (2.2) .,
satisfies the inequality (O£Ls=M):

Iwoerla,en_ = og ('hn+1’2,1. & ‘sn+1un+1|oo,L+N°+N_ Ihn+1|2,()é
£ oy (gl p,p + 22

Using (3.1)(i),(xiv) we find the estimate

n+1 2,N+N_|hn+1l2,0) .

2 ('27+L+I‘I++Ho+“q+Nc'; =-21_) (n+1)

2 < y
|“’n+1|2,L+N_= e, €°r , O£LEN

On the other hand, by (1.1)(L:) and (2.9) there is
T o = _1
- Y +N ++NQ+Nq+N(.1 2N_ = 3 < 0 , hence

E21,(-;'+L) (n+1)

(4.2) |w £ o , OSLZM.

n+112,L+N_ =

The constant ¢y, in (4.2) is independent of n. Thus the choice

(4.3) € < (max Yoy, LELER)™
yields (2.&)n+1.

By induction over n we conclude that we can construct the

infinite sequence {"""1}::0:0 c );5"-"’1‘_

00
of solutions of {(2.2)n§"=°
provided 5,_: 311 is taken suf.iciently small (so that (2.5),
(2.8), (4.1), (4.3) are fulfilled) and each v, satisfies

the corresponding; inequality (2'8)n' Since the series

o0 -l 2 Py
2 ber, | 2 €> _r "2 ig convergent, we see that fut o
n=0 " 2,T4h_ n=C A-ne
is a fundamental sequence in 2(5’““‘-
nex2iWei_

and hence it admits a 1limit

- Lspecially, u —>u in X b,

. By continuity of F,

F(u ) —=F(u) in x =0

(ix), (xii) there is

. On the other hand, by (2.3) and (3.1)

n
RACHEDIES Y R (len+1l2,1‘1 + |(I-8y) :Z_:exl \ )é
® =0 H2,N
4 o g2, 201)/3

hence F(u) = h, which was to be proved.
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II. A nonlinear equation of the second order

5. Existence theorem.

As an application of the above theory we consider the
problem of the existence of time-periodic solutions of the
equation

(5.0 @ (u, dyu, du, Pu, Bu, AW = n(t,x)
with period @3>0, teR', xe () = Jo,1[, satisfying boundary
conditions u(t,0) = u(t,1) = 0.

The spaces in which the equation (5.1) is to be solved are
chosen in a natural way: we put for L20 and 1€p < oo
Pl o weiln), x=F . E(7) and for L1 x2:b
= {uew"’u;I‘(n). u(t,0) = u(t,1) = 03} , where WEJL(.D.) denotes
the Sobolev space of all real functions u(t,x), t eR1, xe ),

w=-periodic with respect to t and having all derivatives up to
the order I in Lp(]O,w[x.Q), with norm

L K . P
(ul = 3 :(// 7 | ax at ) /P

p)Il K=0 T=0 0 -ﬂ-l t “x )
(the symbol /w denotes the integration with respect to t over
any interval ]to.t°+w[).

Similarly, C,I;(.-ﬁ_) denotes the space of all continuously differ-
entiable functions on R1xﬁ up to the order I and w-periodiec
with respect to t, endowed with the norm

L K
el = 25 5o sw {13] 3 7uce,ml, ver!, zen} |

The existence theorem is stated as follows (the symbol biqb(o)
denotes the derivative of ¢ with respect to the i-th variable
at the point (0,0,0,0,0,0)).

(5.2) THEOREM. Let w >0, d >0, N24 be given, N integer.
Put I = 2N. Let ¢ be & mapping of class C'*2 in its domain
of definition D(P) = [-d,§]° such that

(1) P = o
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(11)  9,¢0) >0, o o) <o, 9,¢0) = o.
Then there exist positive constants 6-1 >0, 6N >0 such that if

0 qS(O) >—5 » then for every hex2'M, [nl < é there exists
1 1 2,M N

2,N+1

at least one solution uexo

to the equation (5.1).

The proof consists in verifying that for the operator

(5.3) F(w) = ¢h) = Plu, dyu, du, Ru, d2u, 3 Qu)

the conditions (1.1) are fulfilled.

Putting N, =N =2, N_=1,q= =4, N =Ns =1,
+ o - q q

Ne =2 we check immediately that (1.1)(N) and (X) hold.

Next, we state without proof two lemmas. The first one is
én easy consequence of the Nirenberg inequality (cf. [11]). the
proof of the second one can be found in [9] or [17].

(5.4) Lemma. Let O£JSK<£ISL, 1% Pyq %00 . Then there exist

constants cp I cp a5 such that for every uexp’I, vexq'L.J
b} M

there is

(1) lul |

| (T (1-7)
PyJ

c 1 lu lu

<
p,K = Py

A0 uly g Ivlg,rk & o1 (g, glvlg oy +laly 1ol 1 o).

(5.5) Lemma. Let 5o>0, OS£L=M+2. There exists a constant
cg 1 independent of ¢ such that for each v eX ®I+2

oo, L
IVI‘,"’2 < 50 there is (1)(/\v)€x ** and

l¢(AV)[oo,L g (14 vl 0, 142) |"¢“|L » Where

WRll, = sup {13, «ovd pays onn woglhisl<s,, 0sxsL,
1 K 11,6 }.

We introduce the smoothing operators {Sn§ following [5],
[6], [17]. First we define the continuous linear prolongation

operators P : Wrl(0) —W2lRY), 1¢p 2w, OSLEMT by
the Hestenes formula (cf. [4]). Then we find a C° -function 4
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with support in ]-1,1[ such that (see [17])

.6) (1) [ ) as = 1

(11) /3 ¢p(e) as = 0, k= 1,2, ... ,u.

¢inally, for ueXP'l and nzo0 we put
LT (8 u)(t,x) = /Rz o8 P (t-8)) P(x"(x-y)) P, 1u(8,y) dyds,

where r>1 is an arbitrary fixed real number. We can directly

. ‘eck using (5.6) and (5.4) that the sequence §S
-otisfies (1.1)(S).

oo
n’n=0

Since the verification of (1.1)(F1) follows from a straight-

Zcrward computation employing (5.4) and (5.5), for proving the
Ti.eorem (5.2) it remains to show that (1.1)(F2) holds.

<. Linear equations.
Let us consider the linear equation
) 2 2
(2a1)  aqu + &, atu +ay Bxu +a, Btu + a5 Bxu + ag 3th“ = h
and assume

{%.,2) For i=1, ... ,6 there is aieX‘w'M"'1 and

lailoo’1 = Ai
latailoo'o s T,
eyl 0 5 5y

inf {az(t,x), teR1, xe_()_} 2 m, >0
inf {-a(t,x), teR, xe O} 2 g >0

a,(t,x) Z -1/(8v°) min{;\mz, ms} , where 1 is the

constant such that for every u ex§’1 there is

Jf1u? ax at = v"’[/( [3,ul? + 13, ul?) ax dt , and
w N 24 n &

42
B ow el b
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Ay & 1/(40) min fng, Am, }

| and the numbers 'ti, §i satisfy the inequalities

ATy + §g+ 55 +1}2‘C’1) + 1»2(‘t’2 + §3) + w0, + §s + Tp) g%\mz

)\(t5+§5+v2'c,)+vz('rz+ 53)+ v('t4+3§5+3‘t:6) é%mg,
U+ DT+ f5 + NT & o

@-1T + § + § + T, = %"‘2

(6.3) THEOREM. Let us assume (6.2). Then for each h e XY

there exists a unique solution ueX(Z)’M+1 of (6.1) and the
inequality

6 .
(6.4) ‘ulz.L+1 é cL’{Ai'mi’ti"i} (lh(2lL + lhlz'o Elailwil‘*’.l

holds for every L, OSLZM.

Pr oo f. We use the classical Galerkin-type procedure. Let

hex2 M be given. For m1 we put
o 1

m
gt = 3 > Uy "k;j(t’x) , teR

k=-m j=1

» x€ L) , where

18Kk ) -
ij(t,x) = e sin jAx , i 4is the imaginary unit, Uy 504
The constant vector U, = {ukj’ j=1y «.. ,m, k=-m, ... ,m}

is required to satisfy the system (ij denotes the complex
conjugate of wk;j)

650 [[(og g+ o g+ oy g+ o2 g+ 2t g+ aghd p -
“ Wy dx dt = _{Ah?v'kjdxdt,
k=-m, ... ym, J=1, ... ,m,

which is a linear algebraic equation of the form

(6.6) AU = H ,
Where A is a square matrix of the type (3m+1)X(3m+1).

Let us multiply the (k,j)-th equation in (6.5) successively
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by Ekj and by -1 )% Ekj and in both cases sum over

k=-m, ... ,m and Jj=1, ... ,m. Summing the two relations we
obtain after integration by parts

LLay 12,412 - o 1202 + a)1gi?) ax at =

S 7/SLEARS TEFREWIL PILE A T

+ 3O, + Day + 28y) 1312 & (Day + As, + agday Ay +

+ 08, Opp + (Qas + Qe )p-p + hOJp + )} ax at .
Estimating

61 | [f ag ap 4y ax av | 2 a1ayl2 o+ 2 11,0 )

with & = ms/As and using (6.2) we obtain
(6.8) 19ply 0 + [3glp,0 = °fag,my,t, 08 Ul =

= c{Lirmiofipfif lh‘29° ’
where "“ is a norm in RBE‘H.

From (6.8) it follows that the matrix A in (6.6) is
nonsingular, hence there exists a unique solution U, of (6.6).

Moreover, by (6.8) the sequence iui :=1 is bounded in X§'1.

Consequently, there exists a subsequence of ) H} which converges

weakly in X2*! to some uex2:!, Taking the limit in (6.5) we
see that

(6.9) ZJ/L{%‘“ +8,%uv + 533xu.v - atu.‘at(a4v) - axuvax(asv) =
-du-d(agmtaxat = //nv ax at
holds for every v = ;k;j and hence for every leg’1. Remark

that (6.9) can be considered as the definition of the weak
solution of (6.1).

The passage to the weak limit in (6.8) gives

€6.10) [ul 5y

2,1 S °{Ai.mi.ti,§i} 2,0 .

In order to obtain further estimates we multiply the (k,j)-th
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equation in (6.5) consecutively by (i %)21‘ Ekj and

A1 8Fky2L+1 Wy » L being en arbitrary integer 1#L%N.

Summing again over k and j and integrating by parts we obtain
respectively

(611 [[ Doy 151317 - a5 1250417 - e 3bag B glazat -
L -
- LA e oy - 2 (%, Ay
+ g(l‘;) (-blébxas-bjt"xquﬁ + 3533-32“1{'1313 + Bfaz-ai"ﬁl)-
1
A+ ) ERA™Y + Aoy
+ Mm%y 1 axat,
and
(6.12) )\{A {(32 + (L—%)Bta“ - %bxas)lai’nnlz +
+ (IA-%) btaslb{;‘axﬂlz + (ay - Q.85 + thas)afaxn-afnﬂ}dx at =
AL LT T (B) e BE %y - B e gy 2Ty

L
L\ AK L-K K L-K+1 K L-K 1
3 (%)(Ofoa5 01 oy - ofa, oFF4 1o y - ola, 2L Ky gral 1

+

L L
It1) yK+1 ALK L L\aK, AL-K ~L+1
- g(KH)at*‘ R LR K;,(K)atafat B ¢+
+ 3y § ax as

Now, adding (6.11) to (6.12) and using (6.2) and an estimate
analogous to (6.7) with the same (& ve derive the inequality

L+l 12 Ly .2 L+1
1oy "g13,0 + 1030415 o 2 °L.{Ai.mi,ti,§1§“at #l2,0 *
L L-K+1
+ 130415 o) {lh‘2,L+g(élailn,x-ﬂ)(lat +ﬂ'2.o *
L-K
+ 0¥ o 4l, )

By induction over L using (6.10) and (5.4)(ii) we obtain
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(6.13) 133*1pl, o + 1Pl o = )
= °L,{A ,my, v, 8} (““2,1, + Inl, Elailm,h1).

Hence, the weakly convergent subsequence fﬁ} of {}ﬁi can be
chosen in such a way that B%H converges weaxly to Bi'u in
x2*? ana lbi’ulz'1 is estimated from above by the right-hand
side of (6.13) for all L, O£ L=M.

From (6.9) we see that the distributional derivative Biu
equals to some function from X2'0

x2'2 and satisties (6.1) a.e. in R'Xfl. Differentiating
formally the equation (6.1) up to the order M-1 we show by
induction (using (6.13) and (5.4)(ii)) that u is an element

, hence u is an element of

of X271 ang gatisfies (6.4) for OSLSN. Thus, the theorem
(6.3) is proved.

7. Completing of the proof of (5.2) and final remarks.

The theorem (6.3) ylelds sufficient means for verifying that
the operator (5.3) satisfies (1.1)(F2). In fact, we have

F/(v) u = 31¢(I\v)~u + 32¢>(/\v)"atu + 33¢(Av)-3xu + a4¢(Av)-B§u +
+ 35¢(/\v)-aiu + 36¢(Av)-5xatu .

If 5_ >0 1is taken sufliciently small, then for |[v| 0,3 < J_

the relations (6.2) hold e.g. for m, = %a2¢(0), mg = —%a‘.’#o),

Ay = 19,4(0)( + 51, é'i =1 for i 41,3, 53 -%5‘ min {Am,,mc ,

51 = 1;? min {Avmz,ms} . Using (6.4) end (5.5) we obtain exactly

(1.1)(F2). Thus, the proof of the theorem (5.2) is complete.

(7'1) Mo

(1) Another application of this method can be found in [71 ;
where one investigates the existence of periodic solutions



of the Maxwell equations in nonlinear media in the Sobolev

spaces gP» L of divergence-free vector functions in three

dimensions. In general, the proof in more space dimensions
requires further considerations concerning the prolongation of
domains of definition outside .) and the regularity of
solutions of linear elliptic equations.

(ii) If the operator (5.3) is quasilinear of the type
9, (f; (u, o.u, o.u)) + bx(¢2(u, O, u, ou)) + ¢3(u, O,u, Bxu) .
we can "save" one derivative by putting No =1.

(1ii) The method remains valid for a nonhomogeneous equation
Qb(t,x,Au) = h provided we agsume that the conditions (5.2)
(1), (ii) hold uniformly with respect to (t,x) € R'x L ,
and at¢ is sufficiently small.
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