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Abstract: In his book [3] Pudik had formulated an open problem
on the equations with jumping nonlinearity. Roughly speaking,
having in mind the special kind of the nonlinearity, there could
be some nontrivial relations between the Leray-Schauder degrece
and the number of solutions to ch equations. By a method of
geometrical visualization of IR » this article shows that it is

not the case.

AMS oclassification: 4TH15, 55M25
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Introduction

Let H be a Hilbert space with a cone C of "non-negative"

elements, i.e,,for each ue H there exist

u' o= m{uloﬁe(‘/,
W = wox ij U‘C)} e (:‘
[V}

= u'. o

Let the mappings w—a u*
\

uv———bkl—
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be continuous, Let S : H — 4 be a linear completely
continuous selfadjoint operator, Let A and & be two real

parameters, We define the operators S,‘rLL + H—=—X ag follows:
\l

S»«“u =" ~>\Su"_()_‘_g¢_

An operator of this type is said to be an operator with
jumping nonlinearity. First results concerning this type of
operators were probably obtained by Ambresettli and Prodi in [1,2] N
Some other papers concerning this subject are quoted in the
references to this article, A list of references can be found
in 13 also.

The operator N being positively homogeneous

A

( S’\C“- (Ru) = L$7\ o U«B , one can easily prove the
Assertion: Let ® be a ball centred in Oe M . Let the
Leray-Schauder degree of SA(\L wW.¥. A the point  and the ball
S \

&XQSA‘ OB
be defined.
Then the equation
(%) %)\ w W =4

has at least \4 (S,\‘(\., \D\E) | solutions for each -te H .
In [3) Fudik had formulated the following

Leray-Schauder degree of SA‘(& wW.¥r. k the point 0 and the
ba11 B

dog($, , O2) =0,

Then there exists some ¥ € W guch that the equation (k) has

no solution,
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This conjecture doesn’t hold and we shall construct a counter-

example,

1, The Representation of [R4 by Moves in [R3

We shall construct a counterexample to the Fudik ‘s ccnjecture
in the four-dimensional euclidean space [R4. In order to achieve
this goal, we need some geometrical intuition concerning the
four-dimensional euclidean space, Fortunately we have good
experiences with the four-dimensional space-time, because we all
live in it. These experiences only need to be translated into
the geometrical terms and assertions concerning the r4.

For the sake of better understanding the corresponding
construction, at first we shall investigate the relations between
IR3 and the three-dimensional "plane-time", Then we shall proceed
by analogy in the more interesting case of IR4 and the space~time,

Let us have the cartesian coordinates ( O\x“x ‘\‘.) in the
three~-dimensional euclideen space. Let S be the plane perpendi-
cular to the ‘l-axis, which intersects it in the point 0 KOD {)
Let the axes xt. xt be the perpendicular projections of
the axes %X, and %, into the plane &{ o Let M be any
geometrical object in the space., Let \,\t be its section by the
Plane St .

Let § be a plane with the cartesian coordinates (6‘;; ,?7_3 .
In the time ¥  we can map g (with the coordinates ( Otl x:" \,{:3
and u ) isometrically onto g so that the axis v: is maepped
onto the axis x‘ » x,_“ onto *l .

Mapping this way in each moment + the corresponding plane
gt onto '§ sy We get in E’ some moving object, which will be

- 485 -



in the time % conformable to the section ut o

So we can visualize any geometrical object in the space as
a moving object in the plane, It ’s worth of mentioning
explicitly, how can be interpreted the point, the straight-line,
the half-line and the plane in IR3 by means of two-dimensional
moving pictures,

Let us choose some point in IR3. Then all but one plane
perpendicular to the +t-axis are disjoint with the point,

That ‘s why the planeE will be "void" in any time t , only

in one moment we shall see there one distinguished point. A straight

~line may be either perpendicular to the <+ -axis or not., If not,

then every t-section is a plane with a distinguished point. So

in the plane E we shall see one moving point, Because this
point corresponds to a straight-line, it will move with a constant

‘ velocity (in special cases this velocity can be O ), It the

straight-line is perpendicular to the “t-axis, all but one

t -sections are void, the remaining section contains all the line,

So the plane '§ will be void in all but one time moments, in one

moment we shall see some straighteline in it, As for the half-line,

the situation in '§‘ will be similar, If it is not perpendicular

to the Y-axis, then we shall see in E’ either a point moving

with a constant velocity until it disappears in some time moment,

then § remains void. Or '§ will be void for an infinite time,

but in some moment there appears e point moving with a constant

velocity, which can’t disappear any more,

To a plane in ‘R3 corresponds in general in 7&\' a straight-line
moving with constant velocity through '.g « Probably the reader
visualizes the moving pictures in E as black objects in
a white plane, The vigualization of such a type is necessary in the
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case of a plane perpendicular to the +t-axis. Such a plane can be
represented in 'S\' as followss § is white in all but one moments,
in one moment it is black.

By analogy one can visualize geometrical objects in IR‘ as
moving geometrical objects in YRB. Eege,to a three-dimensional
hyperplane in R4 there corresponds in general a plane 1nm3 ’
moving itself with a constant velocity. Another example: Two
two-dimensional planes in m4 have in general one common point,
This fact can be visualized as follows: To & plane in IR4
corresponds a moving straight-line in \RB. To two planes in m‘
correspond in general two moving straight-lines in general
setting, i.e,y they are not parallel and they have not the same
velocity. Thus they intersect in just one point in just one
moment,
0f course, we can represent geometrical objects in 1R? as mo-
ving objects in IR®™' by this way, but we shall need this re-

presentation only in the cases n = 3 and n = 4.

2, Brouwer Degree of a Map

Because we shall work in euclidean spaces we don”t need
the concept of the Leray-Schauder degree of a map. As concerns
the Brouwer degree, we have to make some comments about its
application to the special type of problems, we are dealing with,
The Brouwer degree of a continuous mapping . _B -—-R“
with respect to the (non-void open bounded) set D<c D:\
with the boundary @D and a point te Rh-‘:(‘ah) will be

beq (FE,DY.

denoted as
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J(F(x)) means the Jacobi determinant of ¥ in x

Definition: Q&D\“—F(’BB) is said to be a regular value of
¥ itt there exists J(F())4 O whenever F) =&
Q‘GR“—F(ED) is sald to be & singular value of © if it is

.

not a regular value of ¥ .

Remark: In the definition of regular values of Y one usually
supposes that F is Q_‘ s 80 3@(@3 always exists, Unfortunately,
the operators with Jumping nonlinearity are continuous, but not

C‘ in general, That is why the above definition suits better

for our aims,.

It is a well-known fact that

(Fi D)= tgn J(FE)
(1) &"b (I \ ‘ZF‘U’) 1 \
whenevér Fe (Da Ck—ﬁ) ana $+eR -F (’Eh} is

-1
a regular value of F . For F (‘Q=XS we have A@Q(\:\Q— \B) =0 .
Let B_(O) be a ball with radius * centred in O .
Let

(2) S, R - R

be defined by the equation

S e

JKS% (“_U\) does not exist in general, if
\

n
SRR

'herg

e e Rl =0} 1otz m
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Let P“ be the system of all subsets of the set

W12 . n)
The hyperplanes Rc divide R® into 2" components KN\ Ne Ph
defined as follows:
KN-{xeR"\xL-\O tor 1 e N %, <0 rorLQYL—Nk-

gL can be divided into the subsets
n A 0 ¢
gL‘“-{-XGR\*L‘,-D-‘ ‘K\ED for &e“\\+~"
%‘-50 for &GXL"N\(*LI‘

SA(L is evidently linear on the closure of any component \(“
\!
and
dim Rign = n-A for every + N
Thus

Qi S)\(\L kgi‘ny = n-|
and the Lebesque n-dimensional measure
oS, S?\(L. (&L‘N\ =0
for every L\N o But then
n
(4) maag s)\(u_&}\]“ % \“) = waos &7“&(}.{‘ &LB =0 .
too.

Lemma 1, Let J)(Q (x\)=0 o Then there exists
R S“A @ (e N
‘Q A 7‘\(“'(")Bﬁ A=l gL ’
21.‘9_25 is trivial, one only needs to recall that S,‘ e is linear
\
on the closure of any component K“ e As a consequence of
Lemma 1, and (4) we have
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Lemma 2, The set of singular values of Sx\(khas zero Lebesque
measure,
So for almost all € Rn we can define

(&, ¥ B (O))
by (1) In the singular values we can define &&SA\(&\‘Q—‘E‘_(D))

S W (PR,

In perticular &'%LSA‘# \0 ‘B‘. KOB) is defined this way, whenever
Qfg,\ek KBB‘_( 3} o Having in mind the positive ho-

mogeneity of S , we see that éﬂk&)‘» Q 3:,&03) is

using the continuity of the Brouwer degree on

)\(“'
independent of v o

Further, 4 Dbeing & regular value of Sh - and 04»-3,‘ CL&EB, ()]
\ \
the values are also regular for all £ >0 smil enough,

|

Thus we get for any regular value 4
ﬁ(&h‘&\o‘s,(oﬂ = },-:0’ 3 (sﬁ\wg 2 ) -

R . Q -
e S wnano W e )

~ Lim

an J(ES vlx
N S LS W R (ke . G[Y)
\

= Xw e N
Z \D) e Ak&"\f‘*k \)

+ ={
t -0 e&)‘(mu\ n B,It

]

an ML
ﬁ;}m W S )

From now on we are interested only in the degree of
g"\(“' w.orel, O and a ball centred in O and we shall use

a shorter notation,namely A(S,‘ (»} e In this notation we have:
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- v AR\ u
5) e, ) \Z_E:(Aﬂh(\ (& ()

for any regular value £ of g,‘\ PR

Convention:

The vectors considered in the sequel will be tacitly supposed
to be regular, If it would not be this case, we could always.
take a regular value of Sh‘ o near enough to the singular one
in the question.
Remark: All we have done till now, we could do with any
neighbourhood of O instead of B‘_kb\ « In partiocular, instead
of B \0) we could consider the unit ball in the non-euclidean

norm

6) Null, =2\t

x=1
1.e.)the set
B -{ue RTIZ g 1=}
S being linear on \(“, NG_'P“ and \<N r\a’g‘\ lying

AN
in a hyperplane in R, the set

S LKL OBB)
lies also in & hyperplane in R", From the point of view of

geometrical visualization we can take advantage of this fact, In the

sequel we shell work with 54 rather than 33,.\0 s because
g"@‘ (BBD can be better visualized then S’\"“' (R 0)).

In perticular, all pictures are to be understood in the norm (6),
-~ ~~

i.e.,as the images of OB, . Also, instead of OB, (or o1, (0))

we shall use only the symbol © .
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2s_The Geometrical Rules for Computing the Brouwer Degree

i) in the norm (6) is not a smooth surface, Neverthéless

it can be oriented as shown for n=2 on the picture 1A,
The veotor of the outer normal n, in a poiat Xe& 9 (with
ell coordinates different from gzero) can be chosen so that it
belongs to the same KNC R"(Ne PW) ae the point X . This
way the outer normal is defined in almost all points of @ .
Remark: > can be smoothened on a small neighbourhood of the
points some coordinates of which are zero. Choosing an appropriate
orientation on this regularization of s We get on o  the
Just defined orientation by taking the limit,
On a neighbourhood of X in-o we can choose & local system of

coordinates (X \5.\5“ S“_b in such a way, that the system

of coordinates \X\g e net P 3 in R® is oriented positively,
S maps the system (X‘g“ ‘ih ‘\ on a system
\ |
\g“ ey 5“ \ ). This system is regular whenever X is

a regular value o|f SA‘*. Now we can choose th? normal w_,to

- LE} in X so that the system \7\\&“ ‘S“_‘ W ) is
oriented positively (see picture 1B). Let n —& . &“x\ .
Then . (S (X\) >0 ire (X\S - S‘\-\\ '\ has &
positive or;.entation. kj(s)‘(,_( \\ 8 4 0 because X' is supposed
to be a regular value of $ )
Thus

sgn 38, () = g Un ) |

(ese) denoting the inner product. But X=.u\x o s 20
and S is parallel with that part KN ne of O which

contains X o Thus
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x'-g &\ d-h’-\-
)\\(mx = x -\(‘

'\ being parallel with &,\\ &(K“n}) ana X'e $)‘ &(KN(\BB \
i.e., khx' ‘\)—)=O and

(¢9) m{\ ‘“&"\(“"(X)\ = W \X'\hx'\ .

Let ‘P be a regular value of S o o Let us teke the half-line
\
p-{H k=0 raR}.
On the picture 2B this half-line intersects S,‘ (.L\'DB in the

points M: \M‘MM; with preimages M“Mz \Ms ' on the picture
2A, PFrom the picture and (7)
\'ilh A( &\(”(M‘\B 'x‘
%i}r\ A (&7\?* &Ml\) = l

ey K&?‘ﬁ\\’\.\bx o,

e

Now for each ue Q“ end +>9Q

G-'d\h A(&A‘e&(“)).‘;\“ 3(&7‘\& K'E.U} Y

in particuler, “
sp 308 (W) = sy ‘\K&A\e&k ot )
for U 'f O , Now, from (5) we can deduce the equation
A( ﬁ«u\ neLS:;_ @) "T ( Ao K tu\ B)
and using also (7) we get
'
d & - 2 v X "
( )‘\‘"'\ X'att £>0 QT\ A "\ !
75&&,\&(‘33
but X‘--LQ ,» £ >0 means that X'c? « So we have finally
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(8 A(Shw}-' e KX‘\“:’\-

In the case of picture 2 we have

A\S)‘(&\.*\JM—A-\.

In general we have the following rule for computing
A(&"\ (_,J s First we choose a suitable half-line p starting in 0.
Then we construct the set of all intersection points
iM;; v Rt X‘ 2\“' ;\‘l B g}\(u. (’8) o Then we have to sum
the signs of \M‘L \'\“!_\ for Ls\\Z\...‘\n .

Further we ahallkdenote > =&)\(Ag (3\ :
Remark: Regularizing © and &,\\ an 9 We get certain regularization
5’ of @ ., Then the orientation of the whole NO' is defined
by choosing ",  in & single point X of ', Taking & limit,
we get an orientation of 6)' » which is of the type defined sbove,
Thus if we are interested only in \4 (&"\‘a\\ and not in
c\(g,\‘t&\) » we do not need to care about © . We only have
to choose N, in a point Xed and @' will be oriented.
If we take the orientation opposite to that one induced by g;\(u,
from © , the formula (8) gives -AQ&,\\(&\ instead of &(&r\*\ ;

From now on we shall suppose that

@ &, Oaixe®ix,- ey,

where g is a hyperplene in R, Let g‘ be a hyperplene

\
parallel with g and passing through Q' . For computing A(&, r“)
according to the above-written rule, we can take ‘Q lying in R -
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| \
A 1 4
Then pc g and the points Mi_ lie in ng' . Let n be
the perpendicular projection of ne in g‘ « Then

$ )
we (Xnt) = wiqe (X0
and (see (8))

(10) A(&)‘(‘L\ -2 N b'\'\n:‘,) .

X'e‘a‘“‘.

|
Clearly \-\;‘ is a normal vector to D n &4 in g‘ o
+ -
- = g .
Let A %h‘(‘_(a“w\ A )\‘(\( a.)
( a, is the unit vector in the direction of the axis x“ ).
We shall distinguish two cases:

m ,b: and A- lie in opposite half-spaces, defined by g‘ o
Let, e.g., Q 1lie in the half-space A'-g\* .
With the help of a rotation of the coordinates in R® the
axis y,_ can be made perpendicular 1:0&| . Thenfa\(\g4 is
F ! , where % :R“——l’ R“-‘ . \:(0) =0 , ¥ is
positively homogeneous and "linear on quadrants" ( ,aq

1s  the boundary of the unit ball in B2 '), So © 1is of the

same type as g’\("‘"
to (8) and (10) holds for F.

!
In the preimage ML of the point M, we can define

8 positively oriented system of coordinates ( M. . S i
Ll

\ ! *

such that the axes E 5
seey gj-“s‘ L‘q \ ‘SL“\-L \
that

S" | Das the direction of the vector M'.. A ana
gl\“ the\direction of OV\L « (This 1s possible for
n=3 ; if n=2 everything is easier.) Now all the axes
S‘;‘ n-i are oriented into the half-space A*&4 and all

the othier axes Iis in S‘ . That is why either all the
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1
systems (M‘._ % X gk ‘i" “3 have the same oriente.tion as the

corresponding a;atens (V\' i* e |§Ln-2 \E" ‘) in & or
all have the opposite orientation to the corresponding
systems, So up to the sign &KS)‘ “J is equal to
3(F).In the situation drewn in picture 3 (w = =2) we can
compute c\\& \up to the sign from the picture 4, whenever
we know in which component of &' » defined by the points

\ |
54 ’ h‘ » lies the point O'. In the situation on the

D

e
\
up to the sign from the pictures 6A, reap. 6B, of course

pictures 5A, resp, 5B \n = ) we can compute d K&
\
we must know, in which one of the components of g‘ lies O

A+ and A 1ie in the same half-space defined by &‘

(see picture B ), With the exception of not interesting
cases ‘3 ng is a pair of homothetic objects similar to (9).
Let us denote these objects as U and U » U* being that

one which is contracted with the growing X into the
point N (see section 1), U_ being the other one,
The points M‘L can be divided into two subsets, sne subset
containing those ones lying on U\f, the other subset that
ones lying on u— .
Making a rotation of coordinates, U\* can be considered
as FA(’S‘\ ,» W as F—(D‘). (¥ ana ¥~ are certain
maps ®2-! —=— g~ with the propertiex of F defined
in the part 1 Further we can choose these maps so that

AFY = L N (x' n‘.\

o \anU" v\ X \
\
A\F‘) = L ) \-i{v\ &X\n:.)

Xe \:(\U
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then we get of course
(11) AK&ND =d(FH +d(F) .

Lemma 3, Let wv a S-i (.t.\ (£ 1s & regular value of
........ \ A s

(12) ?n"{h uh=-—\’k\“ Ny -

Then
(13) o J(&N‘_ (u)) =- wn 3 (%,\\r& “)) .
Proof. lLet ue KN‘ y VE KN:. 5 N“Nl e Ph\ngNZ \NszUi“.;

On KN resp. KN the operator %A coincides with some

\ 2 A\
regular linear operator %l‘ek_\N\ Acs Mo .
The matrices of these two linear operators differ ony in the

" =th column and

s Tesp. S

J&%M& (W) = dud %Ne& N
(14)
3 &&NCL (W)= 3 g)\

(""'\NL g

For W and v we have the linear equations

M- Ny W \ Lo el

According to the Frobenius’ theorem

(15)  u et S"""“‘ N, = b S e N
- — e ' \
dat s,‘\(_\n‘ 3t S;‘(L‘N,_
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are the determinants of the matrices which

Al.Lr\‘Q > e N

we get from the matrices 4 substituting the n-th column

A Ny
Q \C

by 'C + But ’\\(“-\NL are different only in the  -th column,
so after this substitution the two matrices will coincide. Thus,

we have

= dde S

Chl»"‘\l‘\ SA\(“‘\“‘t \ NN

and

*c{c&“ A-Ll- S%\e&\\\\k =BS Y‘?\ AA— g>\("|“7_

according to (12) and (15). Now according to (14) we get (13).
-\. —
On U\ and U\ the orientation is defined by means of the

A 1 u* \}\_
projections “x' of the vectors “x' into 3 o and
ﬁ-
are homothetic, so to each point of U corresponds just one point
= { A
o U s further the vectors “x' and g in corresponding

points X‘ 9 \f' are parallel,
From lemma 3 follows that these two vectors have always
opposite orientations:
whe gotnte K , X derine & straight-line l . Let us
choose a point q = l not in the interval XI\\" o Let us make
a shift of the system of coordinates in order to get the origin
into the point Q‘ o That means: we have to subtract the vector
D‘ Qle R“-A from all the columns of the matrices F* ’ F B
and also from all the columns of the matrix g (in the case of the
matrix S we consider D' Q| as a vector in R®), This way
we get certain maps Fg \F; \SQ\“A“»- o« In the new
coordinate system neither the geemetrical form nor the orientation
of @‘ is subjected to a change. (The orientation of ’&‘ is now
induced from ) by means of SRP‘\&_instead of g) a ) Thus,

+ - \
the orientation of '\ resp. U remains the same, too.
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Choosing now ‘Q in the direction of the half-line Q'X’ = Q'Y ||
lemme 3 applied to Sq\\r‘* gives the assertion,
Remark: Excluding the cases, in which the centre of the homothety
of U¥ and \\™ 1lies on U\*(\\)\_ (we have made this assumption
tacitly in the foregoing considerations), we can choose Just this
centre for Q‘ » because this centre never lies in X|\\)‘ 5

U\+ divides 2‘ into certain components Dl{“, U‘ . into
components DL:“ « (Between ak*-‘.n and 9':“\ there is a one-to-one
correspondence because of the homothety. )

To each of the components 'DL:,, there corresponds an

integer AM such that A(fﬁ equals Am y 1f O' lies
in 'aL:\ o Defining similar integers A; for R , we get

according to the previous reasoning the equation

& =4 .

™

Thus we can formulate the following rule for computing
|& (g)“ (D\ :
We choose some orientation of U\* end we find the integers
c)m corresponding to the components 9';:‘ o« To the components
U
. correspond the integers —AM « It Qe go.t“‘\ A '}L:\z »
we have according to (11) either

2

(16) ME, o) = ey -4
\

or

A(g}‘(&\ = _Am« * Amz_

‘_ —
In the case w=3 , it \\' , \l\ are as in the picture 7A

(see picture 8), we take the picture 9 at firgt, In the hyperplane
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g‘ there is U+ » orienting it properly, the integers é“‘

will be as in the picture, In the hyperplane gfl there is u- ’
to the components 5‘-; of g" correspond the integers —c\M .
Covering 3: with § and computinf the|sums of the corresponding
integers for each component of Si -/E)‘ we get the picture 10,
from which we can read (%CS) é) up to the sign, if we know, in
which of its components lies\()'.

If U+‘\)— have the form of the picture 7B, see pictures
11 and 12 which have been obtained just the same way from 7B as 9
and 10 have been obtained from 7A.
Remark: The most interesting feature of the picture 12 is the

presence of the integer -2 in it, i.e., for n=2 there are

operators with [J( %7\ (U)\ =2,
\

4._The Surjectivity of the Operator &,
o

Let us continue in the investigation of the last example

in the preceding section, What is the two-dimensional visualization
according to the section 1? At first we have a void plene, In
a certain moment there turns up the picture 7B, This picture
immediately splits into two copies of itself, Each of these
copies then begins to contract and shift uniformly to & point,
In some other moment one of these copies disappears in the cor-
responding point and then we have only one copy of the picture 7B
in the plane, This remaining copy continues in contracting and
shifting, at last it disappears in the corresponding point, too.
Then the plane remains void.

PFurther, in the time O in the plane will be one point

more (it corresponds to the origin of the coordinate system ).
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So in this moment we shaell see something like the picture 12
(without the integers but with one more point). What does it mean,
that the equation (%) has no solution? In the usual setting it
means that there is a half-line going from the origin which

does not intersect O .

Thus, in the plane visualization (in general) either
in the time O there turns up the image of the origin which
does not disappear any more, but moves with a constant velocity
into infinity. Or, vice-versa, there is a point coming with
& constant velocity from infinity into the origin, in some
moment it falls into the origin and disappears for ever,

In neither of the two cases the moving point passes across
the moving lines drawn in the picture 12 .

The components of the picture 12 with the integer 0O represent
the cases in which (k) has no solution for some right-hand side.
Really, let us imagine the development of the picture with reversely
oriented time axis. In the time \) we shall have just the picture
12 with one more point in a Q-component. We can choose such
& velocity for this point, thet it won’t touch any of the lines
of the picture in any time between ) and the moment, when W'
end W~ coincide, But then it cannot touch these lines either,
because after this moment the plane will te completely void except
of that one poirt, (Thus we have constructed a half-line not
intersecting ?D‘.)

This cannot happen in any other component, If, e.g., the
image of the origin falls into the component with -2 s it cannot
get out of i: without passing across some of the moving lines,
because all the component contreetsinto one point and our moving

point will be necessarily "caught",
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The difference between these two examples is caused by the
fact, that all the O-components in the picture 42 are
coverings of some component of 7B by itself, all the other
components are coverings of some component of 7B by anothe:

component of 7B,

5 The Existence of the Counterexample in (R4

Now we want to find an operator S » such that

b
ALS)‘ r**\ =0 and (k) haal:me solution for any
right-l‘qand side ‘t' « We want to use the results of the preceding
sections, thus we will seek it among the operators fulfilling
the assumption (9), It has no sense to seek it among the operators
considered in the part 1 of the section 3. If there were an
operator corresponding to this part of section 3 in the dimension
n , there would exist an operator with the same properties in
the dimension wn - A \ too.

So let 34 \ o« \g-:‘“ \Q“ d. be as in the part 2 of
the section 3.

Let O < x:q N 9 . We require (see (16)) that Q= éh‘- AML‘
i.e., ’

dp, = B,
according to the section 4 it must be
R

A

™ ML
Thus we look in the dimension w-{ for such an operator

\ n-d A .

Q for which W - ") has two
)n(“'l 4\(u“

different components with the same corresponding integers,

We can’t find a counterexample in the dimension 3, because
2 1 A
it is clear, that R - (D) has one of the
)‘1 \eLA

forms in the pictures TA, 7Bs In neither case it has two different
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components with the same integers d‘“ o But it is just as clear
now that a counterexample exists for n = L ., Namely, the picture
15 shows that it is possible to construct on operator

S; R

N vot A i
such that R - S,‘”ﬁ(’a)has twe components with the same d., .
We only have to cover, e.g., the component with 1 on the left-hand
side of the picture 12 with such a component on the right-ha‘nd
side, One only needs to know that these two components are
really disjoint in R3 (see picture 13, they are drawn there),
It does not follow at once from the fact that their two-dimensional
sections in the picture 12 are disjointt E.ge, 211 the
O-components in the picture 12 are parts of the section of the
single component of Ro-— s"(“(’a) with d,,=0

A

Remark: g,% corresponds to ¥ from the section 3,
AN \

Remark: By the same reasoning as above we can show that for w= '-\-

=
there exists g"\f‘“ with \ d (g)\\e)\ .
An attentive reader has probably noticed that we haven t reached
our goal yet, In fact, till now we have proved only the existence
of an operator with required properties in a more general class of

operators than defined in the beginning. Namely, it ‘s the class
of operators of the type

an) Au* + Bu \

A and B being two linear operators.(Let us notice that
the i-th column of the matrix A is the image of a, , the
i-th column of ® 1is the image of —q. o)

But )
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= A \
b\u+ + E\A - _2_' LA "B}M* -+—I,: (A"BB\,\* -
\ = \ =

* T(A—E}u - —Z:KA -E}u =

A \ + A _

£ —Z—(A—E)u. + E(A-;B)u r (R+B§u ‘
From the construction of the counterexamples one sees at once
that they form an open set in the class of operators (17). So
taking another example if necessary, we can suppose that A-%

is a regular matrix., Then, making a regular change of coordinates

in the space IR4, the operator (17) can be transformed into the form
-1 -4 -
(18) (WA -® KP\-\-E\\A"+{A‘E\ (A-\-&Xu \

which is ‘-_(P\—E)_((A+%\—_\ in our notation.
A regular transformation of coo:fé—iknates can only change the sign
of d(&)“k\ (1t does not metter) and does not concern the
solvability of (k).

One can also show that the matrices A\E in (18) can be
chosen so that U\—E}-A (A+R)  is symmetric.
Remark: We could continue with the covering construction
into higher dimensions. Of course, it would be technically more
difficult., Nevertheless it's almost clear now that we can
construct examples with \d (g) r“_\)\ as big as we please,
Also we could construct examples\with A&gx\(ﬂ‘ O and as many
solutions for every right-hand side, as we please, One only

must teke w big enough.

6., One Counterexample

We can take = = - and
=1 . o ‘\

/3‘5 -1 -1 =\

-1 38 - A -4
(19) s=|Zh oy 3§ -4

\—\ ~4 = 25 |,



Repark: The matrix S has a doudle eigenvalue, But the
counterexamples to the Fudik ‘s conjecture form an open set,

thus there exist matrices without multiple eigenvalues which also
give counterexamples for some ) and . .

EEEEEKL If we knew the above-written matrix & and the numbers A
and ex. ,» the proof,that it gives a counterexample to the Fulik ‘s
conjecture, could be done much shorter, But, according to my opinion,
the method used in the construction of the example gives a betitfer
understanding of it (see the concluding remarks to section 5),.

Problem: The inverse matrix to S in (19) is

3% 28 28 4
23 23 23 3
28 1 28 L3
s' A 23 23 FEY 3
- 28 28 =g 3
23 3 23 3
. SURNE. SR S 2
N a Ry

Thus all its entries are positive, It would be interesting to know
whether this fact is important for the construction of the counter-

example or not,.
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