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Abstract: It is proved that Liouville property of initi-
al value problem for parabolic quasilinear system - i.e. the
fact that every bounded weak solution of the system with fro-

zen coefficients and with zero initial data in Rf+1 is zero -

implies the CO?<¢ . regularity of all bounded weak solutions
of initial value problem up to the t=0 part of the boundary.
Moreover, 1f each bounded weak solution of a parabolic system

is C%** _regular, then Liouville property holds. Similar re-
sults for interior parabolic regularity were proved in [121,
for elliptic systems in £51,106),071,08,(91,L[101,[11].

Key words: Quasilinear parabolic system, initial value
problem, regularity up to the boundary, parabolic Liouville
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Introduction. It is well known that the bounded weak so-

lution of a quasilinear parabolic system need not be Holder-
continuous. In {121 there was proved that HSlder—oontinuity
of a solution in the interior of the domain is guaranteed if
for the system in question certain Liouville type theorem (see
Definition 4) holds.

We shall prove here that HSlder—oontinuity up to the part
of the boundary contained in the hyperplane t=0 is a consequ-

ence of a similar Liouville type theorem for solutions on
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halfspace with constent initial data (see Definition 5) under
the assumption that the initial date are sufficiently smooth.

There is a counterexample due to M. Struwe (see [4]) sho-
wing that a bounded weak solution starting from the smooth ini-
tial data can develop a singularity. However, in this counter-
example the parabolic system does not satisfy the conditions
imposed here because of the quadratic dependence of the right
hand side on the gradient of the solution.

We are deeply indebted to M. Struwe for fruitful discus-

sions.

I. Notations and definitions. Let f. he a domain in R™,
Denote for a T € (0, 00>

Qt = {z=(t,x) € R“’n; t6(0,T ) ,x € ai,

M = {z=(0,x) e R'*®; x e 03,

Q" = {z=(t,x) 6 R, (-t,x)e '}
and

e=Q v Cuq.

By 1,(Q), W5(Q), €92 </2(q) will be denoted the corres-
ponding Lebesgue and Sobolev speces and the spaces of Holder-

continuous functions.

Let the nonlinear parabolic system in the form

i
Qw2 (affaw ul ) | _pi(a) + =2 o),
at axu‘ axﬂ X

1,jm=1,000,m; o€, (3 =1,...,n
be given. For the sake of simplicity we rewrite it in the mat-
rix form

(1) u; - divx(A(z;u)Dxu) = —I(z)+divxg(z).
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First, we introduce the concept of the weak molution of
both the system (1) and of the Cauchy problem for this system,
(Functions A,f,g,uo are supposed to be defined on the corres-

ponding sets.)

Definition 1. The function ueW3’] (Q)n Ly, (Q) is said

to be a weak solution of the system (1) in Q if

(2) Voeo2(Q): fa Cugy - A(z3u)DuD_glaz =facn, +gD_ ¢ ldz.

Definition 2. The function ue 'l (Q*u )L (q") 1s
called a weak solution of the Cauchy problem for the system (1)

in Q* with the initial velue u, if

(3) ¥ gec2@"), aupp gcQtu M

§

a+[“°ft = A(z3u) D wd ¢ dz =];.,[rq:+ &b, @l dz -
- fp u, (x) @ (0,x) dx .
In what follows, the functions A,I,g,uo satisfy the condi-
tions
(4) A(z3p) 1s continuous on (Q*y r)x k%
(5) (A(z5p) §,€)>0 for all (z3p)c (Q*u ) x RD, € * 0
(6) fGLs'loc(Q+u M) with s>n/2 + 1;
(N ge1, 10c@7 U ) with q>n + 24
(8) u € wr.loc( ™AL () with r>n,

Now, the properties (Li),(Lb) of the Liouville type are
defined. They concern the behaviour of a weak solution of (1)
in the whole space R1+n (resp. of & weak solution of the Cau-
°hy problem for (1) in R1*?) in case t=0, g=0, u =0 and A be-
ing frozen in an arbitrary point z e Qt (resp., z,e ).

Definition 3 (Li)., We shall say that the system (1) has
Liouvilile property (Li) if the following assertion holds:
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Let %, be a generic point of Q+ and let the function u be

a weak polution of the system

(9) ug - div (A(s 3u) Dou) =0

'R1 +n

on . Then u is constant,

Definition 4 (Lb). We shall say that the system (1) has
Liouville property (Lb) if the following assertion holds:

Let g, be an arbitrary point of M . Let u be & weak solu-
tion of the Cauchy problem for the system (9) in R1*® with the
initial value u,=0., Then u is zero.

We should like to prove that each system (1) satisfying
both (L1) and (ILb) is regular in the following way:

Definition 5 (Re). Let u be a weak solution of the Cauchy
problem for (1) with the initial value u, satisfying (8). Then
there exists o 6 (0,1) such that uecQrY2r4q*t y 1),

Remark, Cauchy problem for (1), being regular in the sen-
se of Definition 5, is regular with the maximal exponent cor-
responding to the regularity of u, and right hand side. It can
be proved in the following way:

The function uscga‘:/z"" subgtituted to A(z3u) in (1) en-
ables us to treat it as a linear system with Holder-continuous
coefficients. Applying Schauder estimates we obtain that the
meximal coefficient o, of holderianity of the solution u is
determined by the quality of £, g and e

II. Main theorem
Iheorem. Let the system (1) have the properties (Li) and
(Lb). Then it has the property (Re).
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Bketch of the proof. We extend the coefficients and the
right hand side funoctions of (1) to the whole cylinder Q. Af-
ter that the weak solution u of the Cauchy problem for (1) in
Q"' can be shifted and prolonged in a suitable manner to the
wesk solution w of the extended system on the whole @ . The (Li)
snd (Lb) imply that w 1is in 0$75/25%(Q) with an ¢ €(0,1). Thus
the assertion of the Theorem follows immediately.

Proof. Let u be a weak solution of the Cauchy problem for
(1) with the initial condition u,e Put
(10) v(z) = u(z) - u,(x).

Substituting to (3) we check immediately that v satisfies
the integral identity

(11) ¥ ¢ € C®QY), supp gcQtu
Sqrlvey - Alzyvu )D v D_gldz = fa.*[f? +GD @l dz,
where
(12) 0(z) = g(z) - A(z3v(z) + u (x)) Dou (x).
Denote for z, = (t,,x)) € R'*2, R>0
(13) Q(zy,R) = {z = (t,x)3te(t, - Rz,to), \x-x | <R} =

= (t, - R%,t ) x B(x,,R).
In the next lemma we show that the function G has the qua-

lity needed in what follows.

Lemma 1. Let the assumptions (4) - (8) hold. Then for each
b>0, M>0 there exists C >0 such that for each Q(z,,R) ccQ'u I
with z e Qt, rR< 1, dist (Q(zon). 3@\ r)> b and for each
veLw(Q+), My W< Mit is
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(14) R [ alem)Zaso
where
(15) A =uin{(q- (e2)], & (r-m) } > 0.
%o prove it, we use the assumptions (4) - (8) and Holder
u.qmityo
Now, we extend the system (1) to the whole domsin Q. Put
(16) A (z3p) = { A(zypru (x)), seqQt,
A((0yx)3ptu (x)), 5€Q7,
f.(z) - {t(s), zeqt,
0o ,z€Q,
Gg(s) = {o(z). zeQ’,
0o ,z€Q .
It can be easily verified that
(7 A.(z;p) is continuous on Q x RT,
(18) (A (z4p) §,§)>0 for 81l (zyp)e Q@ x R™, € +0,
(19) I.GL'.]_oc(Q) with the gsame s as for £,
(20) the assertion of Lemme 1 remains valid for the funetion
G, and Q(so,n) cc Q.

We formulate the next obvious result as
Lemma 2, The function

(21) ve(2z) = {

v(z) on qQt

0 on Q

is a weak solution of the system

(22) wy - aiv (A  Dow) = - £, + div, G,
on Q.

Denote further
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1
(2 R SRR

(24) jz‘zmmlh(z)lzdz . fa,(z_mg) [n(e)] 2as,

Definition 6. Let w be a weak solution of (21) 1n Q. A
point Z,€ Q 18 said to be & regular point of w if

(25) Ma, fa(z,,,k)"'“) - v

Lemma 3. Each point of Q is & regular point of the weak
solution v, of the system (22).

lzd‘-o.
R

Proof. Let Z, = (to,xo)cq be fixed, Q(lo.l)cc Q. %o pre-
ve that zZ, is regular we substitute first

(26) T = (+=t)R%, X = (x-x )R, 2 = (2,1),
vR(T,X) = v (t +R?T, x_+RX).

Por an arbitrary constant vector He R® we get
2 2
@D fag i Te® - (v, plPasefy Llvi(s) - Bias

- fa(o.ﬂ"n(z’ - H|? az.

(The first inequality in (27) is due to the faot that the funo-
tional

I(H) lw(e) - HI? ag

= fo.cz,,m

attains 1ts minimum on R™ in the point H = v,
°

Thus, z, is a regular point of Ve 1f there exists a sequ-

'n. )

ence {\rR % (R,—> 0 + a8 n —> o0 ) such that
n

(28) Ve —> P 1n I,(a(0,1)),
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(29) p is a constant vector function.

To prove (28) and (29) we go back to the system (22), sub-
stituting there for t, x, v, from (26) and using the notation
(30) Ag(2) = A (t +TR? ,x +XRyvy(2))

25(2) = £, (£ +TR? ,x +XR),
Gg(2) = G (t,+TR? ,x +XR),
we see that vn(z) weakly solves the system
(31) (w)! - d:i.vx(An(z)DI W) == fp + dlvy Gp on (Q)R'

where (Q)R is the image of Q in the mapping (26).
R>0 going to zero, the set (Q)R expands to the whole spa-
oo R'7., Thus, choosing K>0, we obtain that

(32) 3 R(K) > 0:Q(0,K) c c (Q)y for all R<R(K).
It follows that each vy (R<R(K)) is the solution of the
system

(33) Vg 0P (a(0,K))
2
fmo,m['R?T - Ap(2)Dy¥g Dy @1 dZ = [y, [R°Tp@ + R GpDyeplaz

The class of systems (33) can be interpreted as a class of
linear parabolic systems with bounded measurable coefficients

{A‘R‘R(R(K)' Becaise of the estimate

and the continuity of Le(z,p) we can deduce that the coeffici-
ents AR' R<R(K), are equibounded and that all the systems of
the class have the same constant " of ellipticity.

To prove that {vR}lkR(K) is a compact set in L,(Q(0,K/2))
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we take use of the Caccioppoli type estimate (see {131, (3.1)).
Taking account of the possibility to estimate Lz-mm of DI'R
by means of the L,~norm of Vg 1teelf (see e.g. [31, Lemma 2.1)
over the larger domain, we get finelly

(35) Nwgh? €01+ Nvll2

"1/20 (a0,5/2)) Ip(a(0,0))) s R<RD).

From (34) and (35) follows

36) Hv 2 £ o(K), R<R(K).
B w17201 (q(0,/2))

Because of the compactness of the imbedding of ';/2'1 inte
Ly 1t follows from (36) that we can choose the sequense {vki =
= {ka’; ,&_1’1;111‘ = 0, for which
(37) {vk’; converges to & function p in Lz(Q(O,K/z)),

Dyve —Dyp in L,(Q(0,K/2)),

Vg — P almost everywhere in Q(0,K/2).

By means of the diagonal method we get the gubsequence of

{vk7s (keeping the same notation for it) such that for each boun-
ded domain Dc R'R 14 14

(38) Ve —> p and Dyv, —>Dyp 1n L,(D),
Vi — P almost everywhere on R! +n,

(in particular PE€L o R'*D)),
Assumptions (6) - (8) and Lemma 1 give

(39) R2 fy —0 and R, G, —>0 in L,(D).

( fy = fp end for the definition of Iz see (30); similarly for
k
Gk.)
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Let now ¢ be a fixed function of C¥( IR“'n) with a com-
pact support. We can rewrite (33) as

(40) [l tval ¥y Pahic(2)Dr v Dy @) 42 = fraralB2t, ¢ +R,6,D, 9] az.

Acoording to (39), the right hand side of (40) tends to
sero. Thanks vo the uniform boundedness of the set {A.k} on

supp @ and the almost everywhere convergence

“1) wlin 4,(2) = A (2,,0(2)),

we get that the vector function p solves the equation

(42) [urm (PQqdg(z,3p)D0p Dygl aZ = 0, Ve CO(R'D)
supp ¢ 1is compact.
If z,€ Q7, then (25) with w = Ve 18 trivial and z, 1s 2
regular point of Vao
If 3 €Q", then (42) means that the vector function p is
the weak solution of the system

(43) Py = v (A(z3p + uy(x ))D p) = 0

in R1+n. According to (Li), p is a constant vector function
and thus z, is regular, too.

If, finally, 5, & [" , then (42) gives that the p is a
weak solution of the Cauchy problem with zero initisl value for
the system (43). So p =0 on I\\l*n, acoording to (Lb). From the
trivial fact that p =0 on Rl+n s We have again that z, is a
regular point of the solution ve of (22) and the proof of Lem-

ma 3 is completed.

As 1t was proved in [11,[2],[3], if for a weak solution
of (22) all points of Q are regular, then T € Cg;:ﬂ"‘(q)

and thenks to the assumptions on Uy uec‘{;z/z'“'(Q*'u ™.
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Remark, Let us mention now the "almost necessity" of Li-
ouville oomndition:
Let 5 ¢ " , let the system

(44) u, - divx(L(so,u) Dxu) - 0

have the property (Re). Let u be & weak solution of the Cauchy
problem for (44) on Rlﬂ' with zero initial data. Let z be ah
arbitrary point of Rl'm. We shall prove that (Re) implies that
u(s) = u(0) = 0,

Let Q* be a set described in Sec. I which is, in additionm,
convex, bounded and such that the points O end £ are contained
in _Q-'F. Uaing(liﬂ we get the existence of a constant C such that
for every solution v of (44) with zero initial data the estima-
te

. go(lvi
(45) v “co.u./2.u((5“-F) gc(liv) Lw(Rl"'n))

holds.

Putting uR(T,x) = u(mz,xn) we get a sequence of solutions
of (44) with zero initial data and the same bound for flug 1,°
Thus for all R Z1 the norms

n un“ co,¢/2 .‘(6“)

are equibounded. Let RZ1, z=(t,x) = (TR?,IR). Then (T,X)e QT
and
lu(z) ~ u(0)| = lug(?,X) ~ ug(0)) = o(IX1%+ | 2192) o

= o R™¥(1x1% + |$1%2),

Letting R —- c0 we obtain u(z) = u(0).

So we proved that the condition (Re) for the system (44)
yields (Lb) in the point z
in the interior point Zge

v

0° Similar assertion can be proved
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