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Abstract: A bound on the veloeity of the flow and an en-

tropy condition define a compact subset S of I1 '2, in which a

weak solution of a variational inequality is sought, This ine-

quality replaces the continuity equation and it has solutions

Iﬁ.;ehilolv; ;ho transonic flow problem provided they lie in the
erior of S.
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1. Introduction., This paper is a further development of
the epproach of Peistauer and Nedas [4], where & weak solution
to the transonic potential flow problem is found as & limit of

a generic sequence under some a posteriori assumptions on it
involving the entropy condition. Por more details and further
references, see that paper, Glowinski and Pironnesu [7], and
Glowinski [61,

Let Q be & bounded, simply connected domain in Rn, N=2
or 3, with a Lipschitz boundary 3L . The irrotational, stea~
dy, adiabatic, end isentropic flow of a non-viscous, compres-
sible fluid in Q 1is modelled by the contimuity equation
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(1.1) - div (ga(\vulz)vu) =0in Q,

where u is the flow potential, Yu is the velocity, andSD is
the density of the fluid given by

‘ 2
s -1 i 2
(1.2) @(!) = P°(1 - ;T Q)M y 04 ,éuai ;
(<]

The constants (Por» 8, are the density and the speed of sound,
respectively, at zero velocity, and 1 < 26 < 2 is the adiaba-

tic constant ( 9¢ = 1.4 for air).

2
28
Equation (1.1) is elliptic for |vull< 9. and hyper-
232 ®€+ 1
2 « The flow is subsonic in the former ca-

bolic for |vul2>
®+1

se and supersonic in the latter case. The boundary between the
subsonic and supersonic regions is not known in advance. More-
over, there are in general discontinuities of parameters of the
flow on this boundary, the so-called shocks, Physical flows sa~
tiefy the entropy condition:

There cannot be an increase of the velocity in the di-
rection of the flow through a shoock.

(1.3)

Let 90N = r'1 ul"auﬁ with [, and ', open in 30 and

the surface measure (4N-1 (®) = 0. Consider the boundary condi-

tions
(1.4) u=0on I,

du r
(1.5) @ 3m=8on [,

It f‘1=l-¢, define
v -{u6l1'2(n):u =0 on P,}

and for simplicity of notation let g = O on rye

- 432 -



If "y =@, define

v =fuew'2(9); fnu dx = 0}
and assume

das = 0,
Lo *

We consider two formulations of the entropy condition,

The natural form, derived in [4], is
(1.6) [ e'(lvul®) lvul®? vuynaxan [ hax Vhed,(n),

where
D,(0) ={he D(Q):h204in O}
The simplified form, used in [6, 7], is
(1.7) -fyvuvhax<M [ hax ¥heD,(Q)
Here M>0 is some constant. Define
Snat ={u€eV: u satisties (1.6) and
2

6a
lv uls 8, < 2. g.e. in Q3%
1 1+

Sgim =fucV: u satisties (1.7) and
2a
\v u\z.é.g2< 9 ; a.e. in 0. %,
® -

Here s, and 8, are some cons tants.

Put 2
1 leul
(1.8 dw =5 [ ( J, @® at) ax.
Then the Gateaux differential of § is
D (u,h) = B(uju,h),

where

(1.9) B(uyv,w) = fn@(lv ul®)y vy w ax.
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The problem (1.1) with the boundary conditions (1.4) and (1.5)

has now the weak formulation
(1.10) u€vV; B(uzu,v) = fang vd VveV

and we look for physically meaningful solutions which should

lie in the set S or ss:l.m according to the form of the entro-

net
py condition. So, consider the following regularized problems:

1.11, Problem, Minimize & (u) - 508 ¥ dS over S ..

1.12, Problem. Find a solution of the variational inequ-
ality
UE Sgepms Blusu,v - u) z f;ag(v -u) d8 VY vesSg .

It will be proved that these regularized problems have al-
weys solutions. A solution u of (1.11) or (1.12) is a solution
of the transonic flow problem (1.10) 1if

Vve¥3e>0Vte(o,g): u+ tves,

~
where Sg = Snat or Se = Ssim' respectively, and V is a dense

subsget of V.

2, Auxiliary propositions. Compactness results which fol-
low are based on Theorem 1 of Murat [10]. We present direct

proofs here.

2.1, Lemma. Let S be a bounded domain in RN with a Lip-
schitz boundary and let G, —> G weakly in W' 2(aN*, Let
G,(h)Z 0 for ell h e D,(N). Then G —> G strongly in
(W1'p(.Q.)) for each p> 2.

Proof. Let Q,c 5-1 c . be a subdomain of Q. . There ex~
ists ye D (N) such that (x) = 1 on Q4. Por h e D(N)
with supp h C .ﬂ.1 we have
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- knl 2h< (nll
oY “ )

hence

(2.2)  le(mV 26 (y) i hlem)é (D) nll o
Define u , uewl’2(.0.) by
Jovup v b ax = G (n), Ju vuvhax = 6(n) Vhew (Y .

Let q>N. Since the imbedding Wl'q(.ﬂ1)c €(LQ,) is compact, it
follows from interior estimates by Agmon, Douglis, and Niren-
berg [1] and from (2.2) _that for every subdomain Q, cﬁ cf,

iu} is compact in W a’ (25, 1—, +1 21, 80 the interpolati-
q q
on inequality
’ i 2‘ 4 2
’
C fo, WP a2 [y (niPan)?( fa, \m18 ¥
2

withl 28,120 ,i50, that the same 1s true in a1l

P 2 q

w¥a,), 1252, Let neW)'P(0). Then
fnv(un-u) <h dx = fﬂzv(un-u)v h dx +

f;l\nv(u -u) v hdx

and we have

3

[ o (4 = W v b axl 2 ( Jpna ¥ (uy - w2 ax)
2

4 - |
Jpa,lv i anP 12N 0 2!% P,

Since L1 ,) can be made arbitrarily small, we obtain
1,p *
G,—> G strongly in (Wo m)=*.

This is another proof of Theorem 1 in Murat (101, cf. also
the remark by Brezis [ 3] to that paper. Note that we did not
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use the assumption that L has a Lipschitz boundary up to now.

Por he"'p(.ﬂ.). p>2, put

1 1

h=h + h2, where Ah' = 0 in QO and b%¢ wl'z(.Q).

By Meyers [9], there exists p;> 2 such that the mappings

h+>hl, 1 = 1,2, are continuous trom W' *T(Q) to itself if

2€r£pg. Without loss of generality assume that p< P1e Since

the imbedding W'=F *P(22)cw'/2:2(30 ) 1is compact, 1t holds

that the set {n's lnll 1,p £ 1%} is compact, and, consequent-
wP)

1y,

sup 1¢G, - 6)(a")1—> o.
(| ¢4 B
e w"'f"(.ﬂ.)‘

Since G, —> G strongly in (Il’p(n_))"t , we get the result., O

Lemma 2.1 is a direct extension of Theorem 6 in Murat

[10], where the stronger positivity oondition
G,(h)z0 V h ¢ &(Q2), hZ0,
has been assumed.
We are now in the position to prove the fundamental pro-

perties of the sets Snat and ssim‘ Let us begin with the sim-

pler case,

2.3. Theorems The set ssim is convex and compact (in the
w'2(Q) nomm).

Proof., Clearly S is bounded, convex, and closed. Let

sim
u,6 Ssim and without loss of generality
u,— u weakly in W' '2(.0.).

Define G_, Ge (W *2(Q))* vy
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G, (h) = j:nvu.nvhdx+ll[0_hdx,
G(h) = fnvuvhdx+ufn_h dx,

We have G, — G weakly in (W' *2(2))* and G (n)Z 0 for all
h e §U+(.Q.). s0 from Lemma 2.1,

G,—> G strongly in (W'*®(Q))* .
Now

f;lv(un-u)v(un-u)dx

= (6, - &)(u, -uw)—>0,

hence u —> u strongly in w! 2(9). 0

2.4. Theorem. The set Spat 18 compact (in the W' '2(_9_)

norm).,

Proof. Clearly Snat is bounded end closed. Let u € Sn“
and without loss of gemerality

u,—> u weekly in W 2(q).
Detine G e (W' *2(Q))* by
G =M [ nax- [ e Uvw)®ivwi?vu vn ax

We can suppose G,—> G weakly in (W1 '2(.().))* « Since Gn(h)?.'o
for all h € §D+(_Q), Lemma 2.1 implies

G,—> G strongly in (W'*%® (Q))*.

Now

- ,f;l go'(\vun\z) lvun\2 vu, v(u -u) dax
+ [ e’Qeul®ivul? vu viu, -u) ax

def
= f“n Pn(x) dx
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-Gn(un-u)-ufn(un-u)
+ ];1 S°’ (Ivulz)lvulavuv(%-u)—>0.

Because lvunlet_-. 81, 1t holds Ivulae 8; (the set of v such
that |v v\zé 8y 1s convex and closed, hence weakly closed) and
we get from

6a°

8 < 9
1 +3¢

that
(2.5) - (1§ ) 1512 g (g-9)+
s EOEBHIZ g -g)>0

for all € , ¢ such that Ig |2£s1, By lzés.l, §f + ¢ . Con-
sequently, F (x)> 0 anl we can suppose that F (x) > 0 in
ZcQ withlQ\N2|=0and vu,, vu defined in Z., We claim
that

v (x) — vulx) V xez.

Take x¢ Z, There exists a subsequence such that Vunk—+ § B

1t § + v u(x), we get by (2.5) a contradiction with Fn(x)—->
—> 0. Hence u —> u strongly in w! 2(0). a

In the sequel, we shall use the following generalization
of the secant modulus inequality taken from Mandel [81], which
for < = 1/2 and B(ujsu,h) = D § (u,h) was proved by Nelas and
Hlavddek [12] and by Fudik, Kratochvil, and Nedas [51 in the

cagse of equations (K = H),

2.6, Lemma, Let H be a Hilbert space, K a closed convex
subset of H, § a functional on H with the GAteaux differen-
tial D § (u,h), and B(u;.,.) & symmetric, bounded, H-elliptic
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bilinear form on H for each ue H and such that with some con-

stant oC

(2.7) «B(usu - vyu =v) 2P (v) - $(u) - D ® (u,v = u)
Y u, v€K,
Let teH*, ¥(u) = $(u) - £(u).
If w is defined for a given u€K as the solution of the
variational inequality
weKy; D Q(u, v-w +Bluy w=u, v-w

Zf(v-w) VY vek,

(2.8)
then it holds
Y - ¥(wz(1 - <) B(u u = w, u - w),

Proof. Add (2.7) with v = w and (2.8) with v = u, 0O

3. Solution of regularized problems. With the theorems of

the preceding section at our disposition, the proofs of our main

results are quite straightforward.

3e1. Theorem. The problem 1.11 has a solution.

Proof. The functional @ is continuous and the set snat

is compacte 0O

3.2, Theorem. The problem 1.12 has & solution.

2roof. The bilinear forms B(uj.,.) defined by (1.9) are
uniformly bounded and uniformly V-elliptic for all uGSsin.
Hence the variationsl inequality

(3:3) wes_y 3B(uzw,v - w) z&n g(v - wds ¥ ves,, .

has a unique solution for any ue Sgip @nd the mepping u v—>w(u)
is continuous. Since solving the problem 1.12 is equivalent to
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the fixed point problem u = w(u) and Sgip 18 convex and compact,

the Schauder fixed point theorem applies. .}

As in [4], a very natural approach is to find a solution
to the problem 1,12 as a 1imit of the sequence u . = w(un),
where the mapping u +—> w(u) is defined by (3.3). This is the

secant modulus method for variational inequalities [8, 121.

3.4. Theorem. Let ujeS ;. arbitrary and u 4 = w(un).

Then Upit

sequence of {un"s contains & subsequence convergent strongly in

- u, —> 0 strongly in W ’2(9.) and any infinite sub-

l1 '2(_0.). The 1limit of any convergent subsequence is a solution

of the problem 1.12.

Proof. With @ and B defined by (1.8) end (1.9), respec-
tively, we have (2.7) with K= 1/2 (see [4]), end Lemma 2.6
with f(u) = [, g u dS ylelds

(3.5) clug 4 - un\\% £ ¥(u) - ¥(u,,)—>0

using uniform V-ellipticity of the bilinear forms B(un-,. so) &nd
the fact that ¥= ¢ - £ 1s bounded from below on Sgqpe Compact-
ness of ssim yields immediately the existence of convergent sub-
sequences, From the continuity of the mapping u > w(u) and from
(3.5), the 1imit u of any convergent subsequence of {un"; satis-
fies u = w(u). 0O

Note that using the perticular properties of the problem
at hand, we proved in Theorem 3.4 the existence of golutions
of the problem 1.12 without recourse to the Schauder theorem.
Anyway, existence of solutions of 1.12 also follows from the
gimple fact that eny minimizer of & (u) - fm gu &S in S
is & solution of 1.12. We choose the fixed point approach, be-
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cause it leads naturally to the secant modulus method, which is

a promising numerical method.

4. Extensions. All propositions and proofs remain valid
when the entropy condition (1.7) is replaced by its abatract
form

- E(u,h)2M(h) V¥V h e D,(2),

where B is & V-e¢lliptic bounded bilinear form and ls(ll'a(_ﬂ.))*.

Symmetry and V-ellipticity of the forms B(uj.,.) is in fact
not needed in Theorem 3.2, It is sufficient that B(uj.,.) be u-
niformly bounded and have the continuity property

VveV: B(u;v,.) —> B(uyv,.) in V¥ 12 w,— uin V.,

The proof follows by an application of the Scheuder theorem
to the continuous mapping u +—>w(u) defined by

we Sgim? (W,v - i')vz(u,v - 'l)v - B(ugu,v - W)

+ J;ng(v-f) as v vcs’m.

Theorem 3.4 remains valid for more general problems as long
as the assumptions of Lemma 2.6 are satisfied with some o < 1
and D @ (u,h) = B(uju,h). For conditions implying (2.7), see
Mandel [&1,

The compactness of the sets S,i and S makes it possib-

m nat
le to use the concept of discrete compactness (see Anselone and
Ansorge [21), which yields strong convergence of subsequences
of solutions of suitable finite dimensional approximate prob-
lems to a solution of the regularized problem, This will be

studied in following papers.
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