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1. Introduction
In recent times several authors studied function spaces of Besov-
Lipschitz-Sobolev type on manifolde, in particular on lie groups.
An approach to Sobolev-Besov spaces on compact Lie groups via
(non-commutative) interpolation will be given in [1,2] . As far
as Lie groups are concerned one would try to give intrinsic des-
criptions of Sobolev-Besov spaces, e. g. on the basis of (left or
right) invariant vector fields and related flows. However it is
convenient (maybe even necessary) to reduce some problems for func-
tion spaces on Lie groupe to corresponding problems on B.n. We re-
call that norms of functions f£(x) in Besov spaces B;,q(Rn) with
8> 0, 14 p £oc0 and 12q£oco can be characterized via M-th
differences (A‘: £)(x), where xe R, and heR,. The above mentio-
ned reduction of Besov spaces on Lie groups on the corresponding
Spaces B:W(R“) on R yields norms where the "constant" differenc-

es (Alf) (x) are replaced by "veriable" differences (Ahz‘u,"){)w
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where £(x,h) is a smooth perturbation of h. There are two possib-

le interpretations of these variable differences: Let g(x) = h +
£ (x,h) (where we assume that h is fixed at this moment).

(1) Let x and M be fixed, and let

@ (8 fden = (af 0|,

i. e. only y is considered as a variable and one has the usual
M-th differences with respect to the fixed step-length g(x).
Afterwards cne specializes y by y = x.

(ii) A?Cﬂ is considered as an operator which maps f(x) into
f(x + g(x)) - f(x). We denote this operator by Ag - -
(25 (Dgf)omy = Lorrgony - Lo,

Then 05? is the M-th power of Ahg . For example,

(%) (A‘gg)(,e) = (Bgh)xego) - (2gf)0m
= ,_g(g-*g(rn- R(¥+g00N) - 2 £(x+ g0 + £0x).

The plan of the paper is as follows. The necessarypreliminaries
are given in Section 2: Definition and properties of the spaces
Bg,q(Rn) (inclusively the case 0< p<£1), discussion of the general
assumptions for the above vector-function £ (x,h). Section 3 and
Section 4 deal with the characterization of the considered Besov
gpaces B;,q(Rn) via variable differences in the sense of the first
and the second interpretation, respectively.

We use the notations from [4] « A modified version of Section
3 of this paper will be incorporated in the Russian edition of [4]
(as Subsection 2.5.14). Section 4 (and some modifications) are the
basis of the studies in [1,2] .

By the usual abuse of notations ¢, ¢', ¢. etc. stand for po-

sitive constants which may differ from formula to formula.

~ 416 -



2. Preliminaries

2.1. Besov Spaces
We use the notations from {4] . As usual R, stands for the real
n-dimensional Buclidean space. S = S(Rn) denotes the Schwartz
space of all complex-valued rapidly decreasing infinitely diffz-
rentiable functions on R.n. Let S' be its dual, i. e. the space <
tempered distributions. (We omit "Rn" because all spaces under can-

gideration are defined on Rn). Let @ be the collection of all
systems g = {((J}.(n) S;OC 5 with the following properties:
(1)  supp ¢, < { x| 1% £23
= L+ ;
)y supp ¢ < {x| 28 e 2 2Ty o gz

(i1) For every multi-index o there exists a positive number Cy
such that

(ol X
(s) 2% (cha-oe)l £c, for all j = 0,1,2,... and all x¢ LI

(1i1)
0o
“(6) 2. P50 =4 for every xecR,
0':0
We may assume that
(#) Gg 0 = @ (27" %) bs 42,

1

holds. F and F~ ' stand for the Fourier transform and its inverse

on S', respectively. If f& S' then F"'qd Ff = F'1|:cpJ.Ff] makes
sense, and by the Paley-Wiener-Schwartz theorem it is an analytic

function which we denote by (F~! ¢; F£)(x). Finally if 0¢p £
then

1
Ng il = ( S \3(n>ﬂm)1’
Rm
has the usual meaning (modification if P =00 ). Now we are in

the position to define the Besov spaces B, = B; o (R): Tet
‘ ~
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w0 <B<0 , 0<p <o and 0<q £ o0 .Letq)eé . Then
A4
¢ 2 i -4 ¥

© B‘::W= §£|.€GS'J “{-‘B;&l\ =(E;_°Z E“F %Fguﬁ’“w)”( “}

(usual modification if q = e ), cf. [4, 2.3.1] . This is a quasi-
Banach space (Banach space if 1€ p<co and 1< q € 00 ). It is
independent of the choice of ge (P (in the sense of e“\'livalent
quasi-norms). In this sense we write [f | Bg’q I instead of
WEt B;,q ¥ in the sequel. We mention that B;,q with >0, 1<
pPL o0 and 14 q ¢ co coincides with the classical Besov spaces.
Furthermore, ©° = Bso,,, oo with 8 >0 are the well-known HSlder-
Zygmund spaces. Details may be found in [41 .

Next we formulate a crucial assertion which we need in the se-
quel, First we recall that

A

(@) (A f)roe = Rerek)=£0sy  amd a'l: &p A.::l

with heRn, xE€R, and M = 2,3,... are the usual differences. Let
n 1

40) 6 =M —_— —4)

: g ( mim (9,1) P

cf. T4, (2.5.3/8)] . In [4, Theorem 2.5.12] the following asser-

tion is proved: Let 0<p €0 , 0<q €00 , B> 6"‘; » M>8 (where

M is a natural number) and A > 0. Then

s ° _ -59, 341 1
@0 W IBL T, =1L+ ( § il A flL (I Y
FAR
(modification if q = e ) is an equivalent quasi-norm (norm if

2 2 .
p21and q21) in Bp,q

2.2. The Perturbation g (x,h)

We formulate some general assumptions for the vector function
£(x,h) e RM’ from the Introduction. Let A\ > O and M be a natural

number, and let E(x,h) be a continuous mapping from
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{(’x,h)l xeRy, heRp, lhi & N}
into R, such that the components of &(x,h) have continuous first
derivatives with respect to the variables XyseessXpe It is assum-
ed that for fixed he R, with (hl ¢ X and p=1,...,M,
(42) y= P =x+ e E(x,h), xeR,
yields an one-to-one mapping from I-'lh onto itself and that

4 Y
det ’3(9('#"') | (the sbsolute value of the Jacobian of (12))
)

can be estimated from below by a positive number which is indepen-
dent of x, h, and P Let x = xh'r‘(‘y) be the inverse mapping
of (12). Then it follows from the Inverse Function Theorem (cf.

Ripe
e. g [3, p. 35] ) that |det ?(fg——;?:—u” is uniformly bounded

from above with respect to ye R , h€R_ with Inls A, and =

1ye00,M,

Remark 1. These are our general assumptions for the vector-function
g (x,h). Sometimes it is sufficient to have the above informe-

tione for yh’V" only for special values of w o For example, in

Section 4 the above assumptions with M= 1 are sufficient. But

on the other hand in the same section we need that the components

of £(x,h) have higher derivatives which are uniformly bounded

in Rn.

Remark 2. It is easy to formulate sufficient conditons which ensure

the above general assumptions. For example, let
RE
(13) l'é';d(*’l‘)l tw for xcR and heR  with lnlgX

where j = 1,...,n. We claim that the above assumptions are satis-

fied 1f 4> 0 is small; This is clear as far as the assertions
L

for ‘det ?_Q%m)‘ are concerned, which shows that the mapping
%

(12) is locally one-to-one. Furthermore, for small values of &

we have |p||E(x &) -£0%4A)| £ § Ix"x*| and consequently,

- 419 -



ey E) - PrE L 2 -2
This shows that the mapping (12) is globally one-to-one. By (14)
i% follows also that yh’r" (x) maps R onto a set of R, which is

bL2th open and closed and which coincides, consequently, with Rn‘

™M
3. Characterizations via AgL with 92"(n= RIS

3.1. The Basic Proposition

Tet the general assumptions for £(x,h) from Subsection 2.2 be
M

satisfied. Let 9&(1:) =h + g(x,h). In Section 3, AE“'&) and

‘;;“0) have the meaning of (1) with & and ¢* instead of g,

respectively.

~

Zroposition. Let 0<p£oo , 04<q <00 and s> 6. » cf. (10).
Lzt »> 0 and let M be a natural number with M >s. Let the above
hypotheses for £(x,h) be satisfied. Let M > 0 and let M, and
M., be non-negative integers with M1 21 and M1 + M2 = M. Then there

exists a positive number d = 5( m ) with the following property:
If

%) 1&(x,b) £ d1h( for ell xcR and all heRy with (hl £X
then

] 4
- ™ Y

s (§ i ‘”\\(A’E‘;Wa;&)wlL?u“’f‘ﬁ.,)”s_quns‘,,v
[TYERN

holds for all f¢ Bg - (modification 1f q = o0 ).
’

Eroof. Without essential restriction of generality we always assume

that q <0 and \ = 2'K. where K is an integer. Let ic?ﬁ(n}“"e @ .
4=0

For sake of convenience we put q?k(x) =0 if k = -1,-2,... Let

2797 ¢ (h1£ 27 with 3 - K, Ke1,... It £c Byq then we have

=)
“n fm= 3 (Fg,  F{) o
M=z — 0
and
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M, M, 0 M, A My v o
10 (8gpny Su D)= 2 et tgemFogfn= 5 ey -

mz - 00 mz -00 mzN+A
where the natural number N will be chosen later on. Let m< N.

Then we have

M4 -4 M ™M _ ™M
(19) I(AEC*.{)F (pa'*'"FAkL{)“)l < ;:_;P ((A; £ 4%',..":&4\1{)“)‘

QL¢d2 ¥

S IO g FaE 2V on)|

Ipl= M,

4My
C1 m—ﬁ( €<, JZ-’

uN

g

"

Ca

2 v |(J)°(F"%‘n!=£)lg>l,

he-gle 6,278 =m
where all the aliove c's (and also the following ones) are indepen-
dent of J s, N, J, m etc. We use a maximal inequality and a Nikol's-
kij inequality, cf. the scalar case of [4,(1.6.2/1)] (which works
also for p =00 ) and [4,(1.3.2/5)] . With IoL| = M then we have

“ s i ‘(:D“Fd‘fa;.,m Z 10| \L? “ ¢ c'(4*2na-) “5F-4‘G+uF£lL1’ (

e-4lsc
M(gewm) -1
(20) £ (427 2T Qgem FEILgell )
where a is a number with a ?—1‘; . By (19) and (20) it follows that
M, Na Mwm

o ) -
(24) ” (Agoelk) & 4‘?;'“» F Az’:{)‘*’ IL,K £c ‘g 42— 2 " ¢ 4’%'”. ""-f l L1¢ “ o

Let 0<p <1. Then (21) yields

N My ™

2 -4 F
u Z._,,, Beoty o T YGemFilLy I
2 My M 4 -
(22) DI | Beon gy Ba e G m FL 1Ly |
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-4 N ‘M(M’s) j+m™ -4
é ¢ SM"}PZNQ?Z 13% Z 2 725(31' ¢ “ = qa+m F:g le“f

m= -0

If 1£p ¢ » then the counterpart of (22) reads as follows,

N M ™M -1
(23) “ Z A;“"‘) Alf F qj*"““ F£ | L'P “

mz-00

N .
M -4s m(M-5)  s(§tm)
cc gVt > 2 25 I(F4¢j+mF£lLVll.

m= -0

Let m2N+1. If O<p £1 then we have

(2%) ,i My My o FeIL “10
l AEU.A) S q’}'fm { P
m= N+
g ey P m P L "

£ ¢ Z " A.‘_(*,‘\)F “ea'f-m 1°‘

m= VA
0o My

nN

ey 3 \l(F”an-me)(rH»e o8 [ Ly (*

m=Nt1 ¥v=0

ub

L%
¢y F“q;ém FL L, \\P)
e N4

where in the last estimate we used our assumption about the mappin
properties of x — x + R E(x,h), cf. (12). If 14p ¢ oo then
the counterpart of (24) reads as follows,

® My M, -4
@9 [ A, %8 FegemFf Ll
w=N¢ed

0o
cc > FM»(%-,,,‘ FLiLe

m=Nt1

We summarize our estimates: If h with 27 3™ 4(ni¢27? 44 given,
then we have (22), (24) for O<p <1 and (23), (25) for 1<p < oo
Let again O<p <1. Then (18), (22) and (24) yield
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- 59, ™M, My Y Al
@) o “(AE:‘IMAJ‘DM\L?“ o

e
+

M My %
A y (€8 geay SV Ly |
P P INPAT AP}

N m(M-5)¢ (N-m)6q, S(§E™IG 4 v
¢ ot 515, 53_ S 2 2 2 (F "?3+-.F£.l'-p((

o0 o0 ~wmsq, (m-N)6q, S(4+m) _
<2 > 272 2T N g B L

%
N
é:K mz=N+1

where 6 > 0 is an arbitrary number. We choose ¢

<8<8+6 < M holds. Then we have

such that 0¢¢”

(2%) S - 59, M, ™M, 9 o(;&
o CARRAT (&) O oo Ly | i
g

N(M-3) -Ns (¥ ‘
’—:c(cSmZN“Z_ r2 ) “'“Bfw“qr.

If we choose N large and afterwards d small, then we obtain (16).

If 1<p ¢ o0 , then (27) follows in the same way from (23) and
(25). The proof is complete.

Remark 3. The above Proposition is the basis for our considerati-

ons in Subsection 3.2 (Theorem 1). However in Section 4 we need a

modification of this proposition which we describe now. We shall

Obtain a modified estimate (19) where we have on the right-hand
side of (19) the additional term
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-4 M
(s)) 2t A 2 (TF e, PO

w—g(ec,,z'?. ocldl<M
n S L FE L 1T
a (20) and (21) it follows that the factor IF e Tl Ly
on the right-hand side of (22) must be replaced by

22y (8" 7T FTORY E g PR LI

with some &« > O (and similarly in (23)). This .ghows that we have
the additional term

@y 2V NIV gy

on the right-hand side of (27). Let s-#>6% . By (11) (with s-&

instead of s) we have
$-¥
1B, V€2 VBl +cpligilyll

where T > O is a given positive number. In other words, if we

have the additional terms (19') on the right-hand side of (19),

then we obtain an estimate of type (16) with the additional term
% l(fle I on the right-hand side.

3.2. Theorem
We recall that in the following theorem A:_‘ E“'“must be under-
stood in the sense of the interpretation from (1).
Theorem 1. Let O<Kp < oo , 0<q £a0 and s>6h’; . Let \> 0 and
let M be a natural number with M> s. Let the general assumptions
for £(x,h) from Subsection 2.2 be satisfied. Then there exists
a positive number J =d (8,p,q»M, N ) with the following proper-
ty: If
@28) (g(x,h){ 4 d (bl for all xeR, and all heR, with {h| ¢ A
then A
(29) ugln,;wu:'x:u{u_,u +( g‘:tl-sw“ NP (Lﬂs“%n)»

1€
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|is an equivalent quasi-norm on BY (modification if q =oco ).

P,q
Proof. If xe€ Rn and he R, with |hl€ X\ are fixed then we have

(apee ) = (FH( 5RO _(\Weg) iy
(60) = (F"‘ [QL§&-4 + e‘;g{(edsa"‘)]MFz ) 4)

with g= §g(x,h). By this formula it follows that
M
M M ™M, M-My
I R A W N R A [CELES
M= 1
holds with some coefficients €y + We put y = x. We assume with-
1
out restriction of generality that q<o . Then (16) yields

~sq, ™M % LA
(32) S EANE PN A1 | T
RUEN

= M S s 9
R T (ad PNV e leiB, I
1R 2N
Consequently,

33 £ \B:W “:‘.k £ cfi4 ‘B;.o,“)

cf. (11). In order to prove the reverse agsertion we put
™
M ™M My M-My
@) g f)en= (8, %) —MZ4 Cmy (Bg o, 4)eeemy2)
‘a

(ef. (21)) in (11). We use again (16) and obtain that

@5) W[ Byyll ccligiBe ]

¢ <14 B:W ll:',\ +m £ lB:w I

holds, where M > 0 is at our disposal. Let il be small. Then we

arrive at
£
B W41 Bgoll ¢ <14 (Bl

The proof is complete.
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M [
4. Characterizations via Aot with o™(x) = h + g(x,h)

4.1. T™wo Preparations

M ™M AN
We wish to replace A9&= A&*u*,ﬁ) in Theorem 1 by g‘* -
where the latter stands for the second interpretation of iterated
variable differences as it has been described in the Introduction,
cf. (2) ani (3). We wish to use the same ideas as in the proofs
of the above Proposition (inclusively Remark 3) and Theorem 1. How-
ever there are several technical difficulties. It is the aim of
this subsection to handle two of them.

A Representation Pormula. First we look for preparations which at

the end substitute the formulas (18) and (19). For this purpose we
describe the structure of (A';,f)(x), where M is a natural number
and the vector-function ¢= e(x) = ( ¢,(x),..., fn(X)) has infi-
nitely differentiable components. (As a matter of fact it would be
sufficient to know that the components of g(x) have continuous

derivatives up to the order M-1). For smooth functions f(x) we have

1
(A‘g()(xn S ;_({_{(r*tgu\)a&
o
4
(3% =S i (%’{T\(x+tg¢n)9a.<x)o(t) *ER,
o ¥ L
and
1
(8380 = § & (&of)orregoniat
-
m 11
)
(38) = :é i S i(-f {a_é[x-»tgu)-r'tg(x-o-tgu))]ga-(r+tgu>3go(?dt.
o

2
& L S
However, .Tt{ § 1is the sum of terms of the typeg—ﬂ—a.%-ﬁi( )9¢.‘ )gq..)H

)
and ’3_5; (G5 &) H where ... indicates appropriate arguments
and H stands for a general function which differs from term to

term and where first derivatives of the 91'8 are involved. Iteration



M
yields a corresponding representation formula for (Agf) (x) via
terms of the type
oL

& ...... v
33 (D {)('--)9"1 iRy D He.,---,lm
where H;‘ et is a sum of products of at least M - lof| factors
) rm

with o<l g M,

of the components of 9 and its derivatives up to the order M-1
(with appropriate arguments). We discuss the omitted arguments in
(39). Let 9 = ¢ (x,h) where x€R, and he R, with, say, (hi% 1;
and let

®oy 19, 8| ¢ Sl amd lb":g(t,&)l £ ALl 4 1l & M1,
Then the arguments in the involved functions in (39) are represen-
ted by points which are contained in the ball {ylix-y( ¢clnl},
where ¢ is independent of h. Furthermore we have

o ” S oy
(%4) /N ool ¢ e 2 HDHen (6
| ¢ 8¢, %) I ‘::’ﬁ‘ dlAL gclaigM

where c and c' aere independent of § and h (but depend on A in
(40)).

An Inegualitz. Next we look for a preparation which replaces (30)
ant (31). If heRn then Th denotes the usual translation operator,
i. e. ('.l'hf)(x) = f£(x+h). Then (2) yields

(#2) Abu-,&) = AH_,”T‘J %

and - M M
™M _ s

(“3) A‘(.t(',l;) = A"\. + ZC ] Ae(,k) C ] A‘\ *R". )

where [,..] indicates products of Ty, &, and AE(.J;\).IQ assume
that for some A > 0

(o) 1E0 )| € SIR1 amd  (Dece )] & AR
*€R, | AeER, | (&[ 4N amek [l & M-1.
holds. Then it follows in the same way as in (37) - (41) that

“s)  RE4Yom| ¢

(& anp S DD s > l(ﬂ)(pl)

Iehgl € Il iz (r-4|gc'(al O<iti<Mm
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holds, where c and c¢' are independent of § and h (but depend on
A in (44)).

4.2, Theorem
After the above preparations we are in the position to prove the
counterpart of Theorem 1 with A{.&E( &) instead of A&«vt.( £
Theorem 2. Let O<p <o , 0<qge and e>6’,'p . Let A\> 0 and
let M be a natural number with M> s. Let the general assumptions
for £ (x,h) from Subsection 2.2 be satisfied. Let additionally
the components of £(x,h) be M-1 times continuously differentiable
(with respect to xe Rn) with
ey D, €04 ¢ ALRL < *eR, | [ALE A, anel Il £ M-
for some positive number A. Then there exists a positive number d
(which depends on s,p,q,M, A and the number A in (46)) with the
following property: If
(%7) | gce, 20 ( ¢ S 14l {a-.-ed.( RER, amd AR, arnith (L1 &N
then

, s s M A ECN %
() H(Bmw M, € =gl (ét.‘“ 't “‘"" Ll "“0

is an equivalent quasi-norm on B.‘.“, (modification if qQ= o0 ),
Proof. Step 1. Let ng be the remainder term from (43). It is a 1i-

near operator. Let M > O be given. Then we claim that

(49 ( S ENY ’*](R:hnll-,, “‘!r:%‘ﬂ )ié"L WE1Bo o I+ o 1S 1Ll

[EAR RS
holds for all fe B;& provided that the positive number J in
(47) is sufficiently small (modification if q =00 ). The proof is
the sene as in the above Proposition: Let again )\ = Z'K y Q<oo

(without restriction of generality) and 2'*";- th1£2°% with J =
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K, K+1,... We use (17), the splitting (18) with Rg instead of
AM“ " A:: and (45) with F'1q‘~+m1“f inetead of f. Then the coun-
&(x,4)
terpért of (19) reads as follows: There exists a constant c such
that for integers m (with m ¢N)
5 of 4
M -4 “iMrs > W(DFg, Fi)(‘a)l
F . F2 )¢ 2 oad o . m
‘(R&' Cgom £ )lé ¢ [ -l ec'27d a=™ d

(50) + sup Z | (D.‘Fd?jen F@)(g)\]

x-y1¢ 278 oridicm
holds. This is the modification which we treated in Remark 3, cf.
(19'). Let m} N+1. We recall that Rﬁ ie the sum of iterated diffe-
rences, cf. (42), (43), with iterated smooth one-to-one mappings
X —» x+h and x — x+ g(x,h) of l’l11 onto itself. The iterations of
the latter mappings are also one-to-one mappings of Rn onto itself.
This yields obvious counterparts of (24) and (25). The rest is now
the same as in the proof of the Proposition and the considerations
in Remark 3. This proves (49).
Step 2. We use (43) and (49). Then the above theorem follows in

the same way as at the end of the oroof of Theorem 1.
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