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Abstract: We extend some results of Ward for nonlinear
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stant functions to the case where the kernel is spanned by a
positive function. Applications are given which extend earlier
results of Aguinaldo~Schmitt and Castro.

Key words: Boundary value problems for ordinary differen-
tial equations, Jumping nonlinearities, Leray-Schauder method.

Classification: 34B15

1. Introduction. In his fundamental work on nonlinear non-
coercive equations, Fulik has emphasized the important concept
of "jumping nonlinearity" and has given in [6] the first syste-
matic study of the Dirichlet problem for second order ordinary
differential equations with jumping nonlinearities, namely

x"(t) + g(x(t)) = h(¥),

x(0) = x(a7) = 0O
with }i:_w g(x)/x d=&1i’m+m &(x)/x. As most of Fu¥ik ‘s papers,
[6] not only contains significant results but also & number of
interesting open questions. Orte of them was solved by Aguinal-
do and Schmitt [1] who proved that the problem

- 401 -



(1.1) x"(t) + x(t) - cx (%) = h(t)
x(0) = x(or) =0
with « >0, x~ = max(-x,0) and h continuous has a solution if
and only if
(1.2) f‘"’h(s) sin s ds<0.
0

Aguinaldo and Schmitt use & continuation theorem due to the au-
thor (see e.g, [8]) and obtain the required & priori bounds by
a delicate argument linked to the special nature of the nonli-
near term in (1.1). Their result was generalized by Castro [5]
who proved the sufficient condition (1.2) for the more general
problem

(1.3) x"(t) + x(t) + g(x(t)) = n(t),

x(0) = x(ar) =0

with g:R—> R continuous, g(x) = 0 for xZ0 and g(x)/x —> > 0
when x —> -0 . Castro’s proof uses a rather sophisticated va-
riational argument which strongly uses the sublinear character
of g.

The aim of this paper is to provide a partial extension of
the method initieted by Ward [ 9] for the study of periodic so-
lutions of semi-linear ordinary differential equations whose
linear part only admits constant periodic solutions. This exten-
sion allows the kernel of the linear part to be spanned by a po-
sitive function and provides generalizations of the results of
Aguinaldo-Schmitt and Castro to ordinary differential equations
of arbitrary order and to some classes of nonlinearities which
do not have necessarily a linear growth. Finally, the underlying
abstract tool is simply a continuation theorem of Leray-Schauder
type [8) and the corresponding a priori bounds are obtained in

a rather simple way,
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In the case of (1.3), our theorem implies the existence
of & solution when (1.2) holds when heL'(0, ), g(x) = 0 for
xZ0 and

lim sup g(x) = - 00 «
X ~—» - 00

Another easy consequence of our results is that the problem,
with he L'(0,ar)

x"(t) + x(t) + ¢ exp x(t) = h(t)

x(0) =x(x) =0
with o¢ > 0 has a solution if and only if

b
(1.4) J; h(t) sin t dt>o0.

Finally, our method easily shows that (1.4) is also sufficient
for the existence of one solution for the problem
x" (t) + x'(t) + &< exp [x(t) + sin x'(t)] = h(t),
x(0) = x'(0) = x"(ar) = 0.

2. Preliminary results on linear operators, Let I = [a,b],

k>0 an integer, c¥(I) the Banach space of real functions of
cless C¥ on I. with the usual norm lul K = _2;0 max lu(j)(t)l

[ ¥ te 1
Ll(I) the Banach space of real functions L-integrable on I with
the ugusl norm

USRI fx tu(t)l at.

Let L:D(L)c ¢¥(I) —» L1(I) be a closed linear operator having
the following properties,

(Ly) ker L = spanig} , with ¢e D(L) such that ¢ (v)>0
for a.e, tc I and fl w (t)at = 1,

(L) Im L ={yeL1(I)= fl y(t) vy (t)dt = 0} for some
y e L% (I) such that flty (t) ¥ (t)at = 1 and y (t) >0 for a.e.
tel.
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Let us denote by I.;,(I) the Banach space of real functions
L-integrable on I with the norm
luly = fI lu() | ¢ (t)at,

and let us introduce the following closed subspaces of Gk(I),
1'(m, 1,

'ﬁk(I) is a topological direct summand of ker L in Ck(I),
IND) = $yert () f, 38 v ()at = o3,

YD) = iye L:F(I): JL 79 y (Bat = o

We introduce another assumption upon L.

(I.3) There exists a continuous linear operator A:ck(I)—>
— 1'(I) such that L - AsD(L)c ¢¥(I)—> 1'(I) 1s one-to-one
and onto and such that for some M0 and ell y¢ L;,(I), one has

-1
I(L = A) "c* < Ilylv .

Proposition 1. If conditions (I4) to (L3) hold, there ex-
ists A Z 0 such that, for each x = X + ¥¢ D(L), with Tc ker L,
'i'e'ék(I), one has

~
l'ilokéA | 1& IY- Alx 'w

Proof. The restriction of L to D(L)N CX(I) being one-to-
one and onto 'ﬂ,(l), it suffices, by the closed graph theorem,
to show that this restriction is a closed operator. By conditi-
on (I'B)’ (L - A)"‘:I.,}(I) —> ¢¥(I) 1s continuous and hence
L - A:D(L)c c"(x)——a:.,‘ru) 1s closed. Let (¥,) be a sequence
in D(L)nB¥(I) such that in—> ¥¢E%(1) ana I.xn-—> Fec'1! (D) in
L) (I). Then A.xn--> A% 1n 1! (I) and hence in I‘V(I) 80 tha.t
(L - A)!nq ¥ - AX in L,’,(I). By the closedness of L - A as a
mapping between D(L)= C¥(I) and 1.,‘,(1), we have ¥¢ D(L) and
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¥ - A% = 1¥ - A%, so that § = IX. Thus LxD(L)c'ék(I)-—"il(I)
is closed, and the proof is complete.

In our applications, L will be a differential operator and
condition (1'3) can often be deduced from the following more con-
crete assumption.

(L;) k = O and there exists A:C°(I) —> 1'(I) 1inear oconti-
muous end G, C°(IxI) such that L - A:D(L)c C°(I) —> L'(I) 18

one-to-one and onto,

(2.1) @ - 075 = [ 6,(¢,0)y(a)as, teT
and G,/y € L®(IxI).

Proposi tion 2. If conditions (I;),(L,) snd (L,) hold, then
the conclusion of Proposition 1 is valid with k = O,

Proof. By (2.1), we have, for each ye Al (I) and teI,

H1-a)"1y($)) = | [ [y (+,8)/y (8)] y(s)y (s)ds| £

“le/vl g, fA3(e) y(s)an = oy /vl )yl

Hence condition (L3) with k = O holds and the result follows from
Proposition 1.

Example 1. As a first example, let L be defined by (L) =

TonIa= f{o,n1, x° 1s absolutely

continuous on I and x(0) = x(z ) = 0%, LiD(L)e c°(I) — L' (D),

= {xecC°l0,m): x 18 of class C

X —> - x" - x, 80 that L is closed, ker L = span {sin (-)},
InL ={yel'(1): Sy 7() sin t at = 0% and we csn teke T°(I) =
={xcCco(1): [; x(¢) sin ¢ at = 0%,

Moreover, for A = - Id, G, = G, the usual Green function of
-32/at? with the Dirichlet boundary conditions on [0,4r] , name-
ly
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(s/w)(ar = t) if Ot £or,

G(t,s) =
(/51 )(x = 8) if O£t 4a<.

Therefore, if O<s<t < , we have 0 < - t« x - s and hen-
ce

0£G(t,8)/sin s € 8(x - g)/ o sin s <« C
as 1lim s/sin s = 1im (o -s8)/sin 8 = 1, and similarly for
450 L2

O<t<s8 <x . Thus, all the conditions of Proposition 2 are
satisfied and hence
\%\co £ AII | x*(t) + x(t)) sin t dat = A | x" + xlﬂj_n
— a"\l
for all x =X + ¥€D(L) with X = ¢ sin (-) and f(; X(t) sin t dt=
= 0,

Example 2. For a less direct application of the above re-
sult, let L, be defined by D(L;) ={xeC'(I): I = [0, =] ,
x e c! (I), x" is absolutely continuous on I and x(0) = x'(0) =
= x"(#) = 0f, L;:D(L)cc (D) — (D, x — - xm - x', 80
that L; is closed,

ker L, = soaa {1 - cos ()}

Im L, =&yELI([): Jl yiti sin t dt = o<,
Let y = z', s) that, as x{0) = 0, x(t) = fut y(8) ds, and
y(0) = y(&) = 0y =x" - x' = =y ~ y.

Therefore, by Fxample | applied to y, we have, for all y = ¥ ~

+ FeD(L) witi 7(t) = ¢ sin t and fo” F(t) sin t dat = 0,

\.\7’\('0 € AVF Tl = Ay + Yiggy = Al + -l JO
Consequently, es
» () = y(t) = c sin t + F{t)

we huve

" '
= NAdxm 4+ ¥ lsin

i:.) - ¢ gin (~)|c°



Ix(*) = c¢(1 = cos (-))lco = U;.Sr'(a)dﬂco Al xm 4 x'luin

for all x€ D(L,). Thus, if we define the bounded linear operator
p:c' (1) — ¢ (1) by

(Px)(t) =1(2/xn) foﬂ x'(8) sin s ds) (1 - cos t)

it is easy to check that Im P = ker L, and that P2 = P so that .
we can take §'(I) = ker P. Thus, if we write x(t) = E(t) + (%)
with ¥ = Px and ¥ = (I - P)(x), then, with the notations above,

x(t) = ¢(1 - cos t), and the above inequalities can be written

sin’

\'i'lco «Alxm 4+ x'| li’\co & Al xm + x"sin

i.e.

l’i’|c1£(1 + ) Al 4+ x‘lsin.

3. An existence theorem for abstract boundary value problems.
k+l

Let now f:Ix R
Rk+1

—> R be such that f£(t,) is continuous on

for a.e. t¢I and £(+,y) is measurable on I for each ye R,
Assume moreover that for each r >0, there exists a € 5! (I) such
that

it(t,y)ls’:ar(t)

whenever te I and |yl{<r, Such an £ will be called a Carathéodo-
ry function for L1(I).
Let us introduce the following condition of Ward type (see
[9) and [2 - 4, 10) for verious extensions).
(£,) There exists y & L'(I) snd £= % 1 such that Iyl >0
and
1E(t,y)) £ € £(t,y) + y (%)

for a,e. tel and all ye RkH.

Such a condition expresses the fact that f is either bounded
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below or bounded above with respect to y.

We shall consider the following abstract boundary value
problem
(3.1) @) (8) = 20, x(8) ,x(8),ene,xE(8)), tex

where L is & linear operator of the typ; oonsidered in section
2 and satisfying moreover the following compactness condition.

(I.4) The inverse of the operator LeD(L) ¢ C¥(1) =T (1)
is compact.

The oconditioms (L;) %o (L4) and (f;) ere not sufficient
to insure the existence of & solution for (3.1), as shown by
the trivial example

x"(t) + x(t) = gin ¢
x(0) = x(ar) =0
for which they are satisfied and which has no solution.
We introduce a supplementary sign oondition upon £,
(t,) There exists d'= ¥ 1 and @ > 0 such that

o f, 208, 0@ (®) + (1) eyt (1) + ¥ (1) y (02t 20
whenever o £ - ® and I’Hck P2 J\.I'rl,{, , and

5[ tlt,00Tt) + ¥(®),eun,0 9 (1) + ¥ W (1)) y(atz 0
whenever ¢ = © end ¥ lck £ Alz"w , where /A 1g given by Pro-
position 1 and ¥€D(L) with [ ¥(t)g (%) at = o,

We can now prove the following existence theorem.

Theorem 1. Assume that L satisfies the conditions (L1) to

(t.4) and that f satisfies the conditions (f;) and (f,). Then

problem (3.1) has at least one solution.

Proof. Let P:C¥(I) — L'(I) e the Nemitsky operator

- 408 -



aggociated to £ and gefined by
Fx = f(~,x(-).x'('),...,x(k)(')),
so that (3.1) is equivalent to the abstract equation
ILx = Px
in ck(I), and F is L-completely continuous on Ck(I). Let x(t) =
= %(t) + %(t), with Teker L and %< 05(I), and define G:CX(I)—>
— 1'(I) by
Gx=(1- Iilck)"1(d"q 1230), = xly Syl g,
so that G is odd, L-completely continuous and
Iex) ()1 € n /2

for a.e. t€I, By Theorem IV.3 and Proposition II.18 of L8],
(3.1) will have a solution if the set of possible solutions of
the family of equations

(3.2) Ix = (1 = A)Gx + APx, Ael0,1I,

is a priori bounded independently of A ., Let A& [0,1[ and x
be a possible solution of (3.2). Then,

(3.3) 0= (1-2) fl (Gx) (D) y (8) at + A [ (F)(t)y () at
and

fl\(Lx)(t)I\r (£)dt £(1= A) f; 1(Gx) ()} v (£)at +.7\.f1l(1?x)(t)lﬁr(t)dt.
Using condition (11) and (3.3), the last inequality implies that

\I.x!vz-n - M)yl /2 4 ?uefl (Fx) (%) y (£(at) +
FAfa®y @ a1 -a)rh2- e (-2 [ @)y
(¢) at + A jl (D) yE)at (1 = A) lyly + A Iyl = lyly -
Consequently, using Proposition 1, we have

(3.4) 121y« Alyly -

It we set X(t) = ¢ @ (%), then by (3.4) and condition (12) we
get, if ¢ = - ©

- -1
(1-a)q f @ HIEL TR Y () g+ cmfl {4 T 1) I
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e x® () y (1) at = (1 -2 + 121 o +
+ G4 [, 2(t,09(8) + F(1)1eee, 00 (1) + (1)) y(t) 0t <
£0 =200 +13F] Y7 0£-01 -0 4131 Y7 me < 0

so that (3.3) cennot hold. Similarly if ¢ ?f) s which implies
that we have necessarily
lel < G ?
and hence, by (3.4),
<\ + ¥, <) Alypl o r
‘x\c“ °‘3"ck ‘c“ e q’ck+ ¥y

and the proof is complete.

It has elready been noticed that the sign ocondition (fz)
oontains as special case Landesman~Lazer conditions of the fol-
lowing type. .

(£;) Xk = 0, there exist functions o, ¢L'(I) ama o e1'(z
such that

2(t,y) = d,(¢) 1t y20

£(t,y) € J_(t) 12 y<o,
and the measurable funotions ¢, and “2 defined by

P’](‘n - 1:;.._‘;;-13 2(t,5), (‘z(t) '}‘1:}!;; £2(t,y),

are such that
J sy ymat <0< f; @)y (wat.

We give a proof for completeness.
Proposition 3, Comdition (f;) implies condition (f,)
withk = 0 and d'= 1,

Proof. If it is not the case, there will exist sequences
(o) and (¥)) with |¥, ‘co*-/\"f\ y Wch that either o, — - o
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and

J2Gie,@(9) + F() w(®) at>o0

or such that cn—ﬁ + 0© and

J (e, (0 + F(8) v (%) at<o.
Considering, say, the first case, we have, for a.e, telI,
e ¥ (t) + ¥ (t) — = c©

ift n—>c0 , and hence, by Fatou ‘s lemma,
0<lim sup J; 2ty0, @ () + ¥ (£))y (%) at <
é-rx Lim sup £(%,0,¢(t) + F (1)) y(t) at <
<f lim sup 2(t,x)y (t) dt = f; “q (V) y (%) at<o,
a contradiction.

One can show similarly that the following condition (tg)
implies condition (f,) with k = O and d'= - 1,

(£3) k = 0, there exist functions o7, cL'(I) and d”eL'(D)
such that
£(t,y) € J, (%) if 3z o
2(t,y) = J'_(t) it y<o0
and the measurable functions (4, and &, defined by
“p(t) = ]*:Le’:l;nio £(%,x), @4(t) = ii::ua% £(t,x)

are such that
[, ey () at<o < Ji w0 ¥ (1) at.

Let us mention the following obvious Corollary of Theores 1.

Corollery 1. Assume that L satisfies conditions (L,),(L,),
(Lg),(h4) and that f satisfies condition (f1) and (fa') or (f."',).
Then the problem

(Ix)(t) = £(t.x(t))
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has at least one solution,

In perticular, if f(t,x) = h(t) - g(x), with helL’ (1),
8R—> R is continuous, g(x) = O for x>0, 1lim sup g(x) = - o0,
then condition (f;) holds with €= 1 and o

lim inf £(t,x) = h(t) = lim sup g(x) = + oo,
X -y — @@ XK= — €0

lim sup £(t,x) = h(t) - lim inf g(x) = h(%),
X—=>y + 00 X —» + o0
so that condition (f‘z') becomes here

Ji () y (4) at<o.

In the special case where Lx = x" + x with the Dirichlet boun-
dary conditions on [O0,o], ¥ (%) = sin t, all conditions (1.1),
(1.2),(1.3'),(1.4) are satisfied (see Example 1 in Section 2) and
we obtain the generalization of the results of Aguinaldo-Schmitt
and Castro announced in the Introduction.

If £(t,x) = h(t) - « exp x, with he L'(I) and « > 0, then
condition (11) holds with € = = 1 and

iiijl.nio £(t,x) = h(t), ]iigiuga £(t,x) = - 20,
so that condition (f3) becomes

0 <f1h(t)1|r(t) dt.

In the special case where Lx = x" + x with the Dirichlet boun-
dary conditions on [O,ar] , we agein find the condition

o<f1h(t) sin t at

announced in the Introduction. Notice that whem o¢ < 0, our re-

sult can also be applied and furnished the existence condition
f: h(t) sin t at<o,

but, in contrast to the case where o > 0, the situation with

o < 0 can also be treated by the method of upper and lower
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solutions (see e.g. [ 7], Chapter 32). Notice that those condi-
tions are also necessary for the existence of a solution.
As a last example, let us consider the following boundary

value problem

(3.5) x™ (t) + x'(t) + o« exp [x(t) + sin x'(%t)] = h(t)
x(0) = x'(0) = x'(3r) =0

where heL'(I), I = [0, %] and o 40. It follows easily from
Example 2 thet a necessary condition for the existence of a so-
lution of (3.5) is that

(3.6) o(.f:h(t) sin t dt>0.

Combining the results of Example 2 with Theorem 1, it is easy
to show that this condition is also sufficient.

Remark 1. In the case of nonlinear perturbations of line-
ar operators whose kernel is made of constant functions, Ward’'s
growth conditions on the nonlinear term f are of the form

I2(t,y) | £ e2(t,y) + Blyl + g (%)
with 3 sufficiently small. Our approach in the setting of a
kernel spanned by & positive function does not seem to extend
easily to such & growth condition with {5 > 0 and it is an open
problem to know if the results of this paper are true or not in
this more general setting.

Remark 2. The same method can obviously be applied to
boundary value problems for functional-differential equations,
as well as to boundary value problems for systems of equations,

with generalized Ward conditions in the line of [2, 3].
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