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Dedicated to the memory of Svatopluk FUCIK

Abstract: We are interested in the investigation of the
equatIons of the type
(0.1)  J(x) - w8(x*) + ¥S(x7) + G(x) = ¢
which were intensively studied in the prinecipal Fudik s pa-
pers. The purpose of this paper is to give a short survey of
the results in this field which have been published during
last five years and also to formulate some open problems the

solutions of which, in the author s opinion, would lead to
the better understanding of the equations in question.

Key words: Boundary value problems for ordinary diffe-
rentiaf equations, spectral theory of nonlinear operators.

Classification: 34B15, 34B25, 34C10, 4TH12

1. Introduction, In his paper [9], Pulik emphasized the
concept of "jumping nonlinearity" and in this framework he
studied the solvability of the Dirichlet problem for second
order ordinary differential equations

- u (1) + glu(t)) = £(t), telo,ml,
{. u(0) = u(sx) = 0,
with nonlinearity g: R —> R satisfying

(1.1)

(1.2)  1im B(8L . | 140 B(8) . @,
A>-0 8

where @ <%= are real numbers. These results were after-

wards generalized by Pu¥ik himself and by meny other authors
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in various directions (i.e. @ and » acquire values + oo or
-~ co , or the partial differential operator of elliptic type
is considered instead of -u", e.t.0.). An exhaustive list of
references up to 1980 is given in the monography [111. In the
last two years many papers have appeared which deal with the
multiplicity of the solutions of the problem (1.1). For the
most recent results in this direction and also for an other
bibliography see [16],[20].

In this paper we shall concentrate on the case of finite
limits (1.2) and on existence results. The following parts of
the paper are organized as follows. In Section 2 the abstract
formulation of the problems in question is given and there is
shown the connection between the problems with jumping nonli-
nearities and the nonlinear Fredholm alternative developed
independently by Nedas [17]1 and PochozZajev L18] (see also L[7]).
Section 3 contains some applications of abstract results to
Dirichlet and periodic boundary value problems for ordinary
differential equations of second and fourth order. We mention
also some local results for partial differential equations,
Finally, in Section 4 we formulate some open problems which are

mostly motivated by the known results in some particular cases.

2, Operator equation with jumping nonlinearity. Let us
suppose that X, Y, Z are Banach spaces with zero elements OX'

Oy, Oy and with norms hx g, Wy Uy, Nz ﬂz, respectively. A
subset C of Z is called a cone if it is closed, convex, inva-
riant under multiplication by nonnegative real numbers and if
cn(-C) = aozl. We shall suppose that the following assumpti-
ons are fulfilled.
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(21) C induces the semiordering x4y (i.e. (y - x)e€C) such
that st = m{s,ozkec, 5~ = max {-2,0,1¢ C exists for
every z e Z.

(Z2) The mapping z +—> st 1s continuous.

(23) Xc Z and the identity mapping X G Z is continuous.

Let us suppose that a>0 is a fixed real number and J:X—>

—Y is the mapping which satisfies the following properties:

(J1) J is positively a~homogeneous, i.e. J(tx) = t2J(x) for

all xeX, t>0.

(32) J is a homeomorphism X onto Y.

(33) J is o0dd, i.e. x€X = J(-x) = -J(x).

Let S:Z — Y be the operator defined on Z end satisfying
(S1) S is positively a~homogeneous.

(s2) S is continmous.

(83) =xv+>5(x"), x —>8(x") are completely continuous map-
pings from X onto Y,

Suppose that G:X—> Y is a completely continuous operator.
Aceording to the works of Dancer [2, 3] end Pudik [9, 10, 11]
we shall denote

R(G) ={feYyiAx cX: J(xo) - (wS(x:) + vs(x;) + G(xo) =23,
R(0) is written in case G =03

Ay = (@y») € RZ Ax F0p J(xy) - w3(x) + »S(x7) = Opls

Lo - R2\1_1;

Ay = (@, v)cA degly - («.S(J"(y))+ + 287N,

By(1),04140}3
A = {(wsv) edy R(O)+YE,
Ay = {(@y») € RZ R(0) = Yh

We refer to [41,[11] where the basic properties of the
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sets A,, i =,...,3, are proved. In the sequel we shall show
how the nonlinear Fredholm alternative for quasihomogeneous
operators (see [8]) may be generalized using the classificati-
on of parameters v and Y in the sense of the sets ‘1' is=

= poee .30

Definition 2,1, The mapping T:X —> Y is said to be regu-
larly surjective from X onto Y if T(X) = Y and for any R> 0
there exists r>0 such that IxUy%r for all x<X with
N 7(x) 0y &R,

The following is proved in [8, Chapt. II].

Theorem 2,1, The operator J - A8 1s regularly surjeeti-
ve from X onto Y if and only if A is not an eigenvalue of
J- A8, i.e. J(x) - AS(x) = Oy implies x = Oy.

Using the properties of A;, 1 = 1,...,3 (see [4],[11]) 1%
is easy to see that the following generalization of the previsws

theorem is true.

Theorem 2.2. (1) The operator
(2.1) x> 3(x) - ws(x") + »8(x7)
is regularly surjective from X onto Y if and only if (5‘.,9) €
6 A Ny

(11) 1f (,v)e Ty , where T; is the component of A, com-
taining the diagonal point (A ,A) then the operator (2.1) is
regularly surjective,

Investigation of homogeneous equation
(2.2)  J(x) - ws(x") + ¥S(x7) = 0y
is also useful for proving existence results for the equations
containing operators which are asymptotically close to J and S.

Definition 2,2, The mapping T:X—> Y is said to be a
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(K,L,a)=homeomorphism of X onto Y if
(1) T is a homeomorphism of X onto Y3

(2) +there exist real numbers K>0, L>0 such that
Lixh§<ln(x) hy<KNxhg,
for each xeX.

Definition 2,3. Let mozx —>Y be an a~homogeneous opere~
tor.

(1) T is said to be a-guasihomogeneous with respect to !o
12t m0ox —>x, 2 7(2) €Y imply T (x.)
n '%n ot 'n “\E_ /T, o'\ %o’ = Yo
(11) T 1s said to be a—strongly quasihomogeneous with res-

pect %o T if
t, ™ 0,x, —>x, imply 2 T (%)_ﬂo(xo).

Note that the symbols " — " and " —> " denote as usual the
weak and the strong convergence, respectively.

Using the homotopy invariance proport.v of the Leray-Schau-
der degree it is poasible to prove the following essertion.

Theorem 2,3, Let X be a reflexive Banach space and A an
0dd (K,L,a)-homeomorphism of X onto Y which is a~-quasihomogene-
ous with respect to J. Let F be a completely continuous opera-
tor from X into Y which is a-strongly quasihomogeneous with res-
pect to the operator x t—b(wS(x") - ¥8(x7). Then if (m,») €
G!a_c ‘o' where T, 1is some component containing the point
(A,7), the equation
(2.3) A(x) - F(x) = £
a8 at least one solution for arbitrary right hand side fe Y.

Proof. We shall prove at first that there exists a suffi-
ciently large ball Bx(r)c.x sach that
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(2.4) .4 (x,c‘)#O!

for all x€9By(p), T €(0,11, where

Rix, %) = A(x) = (1 = ©)(x) - vus(x") + 2vsx) -
- -7)e,

Let us suppose by contradiction that there are 1"6.[0,11.

Wx gy — 00 such that

(2.5) Wxy, v,) = Oye

Then at least for some subsequences, Ty —> Vb Lo,11,
1"‘/lxnllx =V —>V,&X and r(llxnﬂx vn)/lg.l!; —_
—> @8(v]) = »8(v]), S(v)) —> 8(v}), 8(v])— 8(v]).

Hence dividing (2.5) by Hx I 7 we obtain
(At x iy v)/0x ) ;)—s— (ws(v:) - ¥8(vy), 1.0, letting
n—> 00,
(2.6) I(v,) = w8(vy) + »S8(v3) = Oy

Since A is (K,L,a)-homeomorphism, we have

M(ix by v)ly 5 %
Nz, A g B

for alln e N and hemce Vo Oy, which together with (2.6)
contradicts the assumption (w,»)e A . This proves (2.4).

Let us demote, mow, by 7 (t) = (My(®w),ny(¥)), T &
¢ [1,2], the smooth ourve which lies in T, and suoh that
n(2) = (A,A), (1) = (w,»). Let us consider
%*(x,2) = Ax) = m4(T)8(x") + 1,(®)s8(x) - ¢, v €1,2],
x ¢ 9By(»). By oontradiotion we shall show that for r >0 large
enough it is
2.7 Fe(x, ©)+0y

for all x & an(r), 2 & [1,2], Let us suppose that for the
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suitable subsequences =, —> T, € [1,2], x /1 rhllx -y
— V€ I, vo#ox.

A Ixnllx 'n)/“’n“; —> Ny ( fn-o)s(v:) = Mplw,)s(vy),

toe0 I(v)) = N (T IB(¥]) + My( T )S(YF) = Oy,

This contradicts (").1(‘3)."12(1'))¢1°. for all < 6 [1,2], and
hence (2.7) is proved. Using (2.4),(2.7), homotopy invariance
property of the Leray-Schauder degree and the fact that A is
(K,L,a)-homeomorphism we obtain that there is some R>0 and a
ball B!(R) C Y such that

(2.8) aeg Ly - F(A™'(3))3 By(R),0p] = deg [y - AS(A™' (y))* +
+ as(a™ )7y B ,0,1

Borsuk theorem and oddness of A and S imply that
(2.9) deg Ly - A8~ (31))* + A3~ (3))7y By(R), 0,1 # 0.
Then (2.8),(2.9) and the basic property of the Leray-Schauder

degree imply that (2.3) has at least ome solution for arbitrary
feY. Q.E.D.

Remark 2,1, The previous Theorem 2.3 may be understood as
& completion of the results contained in (81 concerning the sol-
veability of operator equations with quasihomogeneous and strong-

ly quasihomogeneous operators.

3. Some applications. Let us suppose that pz2, q =
= p/(p = 1) are real numbers; Let a and b be real functions de-

fined on [0,sr] . Suppose that a(t) >0, for all t e [0, ,
acc'(fo, @1 ), b(t)>0, for all t& [O,ar] , b&C([O, a1 ).Put
X=2=wrP0,7), Y =X*aw'r90,x)

and denote
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(J(u).V); fn(t)ln'(t)\p'zn'(t) v’(t)at,
(3.1){ <S(u),v) = ,g" b($) lu(£) 172 u(t) v(t)at,
{L,w) . f:‘n(t) v(t)at,

R L (0,31 ), for all veX, where {.,.> is used for the dnality
between X and Y.

Remark 3,1, See [15] for the usual funotion spaces used
in this section.

Remark 3.2, It is possible to verify that the operators J
and S defined by (3.1) satisfy the conditions (J1)-(J3),(81)-(83)
from Section 2 (see [4]) and the equation

(3.2) J(u) - @s(u?) + vS(u™) = ¢

is the operator representation of the boundary value problem

- »u (%)) = n(t), te Lo, 7],

~(a()1la (172 u’(£)* - () lu(IP2( wa*(t) -
o {
u(0) = u(#) = 0.

efinition 3.1. The solution of the operator equation

(3.2) is called the weak solution of BVP (3.3).

Remark 3,3, It is possible to prove that the weak solutionm
of (3.3) has more regularity than u€X. In fact we have
uec' (10, #1) and 1f he C([0, 1) then (a(t)lu’()IP2 u’(+))e
601(f0.ﬂ’]) (for the proof see [4, Th. 3.3]).

The following assertion is proved inm [81.

Zheorem 3,1. The real numbers A for which there exists a
nontrivial solution of J(u) - A S(u) = Oy form a sequence ¢ =
€
= A 1 0<A, < x2<....,m§.wan = C0e

Remark 3,4. Hote that A ¢ 6 is equivalent to (A,A)s A_ge
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Then using the basic properties of the sets A;, 1 = =1ge0eed

(see [11)) we can prove

Theorem 3,2, Let A & 6 . Then there exists a positive
real mumber o(A)>0 (depending on the distance A from 6 ) such
that BVP (3.3) has at least one weak solution for arbitrary
right hand side he L (0, ) if le -2+ 1v=-Al<e(Ar),

We shell suppose now that g1 [0,57]1 < R —> R satisfies
the Carathéodory’s conditions, i.e. g(t,s) is measurable in
for all 8 ¢ R and contimious in s for a.a. t6 [0, ] , and
let us oconsider perturbed BVP:

—(a(®)lu’(HI1P2 w(£) 7 = O P2( wu(t) -
(3.4) { - yu~ (%)) + g(t,u(t)) = h(t), te JO, & [,
u(0) = u(ar) = 0.

Theorem 3.3. Let (@, )¢ Ao Then there exists real pe-
sitive 01(64.,:’)>0 with the following property: the BVP (3.4)
has at least one weak solution for arbitrary right hand side
heL,(0,or) if there is some function r(t) 6 L,(0, 9r) such that

1g($,8)\ ax(t) + o3(@ay2) | s\?,
for a.a. t6¢[0,3r] and all s 6 R.

Remark 3.5. The proof of this assertion follows again
from the basic properties of the set A1. On the other hand if
(w,»)c Ay (i.e. there exists such h&L,(0,x) that BYP (3.3)
has no weak solution) then there is c,( ., )> 0 such that BVP
(3.4) has no solution for some right hand sides provided

18(t, 80l &x(t) + oy, ») | 51P7,

for a.a tG[0,or] and all s ¢ R .
Let us suppose that ¢: R —> R 1s a contimuous funoti-
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on which has finite limits
(3.5) = lim 2 and Y = 1lim s .
* A>+o0 |g|Pcy Ar—>-co |g|P2y

Define the operator F:X —> Y by
n
(0.6)  <PwW,v>= [ (u(t))v(t)at, u,vex,

eand the operator A:X—> Y by

G Ga@uwre LT0 s a® O w (e vivat,
u,vé X,

Then the solution of the operator equation

(3.8) A(u) - P(u) = ¢

is the weak solution of BVP

=101+ ()1 (D1P2) w'(£)1" = @ (u(t)) + n(e),
(309) { tc [0. ﬁ’],

u(0) = u(x) = 0,

It is not difficult to see that A is odd, (K,L,p-1)-home-
omorphism X onto Y which is (p-1)-quasihomegeneous with respect
to J and P is completely continuous operator from X into Y which
is (p-1)estrongly quasihomogensous with respect to the operator

u > ws(uh) - »s@”).

Using the properties of A; &nd applying Theorem 2,3 we ob-

tain the following existence result.

Theorem 3.4. Let A ¢ 6 . Then there exists ¥(A)>0 such
that BVP (3.9) has at least one weak solution for arbitrary
Tight hand side he L (0, ) provided lw=-Al + lw =Al< ¥(A).

Let us suppose that the functions @&, b are the same as at
the beginning of this section and put I = Iﬁ"(o,ar), Y=
=-w290,5%), 2 = L,(0,ar). Let us define operator SiX —» Y

and an element fa Y by the seme way as in (3.1) and an operator

- 382 -



J:X —>»Y by the relation

(3.10)  4J(u),v>= faua(t)lu"(t)lp'z u’’(t)v (t)at,u,ve X

Remark 6.' It is possible to verify that the operators
J and S satisfy again the conditions (J1)-(J3), (S1)-(S3) from
Section 2 and the solution of (3.2) is the weak solution of BVP

(a(®) (12" (4)) °* = v() (DI P2 (uu(t) -

(3.11) - Yu (%)) = n(t), te [O0,3¢],
u(0) = u’(0) = u(ar) =u’(ar) = 0.

Remark 3.7 Aleo in this case the essertion of Theorem 3.1
is 8till valid (see [8]1). That is why analogous results to that
formulated in Theorems 3.2 - 3.4 may be proved also for the weak
solvability of BVP (3.11).

Remark 3,8. Let us remark that all the results formulated
above have the local character in the sense that we obtain the
solvability of BVP (3.3), resp. (3.11), when (&,») is "near"
to some diegonal point (A,2), A & & . In order to obtain
more global results we need some information about the structu-
re of the set A_; which plays the key role in the classificati-
on of real parameters w and ¥ .

It is possible to prove such globel results for BVP (3.3)
under the assumption of constant coefficients, i.e. a(t) =
= b(t) =1 for all t e LO,orl.,

Theorem 3.5. BVP
(312) { Q1?20 - a2 (uut - »u) =0,
u(0) =u(x) =0

has a nontriviel week solution if and only if one of the fol-
lowing conditions holds:
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(1) = 3\.1, » 1s arbitrary,
(11) @ is arbitrary, y = Ay
(111) @« > Ay, >’>11,

1 1
()™ (») ';
() Fe (9)®)(ap F

=k,

1
(@)F= (A%) () *
7=k

Y P AT
() "+ (w) (A

4 1

(- (A®) ()™
1 1 i
W)™+ () Ty ™

k = 1.2.3...- .

Remark 3.9. The previous assertion gives the precise des-
cription of the set A_, for BVP (3.12). The proof of this theo-
rem with the sketch of the figure of A_; may be found in [4].

Using the description of A_, we may formulate the global
analog of Theorems 3.2 - 3.4.

Let us suppose that continuous function ¢ satisfies (3.5)
and consider BVP

-[(1 + 10 172)u’) = o (u(t)) + h, in [0, 1,
(3.13) {
u(0) = u(sr) = 0,

Theorem 3.6. Let us suppose that one of the following con-
ditions is fulfilled:

1) m< A, v<,,

(11) &> Ay, » > A, and
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4 4 1 1 1 4
(((-b)f"- (11)")(\))‘"’ ((»)™= (A )”)((«.)7"

T T <1, T T <1,
(((w)'"+(v)1")(7¢1)7" (((w)1"+(v)f")(-7t)

or

( v 3\)"’) )1'
k-1< (M) (M e 7~ < k,k=-1<

(@) + (» )1')(1 G

((» )%' - ( 2.1)%' )((w)'i'
< I T T <k
(()*+ (»)™)(Ap™
with some k ¢ W , k>2, Then the BVP (3.13) has at least one
weak solution for erbitrary right hand side hsL1(0,:r).

The proof of this assertion follows immediately from Theo-
rem 2,3 because the above inequalities (1),(ii) are equivalent
to (w,¥)s T, » where T, is a component of A, containing dia-
gonal point (A,A), A ¢ & .

On the other hand using the shooting method we obtain the
following nonexistence result.

Theorem 3.7. Let us suppose that one of the following con-
ditions is fulfilled:
(1) @>2Aa,, »< Aqs
(11) @w< Ay, ¥ > Ry

1 4 4
(111) (@) ™= (A ™))™

T <k,

T L
(@)™ + (2 ®)(ap™

((‘))”- (A, )"')(M)f"
(((w)"-r (v)*‘)(ﬂ. );'LL

4 ?1_.. 1 ?1"
1) (™= (AP ™ () - (A )((w)’“
T < k3

T 7
(((w)%+(v)")(9v1)% (((u-)%+(v)“)(.7\)"
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k = 1,2,3,... « Then there exists right hand side heL, (0, )
such that

(i 125" o lu\p'z((u.u+ -Yu) =hin[o0,],

(3.14) {
> u(0) = u(ar) =0

has no weak solution.

For the proof see [4].

Remark 3.10. Note that under the assumptions of Theorem
3.6 the BVP (3.14) has the weak solution for arbitrary right
hand side he L,(0,37). We have complete description of the set
A_4 for BVP (3.14) which is given by conditions (i) - (iii)
from Theorem 3.5 (the system of curves in the plane (4y))e
The set A_; divides the plane (m,») into some open unbounded
components. These components are of two different types - some
of them have nonempty intersection with the diegonal (2 s A),
A € R , and some of them have empty intersection with this
diagonal, Theorem 3.6 then implies that the components of the
first type belong to A1 (and hence also to AB) and Theorem 3.7
implies that the components of the second type belong to A2.

It is possible to prove some more precise results in the

case p = 2, i.e. for the solvability of BVP

(5.15) -u”"’(t) -~ @ut(t) + yuT(t) = n(t), te Lo, ¥,
3.15 {
) u(0) = u(x) = 0.

Let us suppose (w,»)e A_;, i.e. @« and » satisfy the
assumptions of Theorem 3.5 (with p = 2), and denote Veu,» €
c w;'z(o,n) the normed nontrivial solution of BVP

{ -u (%) - mut(t) + »uT(t) =0, te Lo,x],
u(0) = u(sx) = 0.
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The standard regularity argument for ODE s shows that v‘w’ » €
c lz’z(o. ).

Theorem 3.8. Let (w,»)e A_;. Then for given h, €

€ [v;',, ]'L (an orthogonal complement in the space 1.2(0,1'( )) the-
td

re exists an o«c(hy) € R such that (3.15) has at least one

,e

weak solution for h = h; + cc(h1)v~"v o

Theorem 3.9, Let us suppose that ((«.,v)s A, (i.e. (w and
v satisfy the assumptions of Theorem 3.7 with p = 2), Then
there exists Weu,» € 1.2(0,3\') such that for any given h1 &
e[wpﬂ]‘L there exists a constant T(h;) such that (3.15) has
at least two weak solutions for h = hy + twe‘,,, provided that

t>1(hy).

The proofs of the previous two theorems may be found in
[19), Note that p = 2 is essential here.

Some global results (concerning the classification of pa-
reameters . and v ) it is possible to prove also in the case
of ODE of the fourth order. Let us consider the equation

(3.16) o’ . ‘wu"' - »u’,

with periodic boundary conditions. The regularity argument shows
that the description of A_, is equivalent to finding & noncon-
stant 2y -periodic solution uc C4(R) solving (3.16). It is use-
ful to put w = a.‘. V= b‘. (a,b)6 10,+ o[ x10,+m[-10,+cv['_2.
Let us denote by v 6 J(3/4)ar, or [ the mmallest positive root
of the equation

tan(x) + th(x) = 0,
and for z ¢ )0, v [
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ch(z) sin(z) - sh(z)cos(z)
g(z) - .

ch(z) sin(z) + sh(z)cos(z)

The following localization of the set A_; is proved in [14].

Theorem 3,10, The set T_1 = {(a,b) €10,+ 0l 2, M= at,
Vv = b"', ((u.,.v)eA_ﬂ is the system iS,,k € N§ of C®-curves,
where S; 1s a ourve (a,b(a)); b(e) is decreasing ¢ *-function

defined in 1Y% st [ with 1im b(e) = ¥ . The ocurve S
x ) Sl 1

is symmetrical with respect to the straight line b = a and ful-
fils S4CG,, where G, is the set of all pairs (a,b) € 10,+ o [ 2
such that

bZa, (D7 - glora(l - gk z02(? - g(xrd( - 51),

or

bee, (P2 - glab(l = 510202 D)2 - glsra(l - 5i)).

Por kz2 1t is S = {(a,b) €10,+ e[ %; (a/k,b/k)c 5}

and S, C Gy, where G, = 4(a,b) € 10,+ o [ %; (a/k,b/k)¢€ G, 3.

In particular, T_.‘ c%(:; Gk and for (a,b)g Sk the correspond-
ing 2sr -periodic solution has exactly 2k~"gemi-wavea" in en in-
terval of length 2ar . This solution is unique if translations

and positive multiples are not considered.

Remark 3,11, See [14] for the picture of the system
N

Let us consider now the equation (3.16) with boundary con-
ditions
(3.17)  u(0) =u’(0) = u(x) =u""(a) = 0.
Then the following information about the set 1’_1 (for BVP (3.16),
(3.17)) may be got.

Theorem 3.11. The set T_1 is a system of continuous cur-

ves«\SI,SI;i e N§ such that
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(1) for (a,b)e S;, resp. SI, the solution u satisfies
u’(0)>0, resp. u’(0)< 0., This solution is uniquely determined
by the choice of u’(0) and it has exactly 1 + 1 zeros in [0,x] 3

(11) SI is symmetrical to SI with respect to the straight
line & = b. If 1 is even then S} = ST;

(111) for each L &« N we have (S{uS]) (S}, usS],,) = 2.

For the proof of this assertion see [141.

Remark 3.12. Using the assertion of Theorem 3.10 (1.e. the
localization of A_,) and the abstract Theorem 2.3 we may formu-
late the global existence results (analogous to thet from Theo-
rem 3.6) for the periodic BVP for the eqation

ulV = g (u(t)) + n(w).

The situation concerning the description of the set A_, in
the case of PDE ‘s seems to be much more complicated, This fact
implies that investigation of the solvability of the correspon-
ding BVP with jumping nonlinearity is very difficult. The most
recent results in this direction may be found in L123,13].

The authors study the following problem

(3.18)  ueD(I), J(w) = wut - vu” + (.,u) +n,

under the assumptions: L c RY 1g an open set, hel,(0N),J is
& linear selfadjoint operator with compact regolvent, the dom-
ain of J is D(J)cLz(,O.) and J maps D(J) into L2(_O.), g: <
=R —R is a Carathéodory’s function,

e e 38
lim  2leas) o A?pml-ﬂ—;—LIeLw(n).

\»Y = o0 '

There is proved in [12) that if @ % » and interval[w,» ]
(resp, [v, wl if @ > v ) does not contain any eigenvalue
of J then (3.18) has at least one solution for every hst(_Q).
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Also in the case w = ¥ = A and A is not an eigenvalue of J
the problem (3.18) has at least one solution for every heL, ().
It is also proved there that the set A_, associated with (3,18)
(@ = 0,h = 0) in the neighbourhood of the simple eigenvalue A
has the character of a continuous curve (or two continuous cur-
ves) passing through the point ( A, A).

In the second paper [13) there is studied the case when the
interval [ ., » 1 contains one simple eigenvalue A of the o-
perator J and (m,v)e A_;, (@,») 1lies "near" to (2,2 ). The
euthors have obtained sufficient conditions of Landesman-Lazer
type for the solvability of (3.18).

At the end of this section let us mention two results con-
cerning the solvability of BVP ‘s for ODE s containing nonlinea-~
rities introduced by Pudik [9] (see(1.2)).

Let us suppose that ¢ (t,8): [O,¥1 =< R — R is a Cara-
théodory ‘s function, there is some constent ¢>0 and & function

meL,(0,3r) (d>1) such that
(3.19) I (t,8)) £ m(t) + cls|P!

for all s € R and a.a. t e [0,5r] . We shall suppose that the-
re exist functions ql"'"’, q;"”. L4aw? Xmoo€ Lgo (0s3r) such

that
p(t,s) tow
lim su = (t)
e taop |81P<8 1 '

t,8
1lim inf -1‘-!2)— - t)
”"h! o |s|Pcg %3“’( !
for e.a t¢ [O,ar] . Then using the description of the set A,
for the BVP (3.12) (see Theorem 3.5) we obtain the following ex-

(3.20)

istence result for BVP
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-G 1P w'(4) " = @(t,ul4) + n(b), te Lo,arl,

.21
(2.24) { u(0) = u(sw) = o,

Theorem 3,12, Let us suppose that either
(1) there exists some dJ° > 0 such that

Yew®s 770 2 A -
for a.,a. t e JO, [ , or

(11) there are two couples (&1,1’1) and ((wz, ¥,) lying
in the same component of A1 and

1 = At £ 1770 2w,
Vi E Aot = XTV(t) = Y o4
holds for a.a. t € 10, s [,

Then BVP (3.21) has at least one weak solution for arbitrary

right hand side he L, (0, ).

Remark 3.13. The proof of this assertion may be found in
[1], the sketch of the proof of this assertion is given also in
[5]. Note that the method of the proof is topological in nature
(1t 1s based on the homotopy inverience property of the Leray-
Schauder degree) and therefore it is possible to consider more
general differential operator of second order than that consi-
dered in (3.21) (in the sense of Definition 2,2 and Definition
2.3(1)), i.e. the assertion of Theorem 3,12 remains also valid
in the case of BVP:

{ - L0+ 1®IP2) w917 = @ (4,u(t)) + n(t),t e Jo, 5
u(0) = u(x) = o.
Let us consider now the periodic BVP for forced Duffing

equation
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“+ T’ t,u) = h(t) in JO
(3.22)-{“+cu+?(,u (),nj'”[’
u(ar) - u(0) = u'(ar) - u’(0) = o,
¥elR, ne L;(0,), @ 1s again the Carathéodory s function
satisfying (3.19) with meL,(0,o), p = 2 and (3.20) (also with
P= 2)0

Theorem 3.13. Let us suppose that either
(1) there exists some J° > 0 such that

2 ~2
Laat® - 5 o g - & g

for a.a. t € 10, [, or
(11) there are two couples ((u.1,v1) and ((“2' v,) lying

in the same component of 'K'.] and

< g? +@ ¢
(""1— %ﬂ”(t) -7 < (%) - T £ Uoy
~2 ~2
ISEE SRORE JEE MO -j;- z v,

(0,0) ¢ [ q,@p15Lvy,»,1,
for a.a. t €10, L, Then periodic BVP (3.22) has at least one
solution for arbitrary heL,(0,x).

Remark 3.14. '1'1 =.{(@,,v) € (RZ;(«,.v >0,((q,,v)¢h‘?1 Cka’

where m VS

2
Ck-{((u—.v)eﬂ( 3 >0, v>0’—VETV;—=k},

~ o
k=1,2,3,... . See [6] for the picture of Ay end hk-')1 Cpe

Remark 3.15. The method of the proof of Theorem 3.23 is
bagsed on the homotopy invariance property of the Leray-Schauder
degree and the shooting argument. In the first atep, proceeding
via contradiction, we obtain the limit equation

.

vi+T v+ 'r+(t)v+ -y (t)vT =0ea.e. onfo,x1],
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with v(0) = v(2r) = 0, v'(0) = v (&) = 1 emd with y,, _
verifying 4 & ¥, (t) £ w,, YV, = ¥ _(t) & V,, for a.a.
te[0,5r] , By a substitution z(t) = exp ((c/2)t)v(t) we trans-
form this BVP to

~2 2
{ 2 (0 =F) s - (pw -F) "=,

z(0) = z(sr) = O,

which verifies also sign =z (3r) = sign z '(0) 4 O. Here we get
a contradiction using the description of A_; for BVP (3.15) us-
ing the shooting argument (for complete proof of Theorem 3.13
see [61).

4. Open problems. In this last section we shall formulats
some open problems. Note that some open problems concerning msoi-
vability of gemeral operator equation (0.1) are formulated in
[51.

Let us consider (3.14) and the sets Ay, 1 =-1,...,3, as-
sociated with this BVP. Then the following open problems con-
cerning the solvability of (3.14) may be formulated.

Problem 4.1, (1) Ay c¢ R?\A; 7 (11) To find suffiotexmt
conditions upon h€L;(0,5) in order (3.14) to be solvable if
the answer to (1) is positive and (u,»)e A 4.

Problem 4.2. Let us suppose that (('4"\’)5‘.2. Find suffi-
cient conditions (or necessary and sufficient conditions) upon
h in order (3.14) to be solvable.

Problem 4,3. Let us suppose that (w,v)eA_; and @:
1t R —> R 1is oontinuous and bounded function with finite 1i-~
mits biil; wcy(s) = q(to ). The problem is to find by means
°f g(too ) sufficient conditions upon h €L, (0,x) in order
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(12 w7l 2wt - vuT) + @ (u(.)) = h in
fo, 71,
u(0) = u(sr) =0,
to be solvable.

Remark 4.1. The last problem was motivated by the result
(13] where Landesman-Lazer-type sufficient conditions are deri-
ved for solvability of semilinear problem (3.18).

Let us come back to the BVP (3.3). It would be interesting
to extend the local result from Theorem 3.2 at least in the fol-
lowing sense,

Problem 4.4. Let A,, a’i+1 € 6 be two successive eigen-
values for some i = 1,2,3,... (see Theorem 3.1). Prove or dis-
prove:

BVP (3.3) has at least one weak solution for arbitrary right
hand side he L,(0,5r) provided Ay <w < Ay .ﬁi <Y <

< ?"1+1'

Remark 4.2. Note that the answer is positive in the case
p = 2 (see [12] for PDE case).

Remark 4.3. It would be intereating to solve the Problem
4.4 also for BVP (3.,11).

Let us suppose that .ln ¢ 6 1is a simple eigenvalue of
J - AS; J, S are defined by the relations (3.1). Then any in-
formation about the structure of the set A_; in the neighbour-
hood of (A, .Z.n) would be useful, namely we are interested in
solving

Problem 4.,5. Prove or disprove: the sget A_y in the neigh-
bourhood of (hn, A,) is & continuous curve (or two contimmous

curves) passing through the point (hn, An).
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Also global properties of the set A_1 associated with J
and S defined by (3.1) are not known very well.

Problem 4.6. Has the set A_1 an empty interior (with res-
pect to the topology of RZ) 7

Problem 4.7. Is there some connected subset Mc A_, such
that (A, A;)eM and (A,,4,) € M, where Ay Ay 66, A+
+ A0
Let us consider the BVP
- { -@(®)u(BI1P2 u’(£))° = @(t,u(t)) + n(t), te (0,51,
: u(0) = u(sr) =0,

g satisties (3.19),(3.20), a€C' ({0, 1), a(t)>0, t& [0,x)]

end Ay, Ay,q € & , for some arbitrary but fixed 1 « N , It
would be interesting to prove the following assertion.

Problem 4.8. Let us suppose that either
(1) there exists some J° > 0 such that

Tan)s LVD) & Ay = F,

for a,a, t« 10,y , or
(11) <there exists some J > O such that

Mg+ d sq, () €00 & Nyyy -,

M+ 2q (e YT(WD)a A, -0,
for a.a, t€l0, v L.

Then BVP (4,1) has at least one weak solution for arbitra-
Ty right hand side hel, (0,%).

Let us suppose that Q c RY 15 & bounded domain with
lipschitzian boundary 32 , ¢ : O = R — R is a Carathéodory’s

function satisfying the condition
| (x.8)) @« m(x) + cls\P',
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for all s €« R ang a.,a, x € {L with some positive constant ¢
and neLq(Q). q = p/(p-1)(p22). It 1s possible to define the
weak solution of the BVP

L a2 2 4
‘4-2){- 4?’ ko7 (I-g-:_i‘ T:T)' @(.u(.)) +hin Q ,
u=0o0on 3O

in an analogous way as in Definition 3.1, We shall call by &
the set of all real numbers A for which there exists a nontri-
vial weak solution of BVP

N p-2
o el g s,
u=0on 30N .,

Using the variational approach it is not difficult to mee that
int & > O. Any other information concerning the set & should
b2 very useful,

L)

Problem 4.9. Is & a countable set, say & = {("'m‘mﬂ’
which is isolated and which has the property 1lim MWy = ?
m > o

Problem 4.10. Is 1t true that every (4p & & allows the
Ljusternik-Schnirelman characterization ?

Remark 4.4. The reason why it is important to have some
information about the solution of Problems 4.9 and 4.10 is the
following. If the answer to the preceding two questions is po-
eitive then the following assertion may be proved using varia-
tional method.

Problem 4,11, Let us suppose that s 45 & & and
- *, TN & =g, Let there be some o° > 0 such that
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~ x,8 x -
4 +J & lim int ﬁ;_?ﬁéii:*s;pﬁ;ﬁi- £ -9,

» > 4 00
(4.3)
+J £ lim int X287 214m su X2 B) < -d
¢4 +94 1n tu EEa o110 mp B < o, -,

for a,a, x € £l . Then BVP (4.2) has at least one weak soluti-
on for arbitrary hew '9(0).

Remark 4.5. Some local sufficient conditions instead of
(4,3) are considered in [1] in order to prove solvability of
(4.2) for an arbitrary right hand side heWw™'*9(Q).
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