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ANNOUNCEMENTS OF NEW RESULTS

Helena Zlonickd (Charles University, Sokolovskd 83, 18600
Prague, Csechoslovakia), oblatum 2.5. 1984.

Let us denote by © the metrie on R.n defined for any
b 3 (11,...,1._',1), Y= (y,,...,y.ﬂ) e R-+1 by the formula

o (x,y) = (Ixyq = Tgu! + ‘.‘:Z";I x - 1112)1/2.

Por any qZ O we shall define set functions M% and X9 as
follows., If A is a Borel set in R-ﬂ then

q - m+2-q
ot m2(A) né‘.,'b? Adx e R.“\dintp (x,A) £et)/e
x© o0
%%(A) = sup int {3 (dtlemg 8,)%4 €U 8, &
2(V1i=1,2,... sdlem, S;ée)}
where A denotes the Lebesgue measure in R.H

with respect to the heat equation compare [3].
Theorem 1: Let G be an open set in R-+1 and F be a relative-

1y closed set in G. Let Of q<m and suppose £ is a locally in-
tegrable function in G seatisfying

£(x) = o(aist, (x,?)"9) (resp. £(x) = O0ldist (x,7)"9))
as dist (x,F) —> 0, loocally in G. If £ satisfies (in the sense
of distributions) the heat squation (8/d x .,y -, 5,32/0x)f =

=0onG\? and M™YK)< + 0 (resp. M™IYK) = 0) for any
compact set Kc F then f satisfies the same equation on G.
Theorem 2; Let K be a compact set in R_.4 and let O<qém.
Suppose ¥ ™9 1s not &-finite on K (resp. ¥ ™ U(X)> 0). Then
I:;re exists a locally integrable function f on R-_n satisfy-

« Por metrie [

£(x) -o’(di-t‘_,(x,x)'q) (resp. £(x) -U(Mltp(x,x)'q))
as dintp(x,x) — 0, such that £ is & solution of the heat equ-
ation on R.n\ K but not on R, .. Such & function f can be

found as a heat potential of some non-negative Radon measure
supported by K.

The proofs of both Theorem 1 and Theorem 2 are included
in my thesis submitted to the Faculty of Mathematics and Fhy-
sics of the Charles University in April 1984, Por Theorem 1
compare the Bochner s removable singularity theorem as formu-
lated ip [2]., Note that our Theorem 1 is not implied by the
Bochner s theorem. For Theorem 2 compare an analogous result
of Hamann in [1] dealing with elliptic eqations.
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References: [1] Hamann U,: Eigenschaften von Potentialen be-

zuglich elliptischer Differentialoperatoren,
Math, Nachr., 96(1980), 7-15.

{21 Harvey Polking: Removable singularities of so-
lutions of linear partial differential equati-
ons, Acta Mathematica 125(1970), 39-56.

[3] Krdl J.: Holder-continuous heat potentials,
Accad., Naz, Lincei, Rendioconti Cl. Sc. fis.,
mat, Ser. VIII(1971), vol. LI, 17-19,

A _CLOSED SEPARABLE SUBSPACE NOT BEING A RETRACT OF [3N

Petr Simon (Mathematical Institute of Charles University, Soko-
lovekd 83, 18600 Praha, Czechoslovakia), oblatum 17.4. 1984,
D. Maharam [M] proved that the following are equivalent:

(a) For each ideal I = U’(F) if there is a one-to—one ho-
F(NS,

momorphism from P(IN)/I to then there is a 1lifting
from P(N)/I to ®(N), too
(b) eve non-void cl.osgd separable subspace of ﬂN is a
retract of 3 »
and has raised the question, whether (a) or (b) is a true state-
ment, -
The enswer to the Maharam s problem is in negative. We can
prove the two theorems below,.
Theorem 1, There existis a subspace X € BN - N satisfying the
following:
(1) x -”U X,, where IX,| = 1 and for each n € @ , the

W
set In is countable discrete:

(2) for each n<m< @ , X, eX, - X

(3) for each n<c and for each x€X , x is a ¢ - OK
point in Xp .4 = X 43

(4) suppose {U :k e wic P(N) to be a family of sets

such that for some n <  , u:nxn is finite and for each i <
[+]

<k <w , UfnX _, cUX Then there is a family {V i oc e ¢3¢

& ®(N) such that for each ¢ ¢, VO::_:I nkf;\w U: end for each
k < and for each finite set o < olq< eee<aly< ¢,lf;}°V‘:i 5”,_5}‘ L)

__ (5) for each mapping f: N —>X there is a set T< N and
an integer ny < < such that T X+ and for each n > n,,
Inf\f[!l.'] "%...1 =@

Theorem 2., If a subspece X < 3N satisfies (1) - (5) from The-
orem 1, then X is not & retract of AN.

1% should be noted that the first example of a closed se-
parable subspace of AN which is not a retract of AIN was gi-
ven by M. Talagrand under CH in [T] and the second one by A.
Szymanski under MA in [S].

References: [M] D, Maharam: Pinitely additive measures on the
:Lnt;geru, Sankhya, Ser. A, Vol. 38(1976),
44‘ .
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[8] A. Szymanski: Some applications of timy se-
quences, to appear, -

[?] M. Talagrand: Hon existence de relevement
pour certaines mesures finiement additives
gt Egtmoté- de AN , Math, Ann, 256(1981),
3- o

SHORT BRANCHES IN_RUDIN-PROLIK ORDER

Eve Butkoviovd (MU SAV, Jesennd 5, 04154 Kodice,leskoslovenske),
oblatum 27.4. 1984,

Rudin-Prolik order of types of ultrafilters in /3] hasg the
following properties: %o
t2] 1) each type of ultrafilters has at most 2 predecessors,
2 5

' (2) the cardinality of each btranch is at least 2 °,
Thus, Rudin-FProlik order the cardinality of branches can be
only 2°° or (2~ °)*, It wae shown in [1] that there exists a
chain order - isomorphic to (2$°)+. Hence, the existence of a

branch of cardinality (2 °)* is proved.

The following result solves the problem of the existemoce of
a branch having smaller cardinality,
Theorem. In Rudin-Prolik order there exists an unbounded ohain
order-Isomorphic to @Dqe

By the properties §1) and (2) the branch containing this
chain has cardinality 2 °,

References: 1) E., Butkovifovd: Long chains in Rudin-Frolik or-
ggr, (_}[omment. Math. Univ, Carolinae 24(1983),
3-5 oo
[21 Z, Frolik: Sums of ultrafilters, Bull. Amer.
Math. Soc. T73(1967), 87-91.

BEQULTS ON DISJOQINT COVERING SYSTENS ON THE RING OF INTEGERS

Ivan Korec, Department of Algebra, Faculty of Mathematics and
Physics of Comenius University, 84215 Bratislava, Czechoslovakis
oblatum 12.4. 1984.

A system of congruence classes
(1) &,(mod n,), a,(mod n,), ..., e, (mod n.)

will be called a disjoint covering system (DCS) if for every
integer x there is exactly one i € {1, 2, ..., k} such that
x = ay(mod ny). The integers n,, Ny, eeey My will be called

moduli of (1) and their least common multiple will be called the
common modulus of (1),

If k> 1 then no two moduli of (1) are relatively prime.
This condition can be expressed in the form
k k

(2) i/'\1 3/590(:11, nd)
where ' (x, y) is_the formula
Jz 3

FzJudv (z ¥ 1 Azeu = x AzZev = y)
Consider more generally the formulae of the form
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k

k x
eoe ( [ 9 o090y
s 1/1-\1 19 11-\1 Vit My, nir)

wiieh are true fer all DCS (1) with k> 1, where Y (xz;, «.., %,)

is a first-order formula with the only nen-legical symbel ".“ fer
multiplying. The main result of [1] is that every such fermuls

(3) is a consequence eof (2). Hence the cenditien (2) is the dtreng-
est nonf)cun cenditions of the form (3) which held fer all tex-
trivial DCS (1., e,, DCS different from {Z}). The preef uses pre-
duct-invariant relations, i. e¢. the relatiems which are invariaxt
with respect te all autemerphism of the semigreup (N, .).

For every prime p the DCS
1(14) : 0" (med p), 1 )znod P)y ceey, p =1 (med p)
as the following preperty:
The union of any subset X of (#4), 1< card(X)< k
is net a ce ence class (by any medulus).
All DCS (except {Z}) with this prosgty will be called irreducible
DCS, abbreviation IDCS, There are I which are met of the ferm
4). For example, the congruence classes
0, 4 (mod 6) s 3, 5, 9 (mod 10), 2 (med 15), 7, 8 1?, 20,
26, 27 (yod 30) 'form an IDCS with the common medulus JO (it is
Porubsky s example of a nonnatural DCS in essential). In [2] many
IDCS are constructed and it is proved that an IDCS with the cemmon
modulus n exists if and only if n is a prime (then enly (4)
can be obtained) er n is divisible by at least three different
primes. Further, an operation of splitti is defined which allews
to obtain all DCS from the degenerated {2t = ?0 (med 1)} and
the IDCS, If only IDCS of the form (4) are used then so called na-
tural DCS are exactly obtained.

For every trino p denote F(p) = p - 1, m.d extend the
functien ¥ to the set N by the formula F(x.y) = F(x) + #(y).

The Mycielski s conjecture stated kx1+ ?(ni)

for every DCS (1) and every i € {1, 2, coey k}. The main result
of 3 is that for 81l DCS which are not natural (kence e. g. fer
all IDCS which are not of the form (4)) it holds

(5) k26+ Fln) .

The proof is rather complicated but elementary. The constamt 6 in
(5) is the best possible. We stated the hypothesis that the modulus
n; in (5) can be replaced by the common modulus of (1).

The IDCS with the common modul pqr (where p, q, r are

distinct primes) are completely described, and the number ef them
is determined, in [4].

References:

[1] I. Korec: Disjoint covering systems and product-invariant re-
lations., To appear in Mathematica Slovaca.

[2] I. Korec: Irreducible disjoint covering systems. To appear in
Acta Arithmetica. ”

[3] I, Korec: Improvement of Mycielski s inequality for nemnatural
disjoint covering systems of Z. Sent to Discrete Mathematios.

[4] I. rec: Irreducible disjoint covering systems with the cemmonm
godul consisting of three primes. To appear in Acta Math. Univ.
omen.
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de‘k1h~olﬁ (Z1tnk 25, 11567 Praha 1, Geskoslevensko), oblatum
27.5. 1984,

The aim of this, and the subsequent note, is to announce a
selection of results presented at the Collequium on Topology held
in Eger in A st 1983, and at the Semester of Topology in Banach
Center in April 1984. i feel that it is time to prove deeper re-
sults about Suslin sets derived from Borel seis in ocompact spea-
ces.

1. By a space we mean a completely regular T, topological

space., We denote by ¥(M,) the colleotion of Suslin sets derived
from the collection of sets 7 . Recall that (¥ (mM)) =L(M)>
2 My v My Vo denote by Sq(M) the sets in & (7) with dis-

joint Suslin representation. Denote by X the space «® with
product topologz where « has the discrete topology.
Lemmns 1, Let Y be a subset of a space X. Then

a) Y e ¥ (closed(X)) iff some closed set in X x = projects
onto

Y.
(b) Y €S (open(X)) 4ff some open set in X > = projects
onto Y.

(¢) Ye ¢ (open(X)u closed(X)) (= & (Borel(X)) iff the in-
tersection of a closed set and a G, set in X~ = projects onto

* Note that (a) is classiocal, and (c) is essentially due to
Premlin [Prel.

2., Theorem 1, The following conditions on a space X are e-
quivalent:

1:; Some Gech ocomplete subspace of X x = proieots onto X.

1b) If X is & subspace of Z then X e ¥ (Borel(Z)).

1¢) X is obtained by Suslin operation from locally compact
sets in some Zo51I,

(1d) There exists a complete sequence of & -relatively open
ocovers of X,

A space X gatisfying the equivalent conditions in Theorem 1
will be called Cech-analytic (following [Prel). To be sure note
that a cover U of X is called & -relatively open if U=
= u-i'u.n\n 6 @} such that each %, is an open cover of U U . It

was proved in L] that if X ¢ ¥ (Borel(K)) for some compactifice-
tion of X, then it holds for any compactification of X. Fremlin
&Prc],u;troduood impliocitly (1a) and showed the equivalence with
olkov s definition. If the space X is hereditarily Lindelof them
(1d) implies that X has a complete sequsnce of countable govers,
and hence it is w -analytioc (= K-analytic in Choquet and Sneider
terminology) by [PJ. The following result is a solution of a pro-
blem of Fremlin, .
Theorem 2. A space X is w-analytic iff it is Cech analytic and
ere exists an usco-compact correspondence from a separable me-
tric space onto X.
The proof is based on the following
Lemma 2, Let £ be a perfect mapping ot X onto a metrizable space
Y, and let LU Y be a sequence of families of open sets in X,

There exists a factorization £ = ho g such that g:X — S, h:S —»
—> Y are perfect, S is metrizable, end for each n
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iylely cVU §= Uiiylegly c U3 lueud.

a.].B.t'l‘heorom 3. The following conditions on & space X are equi-
valent:

(2a) Some Cech complete subspace of X x = injectively
projects onto X,

(2b) If X is a subapace of Z then X e ¥,(Borel(Zz)).

(2¢c) X 1is obtained by the disjoint Suslin operation from
locally compact subsets in some Z>5X,

(2d) There exists a complete sequence {U -{’m..ls € ¥ inewl

of covers such that each M _ is an open cover of N, = UM,
Moo= U{M_ 11 € @F for each 8, and if 6 € = , M, & Mg, then

(\{T\{Iilién}ln e m}eﬂ-flmnl ne 3.

A space sagisfying the equjvalent condition in Theorem 3
will be called Cech~Luzin. Any Cech-Luzin space X is absolutely
biiSuslin (Borel), and I do not know whether or not the converse
holds.

The basic stability results follow easily from (ia) and the
fact that any countable (% 0) power of = is homeomorphic to = .

References: [Frel D.H., Fremlin: éech—mlytio spaces.Unpublished.
[P] Z., Frolik: A survey of meparable descriptive
theo::? of sets and spaoces. Czech. Math., J. 20
(95)( 370). 406-467,
%) S.Ju. Zolkov: O Radonovych prostranstvach, Dokl.
Akad. Neuk SSSR, 262(1982), T787-790.

DISTINGUISHED SUBCLASSES OF CECH-ANALYTIC SPACES

g_c;egékfgolﬁ (¥1tnéd 25,11567, Praha 1, {eskoslovenako), oblatum
.5. 1984,

This is a free continuation of [’3]' Recall that if F 1is
& set of families of subsets of X then’s family fX acA? in X

is called § & -decomposable if there exist families {Xmias A}
in ¥ ,new , such that X, =U{ Ialnc w3} for each a. So it

is clear what 1s meant by discretely © -decomposable., We shall
call a family {Ie} in a topological space uniformly discrete 1if

it is discrete in the finest uniformity inducing the topology.
A family {la} is called isolated if it is discrete in U4 I,

Following [!-31] s 12 %¢ is an infinite cardinal then & spa-

ce X is called » -analytic (or topologically st -analytic, abb,
T 2 -analytic) if there exiats an usco-compact correspondence
from the metric space 2 “ onto X such that the image of each
discrete family (equivalently, discretely decomposable family)
is uniformly discretely (or disoretely, resp.) ¢ -decomposable.
If the values are disjoint, then the space is called ¢ -Luzin
(or topologically 2¢ -Luzin, resp.), and if the values are ming-
letons or empty then we speeak about point-st-analytic ete. spa-
ces. Analytic means os¢~analytic for some 2¢ , and similarly Lu-
zin etc. The theory of analytic and Iuzin spaces was developed
in [F-H, , 311. A discussion of topologically analytic spaces ap-

peared in {8-J-R).
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Theory of analytic spaces has two important advantages in
eomparison with that of topological analytic spaces:

a) there is a nice description of analytic spaces as Su-
slin (closed) subsets of products Kx M with K compact and M com—
plete metric.

(b) Using the product X x = taken in uniform spaces then
the projection X x —> X preserves uniformly discretely & -de-
composable families,

Lemma 1. If Y is a separable meiric space them for eny X the pro-
Jection along Y preserves isolatedly & -decomposable families,

Lemma 1 is the main point for introducing weakly topologi-
ocally analytic (abb, WT analytic) spaces as imeges of complete
metric spaces under useo-compact correspondences preserving iso-
latedly & -decomposeble families, Indeed we have the following
characterization.

Theorem 1. Each of the following oconditions is necessary and suf-
TTolent for X to be WT analygiox

(3a) Some paracompact Cech complete subspace of Xx = pro-
Jects onto X.

(3d) There exists a complete sequence of & -isolated covers.

Of course, analytic or T analytic spaces are characterized
by existence of a complete sequence of -~uniformly discrete or
&' -discrete covers, resp.

Theorem 2. Each of the following conditions is necessary and suf-
fIcTent for X to be WT point-analytioc:

" (4a) Some completely metrizable subspace of X x = projects
onto X,

(4d) There exists a complete sequence of & -isolated covers
with clusters of Cauchy filters being singletons.

(4e) X 1is Cech-analytic and there exists a 6 -isolated net-
work for X,

Using the main result of [P-Hﬂ , we obtain

Theorem 3. In a WT point-analytic space X each point-finite com-
pletely (Borel(x)g-additivo family is isolatedly 6 -decompos-
able. In WT analytic spaces X the result is true for Suslin
(closed(X)) sets.

For the first separation principle the following kind of sets
works, Por each X let Isol Bo(X) be the smallest ocollection which
contains open and closed sets of X, end which is closed under
formation of countable intersections and 6 -isolated unions.

There are many reasons for trying to understand whether or
not the classes of all WT analytic or Cech analytic spaces are
preserved by perfect maps. All I w is:

Theorem 4. The perfect image of a Cech analytic space is analytic
metrizable,

The proof depends on Lemma 2 from [F.].

Note that analytic spaces are parsooapact, T analytic spaces
are gubparacompact, and WT analytic spaces are & -isolatedly re-
finable (also called weakly © -refinable spaces).

References: [Preﬂ D.H. Fremlin: éech-a.ns.lytic spaces.Unpublished.

[(Fre,] D.H. Premlin: Perfect meps from Ceoch~-enalytic

. speces. Unpublished.

LI1] Z. Prolik: Topologically complete spaces. Com-
ment, Math. Univ. Carolinae 1,3(1960), 3=-15.

[12] Z. Prolik: On separable and non-separable des-
criptive theory. In: Proc. 1st Int. Symp. on
Extension Theory of Top. Structures 1967.
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LP-H,)
LP-H;)

[H=-J=R)

VEB Deutscher Verlag der Wissenschaftien,
Berlin 1969 81.

Z. Frolik: eech-analytio spaces, Comment,
Math. Univ, Carolinse (the foregoing an-
nouncement).

Z. Prolik, P, Holicky: Decomposebility of
completely Suslin-additive families, Proc.
Amer, Math, Soc. 82(1981), 359-365,

Z. Frolik, P. Holicky: Analytic and Luzin
spaces (non-separable case). Top. and Appl.,
to appear,

Z. Frolik, P, Holicky: Application of Luzi-
nian separation principles (non-separable
case), Pund., Math, 118?1983), 165-185,

R.W. Hansell, J.E. Jayne, C.A. Rogers: K-
analytic sets. Mathamatica 30(1983) 189-221,
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