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ON THE RADIUS OF A SET IN A HILBERT SPACE
Josef DANES

Abstragt: 4Aa infimite dimemsienal Eilbert spase extemsiea
of Jumg theerem and its epplication to measures of nencempact-
ness are given.

Eax wexdg: redius ¢f a set, measure of nemcempastness.

Classifiocatiem: 46005, 52440

Iatrednotien. In (1] we have preved the imequality

X(my £ (1 = §(1)) L(NM) between the Nausderff amd Kuratewski
neasures of nencempactness of any beunded sudset N of a nexmed
limear space X , where O (.) 4is the medulws of eemvexity
of the space X . If X = H is a Hilbert space, ther 1 - J(1) =
= V3/2 , se that (M) £ (Y3/2) o(M) fer smy beunded subeet
K of E . Hore we showsthat the cemstant V3/2 oan be replaced
by 1/V2 end that thés last comstant is the best pessidle
proevided 'H is imfinite dimemsiemal. This result is sa ecasy
censequence of an imfinite dimemsiemal gemeralisatien of the
Jung theerem givem here. The imnfinite dimensiemal Jumg theerem
for Hilbexrt spaces is swpplied by three preefs. The first preef
is bdased en lemma 4 (a "mushreem”™ lemma as its preef suggestis)
which gives an infermatien comceraing the distributiem of peints
of a bounded subset M of H near the boundary of the smallest
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ball containing M . The second proof uses the classical Jung
theorem and the reflexivity of H and from this point of view
is the most natumal one. The third (and shortest) one is due
to H. Steinlein [4] and it is published here by his kind
permission.

The resulis of this paper have been communicated on the
summer school on "Nonlinear Functional Analysis and Mechanics™,
Stard Lesnd, High Tatras, Czechoslovakie, Sept. 23 - 27 (1974);
see [2].

Hotation. In what follows, H is a real Hilbert space

(it is easy to see that all results below remain true for
complex Hilbert spaces). For M a non-empty bounded subset
of H, B(M,r) 1is the closed r-ball centered at M (that is,
the set of all points x in:H with inf {{x-y\ : yc XK}<
<r), C(M,r) = {xecH: B(x,r) D M}, d(M) the diameter
of M, r(M) =inf {r>0: C(Mr) ¢ @} the radius of M ,
X(M) =inf {r>0: M has a finite r-net in H & the
Hausdorff measure of noncompactness of M and ol (M) =
=in® {d>0: M can be covered by a finite number of sets
of diameter < d } the Kuratowski measure of noncompactness
of M ; cocl(M) denotes the closed convex hull of M and
sp(M) the linear span of M . Purthermore, h denoted the
Hausdorff (pseudo-) metric in the space of all non-empty
bounded subsets of H .

Lemma 1. If M and N are non-empty bounded subsets
of H , then:

1) the set C(M,r) 1is closed, convex and coincides with
the set M $B(x,r) : x€ M} ;
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2) 0<r<R implies C(M,r) < C(M,R) ;

3) M C N implies C(M,r) D C(H,r) ;

4) C(M,d(M)) D cocl(M) > M ;

5) B(C(M,r),a) C C(M,r +a) for all r, a>0 ;

6) B(x,r) N Bly,m) € BEFL, (2 - |ix - y1/#)1/3)
for all x, yE€H and r > 0 with lx - yUW £ 2r ;

7) ac,r)) < 2(x® - s VY2 for 211 > x(N) ;

7°) a(C(M,r)) S 0 as r “sr(M).

Eroof. The proof is easy and we shall prove only 7), for
example. Let x, y in C(M,ri be given. Then, by 6),
(x +3)/2 € ¢y (x® - Ix - 31%/4)"/2) and hence r(M) <
< (r? - x - 3“2/4)1/2 which implies the result.

Legma 2. Let M be a non-empty bounded subset of H .
Then:

1) N {c,r) : r >r(M)} oconsists of a unique point which
we call the center of M and denote by c(M); hence
c(M,x(m)) = {cu)] ;

2) r, —>r(M)+ and x, € C(I,rn) (n> 1) imply

x, —> c(M).
2roof. Use lemma 1, 7) and the Cantor lemma.

Theorem 1. If M is a non-empty bounded subset of H ’
then there exists a unique smallest ball containing it, namely
the ball B(c(M),r(M)).

Proof. See lemma 2.

The following lemma will not be used in the following but
it is interesting in itself.
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Jommg 3. Let M and ¥ be non-empty bownded subsets
of H. Then

1) X C B(N,a) implies C(M,r + &) D C(N,r) and
(M) < (M) +a;

2) |z(m) - (M| < n(E,N) ;

3) dotm) - e(M < (W(,N).(a(X) + r() + x(W)))) /2 ;

4) r(:) amd c(.) are contimuous with respect to the
Nausderff psendo-metric (r(.) is nonexpansive and
o(.) 4is locally Holder of order 1/2).

2rgof. 1) is trivial, 2) follows from 1) and 3) is
a censequence of 1) and lemma 1, 7). The assertion 4) follows
from 2) and 3).

lspmg 4. ILet N Dbe a non-empty bounded subset of H i
¢c=c(M) and r = r(M). Then
¢ € ocool(M M (B(e,r) ~B(c,r - e)))
for each e (O,r).

2roof. We may assume that c = O. Assume, on the contrary,
that 0 ¢ N = cocl(M M (B(O,r) . B(0,r - e))) for some
e € (0,r). Since N is a wlosed convex set and O ¢ N, there
exists a hyperplane E = {y+v : (v,y) = 0] (H>5 v ¢ 0)
strictly separatimg O and K. Setting By= {tvey :t<1,
(y,v) = 0] anmd E, = {tv +y : t>1, (y,v) =0} , we
have 0€ B, and MC B,. Let 0 <s< min {2, e/lvi} be
arbitrary and set o= ev end r  =max{r-e +slvi,
(x? - (2-8)s nvna)'/z} « It 18 clear that »n”" & (0,r).

We shall show that M C B(c’,r’). Let x 4in H be
glven. Consider two cases:

) x € By/\ M. Then lxll4r-e and hence |x - c’lIl<
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< hxll + o'l £ (x-0) +8lvl < ¥, 1.0 x € B(e'yn').
2) 2 € l,‘,f\ H. Thea x =y +tv forseme t>1 and
y with (v,y) = 0. We have
hx - o2 = 1xi2 + U0”12 = 2(a”,x) = IIxI? + 82)vi? -
- 2stivi? < P lzlvu2 - 2.“1"2 - - (2-l)l'V|l2é
< r2,
1.e. x € B(o’,x").
We have shown that M c B(o’,r’) with » < r(M), which

is a contrediction. The proof of the lemma is finished.

Ramark: In the notation of lemma 4, the inclusien

6 € s0cl(M N 9B(e,r)) is generally false. If dim(H) > 1
and M is not required to be closed, one easily ‘finds countere
examples. If N is required to de clczsd, the counterexamples
exist enly im imfimite dimensiensd spaces. For example, if H 1is
infinite dimensional, take M = {(1 - 1/n)e, : 2> 1} where

? ., 12> 1] 1s an infinite orthomormal set in H. It is
ecasy te see that o(M) = 0, r(M) = 1, but M N I3B(0,1) = §
(mexreever, cecl(M) M 9B(0,1) = §).

Iheoren 2. (The generaliszed Jung theorem.) Let M be
& mon-empty beunded subset of H. Then x(M) < a(M)/V2 .

izat pxoef. Ve may sssume that o(M) = 0. Let r = r(M),
d = d(M) and take ¢ < (0,r) arbitrarily. By lemma 4, we
have
0 € cocl(M M\ (B(0,r) ~~B(0,r-0))).
Let a >0 be arbitrary. Then there are an integer n > 0,

positive numbers '1""’tn and points TypeeerXy in M such
that
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Zilﬂ

n
x4 < & , where x = 211

ty = 1, r-e¢ £ |\x1ll <r (1= 1,.00,n) and
tixi. We have

Ixy - 5% = xgh? e dxgl® - 2(xx) (4,3 = 1eelm),
and hence

2 a 2 = 2 2
a“ > tolx, - x;[1€ = t,lx, 1€ + (= N -
21_1 1'%y 3 21_1 1%y 3

n 2 2 2
- 2( 21-1 tyxg,xg) = 21-1 xS+ lxgh - 2x,xy) >

2Zn ty(r - 024+ (r-e)?-2ara=

i=1

=2(r- e)z- 2ar.
As e € (0,r) and & >0 sare arbitrary, we obtain 2r® £ a°.

The proof of the theorem is completed.

Second proof. This proof uses the classical Jung theorem
for the case of finite dimensional spaces H ; it says that
(M) < (n/(2(n+1)))"/2 a(M) provided aim(H) =n and M is
e non-empty bounded subset of H.

Let M be as in the theorem and consider the system
P = { B(x,d(M)/V2) : x € M}. The assertion of the theorem is
equivalent to the non-emptiness of the intersection of all sets
of the system PF. Since F consists of weakly compact (and non-
empty) subsets of H, it 1s sufficient to prove that P posses-
ses the finite intersection property.

Let XyreeerXy € M. By the classical Jung theorem,
XypeeerXy € B(x,r") for some xé& sp {x1,...,xn} » where
o = ((0+1)/(2(042))) /2 a(xys 0000 3) < @//Z. Homoe

n
xe M) B(x,,d/V2) ¥ # and the proof is completed.
i=1 i
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Third proof. ([4]) Assume d < r V2. Then

a1 - (d/2r)2)1/2< r. Choose r ' >r and dy > a with
a°<rVZ emd a’(1 - (@°/2r")%)"2, r. Then there exist
™ € (r,r), x,€ H and x,€ M>(x] such that M< B(x,,r")
and r* - X, - X, < 4’ -d. Set x, =x +
+ (r"/lxq - xoll)(x1 - x,) amd X3 = X, +
+ ((x* - a"3/2x*)/Ix, - x,I)(xy - x,). Then we have
M C B(xy,d) N B(xg,r") ¢ B(x,4") N Blx,r") c

C Blxy,a”(1 = (a7200%)1/2) € B(xj,a°(1 - (@'/26)9)1/3)
which contradicts a’(1 - (a°/2x)9)V2. r.

Bemark. The constant 1/ V2 in theorem 2 is the best
possible, provided H is infinite dimensional. Indeed, let
M= {ejie,... ! Dbe an orthonormal infinite set in H. Then
a(M) = V2" and x(M) = 1, beceuse r(M) > r({e;y...,e,}) =
= (0/(n+1))"/2 for all n >0 and B(0,1) S M. (See also
the remark following lemma 4.)

Theorem 3. X(M) £ d(M)/ Y2 for each bounded
subset M of H.

Proof. Let d > (M) end M =M, U ...UM with
d(li) <d for i=1,...,n. By theorem 2,
K. U, M C UL BGeOly),a0e)/ VB C
e U: | Ble(ty),8/ V),

so that X (M) £ 4/ V2. Thus X (M) < J(M)/ V2.

=

Remark. The constant 1/V/ 2 in theorem 3 is the best
possible provided H is infinite dimensional. Indeed, let M

be as in the remark following theorsm 2. Then (M) = V2
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and Y (M) = 1, because d(N) = /2 and r(N) = 1 for each
infinite set N £ M.
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