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1. Introduction. This paper deals with the solvability
of the Stokes problem

(1) -U63+gradp=? in Q,
divd =g inq,
ﬂs\? ond0,

in a bounded domain SLCRM with a Lipschits boundary, where
V> 0 and Sn.g dx =sm'?.“ dS. In comparison with the clas-
sical case we assume that right-hand sides },g,§ of (1) in-
clude certain singularities which are described by weighted
spaces. Those circumstances make impossible to find a weak
solution in (classical) Sobolev spaces. Moreover, froa the
properties of the right-hand sides of (1) we are able to des-
cribe the behaviour of the solution of (1) near the boundary
using the methods of roightod spaces.
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In order to avoid technical difficulties, we shall con-
sider spaces with weights related to the whole boundary ofn. .
In the case of weights related to a part M of the boundary ALY
where M is a manifold of the dimension less than or equal to
N-1 we can use the same ideas of the proofs.

Fundamental properties of weighted spaces we shall use

can be found e.g. in [1],[2].

Section 2. Troughout this paper Ll will be a bounded
domain in the Euclidean N-space RN with a Lipschitz bounda-
ry XL . We shall use the distance d(x) of a point x €Ll

from OSL defined by d(x) = inf |x-yl . The Sobolev power
yean
weight space W"Z(n ;d,€ ) is defined to be the set of all

functions u defined a.e. on {L whose (distributional) deriva-
tives I™u with |ov| £1 belong to the weighted Lebesgue space
Lz(.ﬂ.;d,c ) endowed with the norm

lpl, = ¢ S_n_l‘f("lz at(x) an)'/? .

The space [W‘ ’2(.(1 H )] ¥ with the norm
2
W3l =« i‘é! &‘ l%l:i a€ ax +52: §|uj|2 af ax)!/2
QO + o

.is a Hilbert space. The set [C".(ﬂ)]N is dense in
[\l"z(-(l;d,i )]H for &€(-1,1) and therefore we can consider
traces of functions from this space on the boundary 9L
(see e.g. [1]).

The weighted analogy of the Souvolev space [Wl’z(.ﬂ.)JN
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is defined by the formula (W;’Z(.n.;d,e )]N = C:’(.Q.) where

the closure is taken with respect to the norm i. ﬂs_ o

Further we shall use the shorter notation
L,(e ) = Ly(Q3d,e ), LS(& ) ={yeL2(-0.;d, £); S;gf dx=0} ;
vie) = [wh%a;a,e], v (e) = [w ;e e]Y,

where €€ (-1,1). Let Bg be the space {?E VO(E. ); div v = 0}
with the norm I.HE and B-tL its orthogonal complement in VO(E ).
According to the following consequence of Hardy'-s ine-

quality

(2) g a*72u.[%x & c,(Q) —-——2-1 g a¢ |Vu. 2dx,

3= 1,000,N, ﬁevo(e ) with E€(-1,1),

we can consider the norm equivalent to "’"e ¥

-2 N € ou; 2 —;'
- R R S
€ i,Jj=1 Ox.
E\N
on the space V (€ ).
In the proof of Theorem 2 we shall use the following

lemma proved for example in [2].

Lemma 1. If the derivatives D;p, 1 £i &N, of a distri-

bution p belong to H—](.n.) (=[N(I)’2(.n.)]*), then peLz(-ﬂ.) and

n~

I () Meraa .
pHLZ(L\)/R €2 sra pn[a"(n.)]"
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The following Theorems 2-6 imply some properties of
mappings gred and div defined in weighted spaces. Analogous

results concerning classical spaces are proved in [4],[5].

Theorem 2. There exists a symmetric interval I, O€int I,
such that for every €€ I the operator grad is an isomorphism
of the space L,(& ) /g onto its range in [Vo(-e ] .

Proof. The continuity of the operator grad follows from

the estimate

ad pl * = gup rad p, ) =
Isr P fVo(-i ] €V, (-¢) (g >
£
l"'i £1
= gu (-\paivV¥ax ) &N .8u £
€V, (-€) S Iele §&v ey Mlle
N, & o 7, £
"I, e £

Let V be the orthogonsl complement of the subspace
{eonet} + {d's/z const} in L,(€ ) and let peV, i.e.

s 3
Sd'pdx:o, Sd/zpdx=o. As themapping\?—odt/z‘?
n oo

is an isomorphism of [L,(& Y onto [LZ(I).)]N and of V_(0)
onto vo(-g ) (see e.g. [3]) and moreover as ds/zp is orthogo-
nal to the subspace {const} in Lz(-ﬂ.), using Lemma 1, H81-

der’s inequality and the inequality (2) we obtain the estimate

[

3 $,
|P|'_ = ld /zplo = lld /ZPle(n)/R c, | grad de/zp“

4
¥
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&2 =
a a¥?%p, =
2 3! 2an” Cere ey
19 5
&2 &2
= ¢, suzw;’z(n)]n[<grad p,d 'v’)- (p,?.grad d )] £
1¥] 5

a p,¥
G oslger, () Somen®D ¢
L, 6
le] |S a¥271) F.grea 4 dxl] €
O

Fen!2any
171,46

13

c5 'gradplyo(_i)]o + e, lel-lplg

(we use that |vda|£€ 1 a.e. inQ). Hence there exists a symme-
tric interval I, O€int I, such that for every £ € I we have

Iplg £ eg(n) Hgraa pl[vo(_e )r whenever p€V.
Therefore, the set grad[V] is a closed subspace of [Vo(-c )]*.
Since grad [{d"/zconat}] is also a closed subspace of the
same space, the subspace grad[Lz(C )] = grad[v] +
+ grad [{d"/zqonat}] is closed as well. Now, the null-space
of the operator grad is the space of constants and the asser-

tion of Theorem 2 is a consequence of the open mapping theorem.

Theorem 3. Let € € I. Then the operator div acts from
)
V,(-8&) onto Lz(-t ).
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Proof. The subspace grad[Lz(t )/RJ is closed in
[vo(-a )]' and hence the adjoint operator div maps the
space vo(-e) onto the anihilator of the subspace Ker[grad] =

= {const} which has the form {uf—Lz(-& ); S u dx = O} .
n

Theorem 4. There exists a symmetric interval I°,
O€int I°, and a constant ¢, such that for every £€I’ the
inverse of the operator div: B‘i‘ -*Lg(&) satisfies the
estimate
€cg .

u aiv™! '

£(L3(&); V(e) )

Proof. Since “divu L0,

£V (0); L3(0) ) )
there exists an element ?GVO(O) with |'§|o £ 2 satisfying
|aiv Sv'lo = L. If P denotes the projection of V, (€ ) onto B‘g" 0
we have

Lo ¥l € 1aY3N, € e IT, 6 2e,

for every &€1I and therefore

Jaiv || 25 Jaive Y3l -

& (BE ; Ly(€)) 7

-£ e .
=;r7 |a /2d1v§+?.gradd /zl& 3

32 T::'.; [ld;./zdiv ?‘t - | F.graa d"/zl‘] 3

1
3 1F7 [L- ]%I ( Snc.l-zlf.grad d|2 dx)zli 2%:; [L- Illm] .

L]
#e can choose now a symmetric interval I, O€int I, in such
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|

3

L, ;0 =
£(Bg 5 Ly(&))
This completes the proof.

Jaivl for all E€1’.

a way that

FN

7

Theorem 5. Let g€ I, geLz(e) and \-'56 V(e ) satisfy

the condition

>
Sgdx= S D as.
0 on
Then there exists JEV(€ ) such that div @ = g in 0.,
3= ¢ on oS\,

00 = .
Proof. Since the set [C (.Q.)]N is dense in V(& ) (see
e.g. [1]) the trace of the vector function \? on 9f1 makes
; > 5 o .
sence and it holds Sb.ﬂ."F'U das = _Yndlv tz dx. Therefore

we have g - div \?e Lg(E ) and with respect to Theorem 3
there exists Wevo( € ) such that g - div¢ = div W. It is

sufficient to put 3

Theorem 6. Let £e€1I, ?e[vo(-e)]* . Then the following
conditions are equivalent
1/ (f, 3) = 0 for every Ve&B
2/ T

=€ ?
grad p for some p€L2( &)

Proof. 3Since the range of the operator grad acting from

L,(€) is a closed subspace of [VO(-C)]* , it follows from

the theory of linear operators
range if and only if ? belongs
space of the adjoint operator,

tor of Ker[div] = b_

€

that ? is an element of this
to the anihilator of the null-

i.e. ?belongs to the anihila-
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ecti o

Definition. A couple (ﬁ',p)e V(E )x Lg(e) is said to
be the weak solution of the Stokes problem (1) with
felv(-2))*, geL,(&) ana Pevie), if

_. dx-g Pdiv:dx=(?,?>
1 O

for a11 Ze(ca)]Y,
divid =g in O\,
$-3 on2q.

00
In consequence of the density of [(!0(.0.)]N in vV (-¢)
we can consider the first equality for all 'z’evo(— E£).

Since f dx = _r 7.3 dS there exists eV (&)
j\g an‘f" °
satisfying conditions div w = g in QL ¥ =¥ on 9L\ and

Mg € cg(n,e) [elg + laiv @l ] -

Putting F=T-7 we transform the problem (1) to the

homogenous one

(3) -vad+ gradp=?n in Q.,
div ¥ = 0 in A,
¥=0 on an,

<
where h = ?+ v AW.
Further, we shall study the solvability of (3). Let us
define a bilinear form a: V(& )x voc-a )—»R by the rela-
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tion

N v: Oz,
1(7,?) =V 2 g 's;‘l-i—x-'l dx , 36V°(£ ), !evo(-f.).
n

i,J=1 i i
From (3) we obtain the equation
W  a@D =(RT), for a1l TeB_, -

»
This equation has unique solution VeB,_ for every 3 €[V°(-£ )]
. » . - S
with IVIL £ cg 'hllvo(‘e ™ if the form a(.,.) is elliptic

on Bg x B-& in both its components, i.e.

(5) suepB_t a(¥y,2) & o, l?“t. , for all JeBg ,

12 &

(6) up a(,2) 2 v, l?l_E , for all ?eB_e "
€ Bg

17 &1
where constants w1(£ ),wz(e )> 0. (The proof of this "gene-
ralized Lax-Milgram” lemma can be found in (2], [6].) We shall
prove the inequalities (5),(6) for the bilinear form a(.,.)
defined above. Since for ?¢B£ we have d‘?e vo(-e) and since
the operator div: B‘_L&—ng(-& ), €€ 1’, is an isomorphism
then there exists an element 3 = div™'[div d‘Sy’JeB_J“ .
According to div § = O and to the inequality (2) we obtain
B3 o € cq |aiv T = cq [abaiv T + ¢ a®! F.aiv a|_, ¢
€ e lel- Il . as &' - Ben_ Na*F - T £ V7], c) (10 28D)

we can write
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dtz - 's. - a(?vd‘y) -012"3".§|&' %

8(; =
"Hat P - B, g e, Q1+ lel)
N Dy 2
e e reradl D af|==1| ax -
Ils’ruE ey (1+lel) [ 3, 3= S ‘b"il
et 25 | a1 281120yl ax - o, 32 ] 2
1,351 bxi bxi J 12 4

w

1 a2 g € ay.il2 3
m—— YT ERNTE S WL LT et}
Hy'E c”(|+I£|) & i,d=1 N i

1

N -
S g a2 y,|? an)?
1:

O

- oy lelITIZ ] 2

ve, s = €l (v Ve /lE-1l + e )
(1+1g] )

w

=

<y

— 3
.

C11

Hence the inequality (5) is fulfiled for every & from a suit-
able interval JCINI’, O€int J. Analogously, the inequality
(6) holds for E£E€ (-J).

Consequently, the equation (4) has a solution 36,55 ’
for every RG[VO(-F. )]*, with €€ Jdn(-J) and
IzN & eyl R“[vo(—e jJ* ¢+ Let €€ JN(-J). Since

(R+oa?, 2) =(B,2) -a@?) =0 for a1l 2en_g,
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by Theorem 6 there exists p€ Lg(e) such that
grad p = R+ v A?, i.e. the couple (V,p) is the weak solu-
tion of (3), and according to Theorem 2 we obtain the esti-

mate

el £ °14[ﬂ"[vo(-a n* * 19,]

Therefore, the couple (¥,p) € V(& )x Lg( €), where ¥ =7V + ¥,
is the weak solution of the problem (1) and it holds

(1) K3l + Ipl, & e[ BPUpy ey * lele + laiv §1.] .
€ & 15 v (-] €

Remark. In the last inequality it is possible to write

the norm of the trace of ‘? on L. instead of the norm of

div'? .

Let us summarize the results of this Section in

Theorem 7. There exists an interval J, 0€int J,
such that for every €€ J the Stokes problem (1) has the
unique weak solution (3,p)€['1’2(n;d,£ )JNx Lg(.ﬂ.;d,£ ),
-
whenever f€ ([Wl'z(n;d,-t )JN) , B€Ly(N;d,8),
> Vo2¢ e » N . - S‘
$e [2asa,e0]Y (witn S‘ng dx an¢.‘6 as).

Moreover, the solution ('\!,p) satisfies the estimate (7).
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