

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,2 (1984)

ADDENDUM TO THE PAPER "SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS" Bogdon RZEPECKI

<u>Abstract</u>: Let E be a Banach space, M a compact metric space, K a nonempty closed convex subset of E, and T a continuous mapping from K into M. If F is a $K_{\frac{1}{2}}$ -mapping from M×K to 2^{K} ([5]), then there is a point x_{0} in K such that $x_{0} \in F(Tx_{0}, x_{0})$ Here we give an application of this result to the theory of differential relations.

Key words: Multivalued mappings, fixed points, Banach spaces, differential relations.

Classification: 54060, 47H10

Let $\mathfrak{X}(X)$ denote the family of all nonempty closed convex bounded subsets of a normed linear space X. The set $\mathfrak{X}(X)$ will be regarded as a metric space endowed with the Hausdorff distance d_X , i.e.

$$d_{\mathbf{X}}(\mathbf{A},\mathbf{B}) = \max_{\mathbf{x} \in \mathbf{A}} [\sup_{\mathbf{x} \in \mathbf{B}} d(\mathbf{x},\mathbf{B}), \sup_{\mathbf{x} \in \mathbf{B}} d(\mathbf{x},\mathbf{A})]$$

for A,B $\in \mathcal{X}(X)$; here the distance between any point $x \in X$ and subset Q of X is denoted by d(x,Q).

Let $(E, \|\cdot\|)$ be a uniformly convex Banach space, M a compact metric space, K a nonempty closed convex subset of E, T a single-valued mapping from K into M, and F a mapping from M×K to $\mathfrak{X}(X)$. Let us suppose that:

- (1) T is continuous on K,
- (2) $F(\cdot,x)$ is continuous on M for every $x \in K$, and

(3) $d_{K}(F(x,y_{1}), F(x,y_{2})) \leq k \|y_{1} - y_{2}\|$ for all $x \in M$ and $y_{1},y_{2} \in K$ and with a constant k < 1. Under these hypotheses there exists a point x_{0} in K such that $x_{0} \in F(Tx_{0},x_{0})$.

The proof of this theorem resembles that of [5] and therefore will be omitted. Our result has applications, whose basic ideas are illustrated by the example below.

Example. Let I = [0,a] and J = [0,h] (0<h \(\) a). Let \mathbb{R}^n denote the n-dimensional Euclidean space, $L^2(J,\mathbb{R}^n)$ the Banach space of measurable functions from J to \mathbb{R}^n such that $\| \mathbf{x} \| = (\int_0^M |\mathbf{x}(t)|^2 dt)^{1/2} < \infty$, and $C(J,\mathbb{R}^n)$ the Banach space of continuous functions from J to \mathbb{R}^n with the usual supremum norm.

We follow here the terminology of [1] and [3]. Suppose that $f: I \times \mathbb{R}^n \times \mathbb{R}^n \to \mathfrak{X}(\mathbb{R}^n)$ is a mapping satisfying the following conditions:

- (i) $t \mapsto f(t,u,v)$ is measurable on I for each fixed u,v in \mathbb{R}^n , and $(u,v) \mapsto f(t,u,v)$ is continuous on $\mathbb{R}^n \times \mathbb{R}^n$ for each fixed $t \in I$;
- (ii) there exists $m \in L^2(I, \mathbb{R})$ such that $d_{\mathbb{R}^n}(f(t,u,v), \{\Theta\}) \geq m(t)$ for $t \in I$ and u, v in \mathbb{R}^n (Θ denote the zero of the space \mathbb{R}^n);
- (iii) $d_n(f(t,u,v_1),f(t,u,v_2)) \le L|v_1-v_2|$ for $t \in I$ and u, v_1 , v_2 in \mathbb{R}^n , where $L \ge 0$ is a constant.

We define:

 $(Tx)(t) = \int_{\theta}^{t} x(s(ds \text{ for } x \in L^{2}(J, \mathbb{R}^{n}),$

 $K = \{x \in L^2(J, \mathbb{R}^n): |x(t)| \le m(t) \text{ a.e. in } J\}.$

Evidently, K is a closed convex bounded subset of $L^2(J, \mathbb{R}^n)$, T is continuous as a map of K into $C(J, \mathbb{R}^n)$, and T[K] is conditionally compact.

If $x \in C(J, \mathbb{R}^n)$ and $y \in K$, then the mapping $t \longmapsto f(t,x(t), (Ty)(t))$ is measurable and therefore has a measurable selector by Kuratowski and Ryll-Nardzewski [4]. Define $F:C(J, \mathbb{R}^n) \times K \longrightarrow \mathfrak{X}(K)$ as follows: F(x,y) is the set of all measurable selectors of $f(\cdot,x(\cdot), (Ty)(\cdot))$.

Let $x \in C(J, \mathbb{R}^n)$ and $y_1, y_2 \in K$, and assume that $w_1 \in F(x, y_1)$. By Hermes [2] (see [1], Lemma 2.5), there exists a measurable selector w_2 of $f(\cdot, x(\cdot), (Ty_2)(\cdot))$ such that

$$\begin{aligned} | w_1(t) - w_2(t) | &= d(w_1(t), f(t, x(t), (Ty_2)(t)) \\ \text{on J. Thus, } w_2 \in F(x, y_2) \text{ and} \\ | w_1(t) - w_2(t) | &\in \\ &\leq d \\ \mathbb{R}^n(f(t, x(t), (Ty_1)(t)), f(t, x(t), (Ty_2((t))) \\ &\leq L|(Ty_1)(t) - (Ty_2)(t)| \leq \\ &\leq L \int_0^{g_V} |y_1(s) - y_2(s)| \, \mathrm{d} s \leq \end{aligned}$$

≤ L √h || y₁ - y₂ ||

for teJ. This implies that $\|\mathbf{w}_1 - \mathbf{w}_2\| \leq \mathrm{Lh} \|\mathbf{y}_1 - \mathbf{y}_2\|$. Arguing again as above, it follows that if $\mathbf{w}_2 \in \mathbb{F}(\mathbf{x}, \mathbf{y}_2)$ then there exists $\mathbf{w}_1 \in \mathbb{F}(\mathbf{x}, \mathbf{y}_1)$ with $\|\mathbf{w}_1 - \mathbf{w}_2\| \leq \mathrm{Lh} \|\mathbf{y}_1 - \mathbf{y}_2\|$.

Consequently, $\mathbf{d}_{K}(\mathbb{F}(\mathbf{x},\mathbf{y}_{1}), \mathbb{F}(\mathbf{x},\mathbf{y}_{2})) \leq \mathrm{Lh} \|\mathbf{y}_{1} - \mathbf{y}_{2}\|$ for $\mathbf{x} \in \mathbb{C}(J,\mathbb{R}^{n})$ and $\mathbf{y}_{1},\mathbf{y}_{2} \in K$. Moreover, modifying our reasoning, we obtain that $\mathbf{x} \mapsto \mathbb{F}(\mathbf{x},\mathbf{y})(\mathbf{y} \in K)$ is a continuous mapping from $\mathbb{C}(J,\mathbb{R}^{n})$ to $\mathfrak{X}(K)$.

Assume in addition that Lh < 1. Now, applying our result to the space $L^2(J, \mathbb{R}^n)$ and the mapping T, F, we infer that there is y_0 in K such that

$$y_0(t) \in f(t, \int_0^t y_0(s) ds, \int_0^t y_0(s) ds)$$

for t in J.

References

- [1] T.F. BRIDGLAND Jr.: Trajectory integrals of set valued functions, Pacific J.Math. 33(1970), 43-68.
- [2] H. HERMES: The generalized differential equation $\dot{x} \in R(t,x)$, Advances Math. 4(1970), 149-169.
- [3] C.J. HIMMELBERG: Measurable relations, Fund. Math. 87(1975), 53-72.
- [4] K. KURATOWSKI and C. RYLL-NARDZEWSKI: A general theorem on selectors, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 13(1965), 397-403.
- [5] B. RZEPECKI: Some fixed point theorems for multivalued mappings, Comment. Math. Univ. Carolinae 24(1983), 741-745.

Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland

(Oblatum 16.12. 1983)

Added in proof. When this paper was already submitted, the suthor happened to read the work by M. KISIELEWICZ, Generalized functional-differential equations of neutral type, Ann. Polon. Math, XLII(1983), 139-148.

Let A be a nonempty closed convex bounded subset of the Hilbert space Y, Γ an operator with domain A and range in the Banach space X, and G a mapping from $A \times \Gamma[A]$ to the standard space of all nonempty closed convex subsets of A. In his Theorem 2.4, Kisielewicz proved that if $G(\cdot,y)$ is a contraction uniformly with respect to $y \in \Gamma[A]$, $G(x,\cdot)$ is continuous on $\Gamma[A]$ in the relative topology and Γ is completely continuous, then there exists x in A such that $x \in G(x,\Gamma x)$.