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MORSE-SARD THEOREM FOR CLOSED GEODESICS
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Atstract: The existence of finite or infinite number of
closed geodesics on a compact Riemannian manifold can be proved
under suitable assumptions. The paper brings another type of
information., It is proved here that the set T of lengths of
all closed geodesics on & real-analytic compact Riemann mani-
f0ld is elways a disorete set. The proof is based on a version
of Morse-Sard theorem for real-analytic maps.
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The classical Morse theorem says that the set T' of criti-
cal levels of a function fe Ck:Rn——y R

M =4{2(x)|ve(x) = 0}

has Lebesgue measure zero; 4¢,(T') = 0, if kZn [1]. The more
refined version [2] asserts that xn/k( ) = 0, where %/k is
a Hausdorff measure of dimension n/k&1, If feC, we obtain
% (T) =0, Ve > 0. If the function ? is analytic, we can
obtain a better estimate of I . Namely, [3]1, T is locally fi-

nite; i.e. for every compact set Kc Rn. the set

r‘x - &f(x) ‘ Vt(x) = O' x6 x}
is finite. Clearly, then T' is denumerable.
Analogous theorems hold for a functional defined on a Ba-

nach space if its second derivative is a Fredholm map (and aso-



me other , rather technical hypotheses are satisfied, see
[4 - 7])-
In this paper we prove an amalogous theorem for closed ge-

odesics, the functional being the length of a curve,

Theorem 1., Let M be an n-dimensional compact resl -analy-
tic Riemannian manifold. Then the set M of lengths of all clo-

sed geodesics on M 1s a discrete sget.

Remark, The question of existence of closed geodegica was
extensively studied (see e.g.[9]), and the existence of infini-
te number of them can be proved for some manifolds. The theorem
1 brings on the other hand an upper bound on the number of
lengths of closed geodesics.

The real-analyticity means that there is an atlas of charts
covering M, such that transition maps are real-analytic and the
coefficients of a metric written in these charts are real-ana-
lytic, too. In the same way one may prove that when M is only
a C® manifold, the set I has ¥ (T") =0, Ve >o.

The set of closed curves in M does not form a linear spa-
ce, and therefore the theorems of [7] cannot be applied direct-
ly. But this set can be endowed with a structure of a Hilberti-
an manifold [8, 9].

Proof. We shell divide it into three steps. In the first
step we recall the definition and some properties of the Hil-
bertian manifold of curves. In the second step we prove the the-
orem using Lemma 1, In the third step we give a rather techni-
cal proof of this lemma.

Step 1. Let S = [0,1]1 /410,1% be the unit circle and let

us define the set of closed H1-curves
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4 » .
AM = fcis — M) fo (c(t),c(t)}c(t) at < oo}

where { - , 7 denotes a Riemannian metric on T M. Let o 15 —> M
be a fixed C®-curve. Let us consider the set of all H‘-voctor

fields on ¢, (parametrized by t€S)
E' (0¥ ™M) = $§ 15— M I§(DeT, My {Fr§7 < co}
()

where

4
(E v“l)o - IO (?(")"’l(t))co(t) at,

(Ernd1 = <ErnY75 * (9§19 %05

the covariant derivative being taken along the curve
(v€)(%) = (v )(%).
§ 3,(%) €

There exists en ¢ > O such that [8, 9] the exponential map
(v, exp)s T —> Mx M (x,7v, ) —> (x,exp vy), vy €T M
is a diffeomorphism, when restricted to the set

PN - {(x,vy) e ™™ v Il < et.

Here expxx'!xl —> M is the standerd exponential map., Let us de-
fine

exp, +H'® (oX TH) — AN
o
§m (§(8) gt o = (o) g
o(t) = expg (y) §(¥)

where
B (cx ) = {f e B (om0 | Hg (D) h<e, Viesh
Then the atlas of charts (8, 9]

{oxp;: | cy6 c®(s,M}
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gives to A M the structure of a Hilbertian manifold modelled
on Hilbert spaces H1(o: TM). Moreover, H1(o°* TM) is the tang-

ent space T, A M.
o

The energy of a closed curve ¢ € AM is defined by
1 12 20 a

E(O) = -2' fo ( c(t),o(t))c(t)dt.

Then [8, 91 E is C%, its GateBux differential is given by
1, .

dE (c3m) -fo {8, wpdat
and dE(cye) = 0 iff ¢ is a constant map or ¢ is a olosed geode-
sic. Grad E(c)e T ,AM is defined by

{grad E(c),7), = aE(c37), VYn e T, AM.

The following basic properties of the energy functional are
known [8, 97:

(1) (so-called Palais-Smale condition.)

If c e AM, E(o)é K, K> 0 and |l grad E(o )l — O, then
there is a subsequence of {om} converging in AM to a closed geo-
desic c_,

o

(1ii) Let ¢, be a closed geodesic. Then the Hessian A, of
o
E at Sy defined by

A T AM—T AM
% % S !

<Ac°€""b>1 = dzE(oosf.'n)- Vfo"le TOO‘AM'

has the form Ac = identity + compact map.
o

Step 2. Let us suppose that there are closed geodesics Cn
such that E(cm)—> K<oo, E(om)#-E(ck), Vk+m. Using (1) we
can suppose that c —> o, in AM, c  is & geodesic, and that
-(om} is in the range of the chart expco. Let us transport the

energy functional on the tangent space

E(§) =B (exp, (§)), YEe mceojua = H'E(cX ).
- 268 -



Then § = exp:‘(cm) are critical points of E and nfmll 1 —>0.

()
We want now to apply the infinite dimensional version of the
Morse-Sard theorem [7, Theor. 5.1] to E. But to prove the emaly-
ticity of E, the regularity properties must be used. We follow
the method of [7, p. 256]. Let us define spaces

X, = B2(cXTM) ={fe H (X M) | (§, £, <3,
<§'"L>z = {(E, M + (T9§, 990 »
0 * .
X, = EO(cX ™) = {f :5—> M If(t)e Tco(t)u,<g, §2,< 03
and consider grad E as & map F:X, —> X, defined by
dﬁ(gi"l) -<"L 'F(g )701 V‘ILE x1o
By the standard regularity argument (similar to that used in the
proof of the regularity of geodesics) we obtain that
Emex1, “Enl\z—"o.
Lemma 1. The functional E:X,—> R and the operator FiX; —>

—_—> 12 are real-analytic.

Once we have this lemma, all hypotheses of the theorem 5.1
from [ 7] are fulfilled and it follows that for a sufficiently
large m we have

E(c,) = ECg ) = E(0) = E(c,).

Hence the critical levels of E are isolated. Now, it suffices
to show that the energy and the length of a geodesic are inter-
related, If ¢ is & critical point of E, then using variations
generated by the reparametrizations of c, we can find that

&()N = w = constant. Then E(c) = g@°, hile

L(c) = j: ¢ é,é)% at = @,

4
8o that L(c) = (2E(e))Z .
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Step 3. We shall prove Lemma 1 using the method of[7 ,
p. 256]. We must show that for each §{ eX,, H§°|)2 <¢ (6>0
sufficiently small), there is e J° > 0, such that for every
7€ X4 NN, < the Taylor series

= 0 1
E(g, +4) '«Eo S4B § 8 A seees)
converges, It suffices to show that E is a restriction (to X1)
of a mep B1X, + 1X,—> X, + iX,, which is locally bounded and
GateSux differentiable [7, Theor. 3.7]. Let Ic S be an interval
such that oo(I)cU, U is a co-ordinate neighborhood in M (S may
be written as a finite union of such intervals). Let us define

E(§) =5 [, €887 aty o(®) = expy (4 (£ (0D,
o
It (x1,...,rh) is a co-ordinate system on U we denote by X(x) =
= (x4 (x),...,xn(x)) the co-ordinates of the point x€ U. General-

ly, the bar will denote n-tuples, so that
xi(co(t)) = 0,4(t), ‘Eo(t) = (co.,(t),...,con(t)).

For ge Txl, x¢ U we shall write
)
= F195,| 0 F= (S £

x;(exp £) = e;(X(x)3§ ).

Using the summation convention we can write

%f °xpc°€ = hi(t'g'?)%i‘ exp, § )

(6 Fof) = fp o) -
‘aei = %e; _  _ ..
=50, (B3 §) o +a"g’; (Cos ) 10

where the dependence of L ? ’ ?o, ?,';' on t was supressed., Us-

ing the co-ordinate form g, of the metric {+,-> we have
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B(p) =% [ anE ) e
where

R LT T CRYIENCN 3% SENCH 34 2P
The functions e; are real-analytic [10] and sij are real-analy-
tic, too. Thus, they are restrictions (to real values of their
arguments) of holomorphic functions 31, E;J resp. [11; 7, Theor.
3.11). Then functions h; and £ are also restrictions of’ﬁi, £
defined for ?, é'complex vectors from the neighborhood of allo-
wed real values of § , 'é' R - I'fl y |'§='\ < & (the variable t re-
mains always real). At this moment we need the regularity, be-
caupe we must know that \?\01 < € j this follows from the embed-
ding I1c 01. Clearly, hi and f are Cch in t and we can apply
Lemma 3.1 from [7, App. VI] which gives us the analyticity of
E&. Equivalently, we can verify that

~ = 1 s T T T =

EI(E)-EfI B+, E,¢) at, §,fec”
is locally bounded and Gatedux differentiasble. The proof of the
analyticity of FI ig similer to the proof of Lemma 3.1 [7, App.

VIJ]. Making a finite sum of EI's (resp. FI's) we obtain the ana-
lyticity of E and F.
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