

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log27

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25.2 (1984)

A LARGE F₈ -DISCRETE FRÉCHET SPACE HAVING THE SOUSLIN PROPERTY V. V. USPENSKII

Abstract: By a theorem of G. Amirdzhanov, any 6'-product of closed unit intervals (= the subspace of a Tychonoff cube consisting of all points having only finitely many non-zero co-ordinates) contains a dense subspace of countable pseudocharacter. We give a simple proof of a more general fact: any such 6-product contains a dense subspace which is the union of countably many closed discrete sets and therefore has a G_d diagonal. This answers a question (first answered by D.B. Shachmatov) raised by P. Simon, J. Ginsburg and R.G. Woods of whether a regular space having a G_d diagonal and the Souslin property can be of cardinality greater than exp K₀.

<u>Key words</u>: G_{σ} diagonal, Souslin number, pseudocharacter, Fréchet space, countable tightness, 6-product, F_{σ} -discrete.

Classification: 54A25

Consider the following four cardinal invariants of a topological space X: (1) the Lindelöf number l(X); (2) the Souslin number c(X); (3) the character $\chi(X)$; and (4) the product $\psi(X) \cdot t(X)$ of the pseudocharacter and the tightness. The first two invariants are "global", the last two are "local". Suppose one of the "global" invariants and one of the "local" invariants of a Hausdorff space X do not exceed a given cardinal m. Is it true that X cannot be too large? It is well known that the answer is yes for three of the four possible combinations: (1) and (3) (Arhangel skii), (1) and (4) (Arhangel skii (for a regular X) - R. Pol - Shapirovskii), (2) and (3) (Hajnal -

Juhász). In these three cases the cardinality of X does not exceed exp m, see e.g. [1],[2]. In the fourth case, when c, ψ and t are bounded, the cardinality can be as great as one chooses it to be: for any cardinal m, the Tychonoff cube Im contains a dense Fréchet subspace X of countable pseudocharacter [3], [2, Theorem 1.5.33]. For such an X, $c(X) = \psi(X) = t(X) = t(X)$ = 5, and | X | is great if m is. We show that any Tychonoff cube I^m contains a dense Fréchet subspace which is F_{δ} -discrete. A space is $\mathbb{F}_{\!\!\!\kappa}$ -discrete if it is the countable union of closed discrete subspaces. Since the square of $\operatorname{anF_6}$ -discrete space is \mathbb{F}_{6} -discrete and since every subset of an \mathbb{F}_{6} -discrete space is of the type $G_{\mathcal{F}}$, any $F_{\mathcal{G}}$ -discrete space has a $G_{\mathcal{F}}$ diagonal. So our example answers in the negative a question of P. Simon [4], J. Ginsburg and R.G. Woods [5, question 2.5], and A. Arhangel skii [2, problem 16]: is it true that | X | 4 exp x o for any regular space X which has the Souslin property and a $G_{\mathcal{F}}$ diagonal. The first to solve this problem was D.B. Shachmatov. Our construction is much simpler than his and provides a space which is additionally countably tight (in fact, Fréchet).

The closed unit interval [0,1] is denoted by I. Let A be a set of indices. The points of the Tychonoff cube I^A are written in the form $\{x_a: a \in A\}$. For $x \in I^A$ the set $\{a \in A: x_a \neq 0\}$ is denoted by A(x). The $\mathscr C$ -product of the family $\{I_a: a \in A\}$ of intervals is the set $S = \{x \in I^A: A(x) \text{ is finite}\}$. The space S is Fréchet [2, Theorem 1.5.27] and has the Souslin property.

Theorem. Any 6-product S of closed unit intervals contains a dense subset X which is an F_6 -discrete space.

<u>Proof.</u> Choose a sequence K_1, K_2, \ldots of pairwise disjoint

finite subsets of I such that every nonempty open subset of I meets all but finitely many of K_n 's. For example, each K_n may be the set of rationals of the form $(2k-1)/2^n$, where k is a positive integer $\leq 2^{n-1}$.

For every natural n, let $S_n = \{x \in S: A(x) \text{ has precisely n elements} \}$. Define a subset X of S by the following rule: if a point $x \in S$ is in S_n , then x is in X iff n > 0 and all non-zero coordinates of x are in K_n . Clearly X is dense in S (we assume that the set A is infinite; otherwise S is a finite-dimensional cube and the theorem is obvious). We claim each $X_n = X \cap S_n$ is discrete and closed in X. For every natural n, choose a positive number d_n such that $|x-y| \ge d_n$ for every two nonequal points x, y which are in the union of n sets K_1, \ldots, K_n . For every $x \in X_n$, the set $V_n(x) = \{y \in X_n \text{ for any a } \in A(x), y_n > 0 \text{ and } |x_n - y_n| < d_n^2 \text{ is a neighbourhood of } x$. Since the intersection $V_n(x) \cap X_n$ is empty for $x \in X \setminus X_n$ and equals the singleton $\{x\}$ for $x \in X_n$, it follows that each X_n is closed and discrete. Hence $X_n = \{x \in X_n : n = 1, 2, \ldots\}$ is R_6 -discrete.

Corollary. For any cardinal m, there exists a Tychonoff space X with the following properties: (1) X is F_6 -discrete (and therefore has a G_{0} diagonal); (2) X has the Souslin property; (3) X is Fréchet; (4) |X| > m.

I am indebted to Professor A.V. Arhangel skii for pointing out that the construction described here - which was intended originally to yield a space with a $G_{\mathcal{G}}$ diagonal - yields in fact an $F_{\mathcal{G}}$ -discrete space.

References

- [1] JUHÁSZ I.: Cardinal functions in topology ten years later, Math. Centre Tracts 123, Amsterdam 1980.
- [2] АРХАНГЕЛЬСКИЙ А.В.: Строение и классификация топологических пространств и кардинальные инварианты, Успехи матем. наук 33(1978), E 6, 29-84.
- [3] АМИРДЖАНОВ Г.П.: О вседу плотими подпространствам счетного псевдомарантера и другим обобщениям сепарабельности, Домлади АН СССР 234(1977), 993-996.
- [4] SIMON P.: A note on cardinal invariants of square, Comment. Math. Univ. Carolinae 14(1973), 205-213.
- [5] GINSBURG J., WOODS R.G.: A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64(1977), 357-360.

СССР, 117234, Москва 234, Московский университет, механико-математический факультет

(Oblatum 13.3. 1984)