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ON SUBSPACES OF ULTRABORNOLOGICAL SPACES
J. KAKOL

Abstract: This paper is concerned with the inheritance
of the ultrabornology by subspaces of topological vector spa-
ces.
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In (4] S. Dierof and P, Lurje constructed a bornological
and barrelled locally convex space containing & dense subspa-
ce of countable infinite codimension which is barrelled but
not bornological. On the other hand, & subspace with the pro-
perty (b) in a bornological space is bornological [10]., In [5]
Iyehen introduced the concepts of ultrabornological and quasi-
ultrabarrelled spaces in non locally convex situations. It is
known [1] that every finite codimensional subspace of an ul-
trabornological or quasiultrabarrelled space is a space of the
same type, respectively.

In the present paper it is proved that every closed sub-
space G with the property (b) Lresp. with a countable codimen-
sion] of an ultrabornological [resp. and ultrabarrelled] spa-
ce E is of the same type, and every algebraic complement to G

in E is a topological complement and carries the finest vector
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topology.

It is proved also that every subspace with the property
(b) of an ultrabornological boundedly summing space is ultra-
bornological. In particular, every subspace with the property
(b) of a locally convex ultrabornological space is ultrabor-
nological. A subspace G of a topological vector space (tvs) E
is said to have property (b) if for every bounded subset B of
E the codimension of G in the linear span: of Gu B is finite.

Pollowing [3] a sequence (U,) of balanced and absorbing
subsets of a vector space E is called a string if Un+1 + Un+1
c U, for all neN. A string (Un) in a tvs is closed, if every

Un is closed; bormivorous, if every Un absorbs all bounded mib-
sets of By topological, if every U, 1s a neighbourhood of zero
in E.

A tvs E is ultrabornological [ ultrabarrelled] if every bor-
nivorous [closed] string in E is topological [3] (Adasch, Ernst
and Keim call these spaces bornological and barrelled, respec-
tively).

The following assertions are equivalent, [31, (2), p. 61:

(1) (B, ) is ultrabornological.

(11) Every bounded linear map from (E, ©) into a tvs is

continuous.

(111) Every bounded linear map from (E,7) into a metri-
zable complete tvs is continuous.

(iv) Every vector topology on E having the same bounded

sets as °© 1is coarser than * .

Throughout we consider (Hausdorff) tvs over the field K
of the real or complex scalars. A tvs E with the topology ~
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is denoted by (E,%), or simply by E, and by (G,~«lG), or G,
we denote a subspace of E endowed with the induced topology.
A sequence (xn) in E is said to be a local null-sequence 1if

there exists a sequence of scalars (an) such that a,—>co and
anxn—? 0. We say that x,—> x locelly it x, - x —> 0 locally.
A subspace G of E is locally dense if for every x€E there ex-
ists a sequence in G which locally converges to x. A linear map
from E into & tvs F is locally continuous if 1t maps every lo-
cal null-sequence into e local null-sequence., As easily seen,
a linear map from E into & tvs is locally continuous if and on-
1y if it is bounded (= bounded on bounded subsets of E), [1],
p. 31. For eny set Il of & tvs (E,~) we denote by % and M- the
closure of the set M, with respect to the topology « , and the
set of all local limits of sequences of Ii, respectively.

A tvs E is boundedly summing (2], p. T4, if for every boun-
ded subset B of E there exists a sequence of scalars (% ),t, *0,
nell, such thot %ﬁ t N:= k"{k%‘l{‘ t, B is bounded. Clearly, every
almost convex space, locally convex space, locally pseudoconvex

space, ere boundedly summing.

Tnheritance properties. In [6] there was proved the fol-

lowing result, which will bc nezded later.

Lemma 1., Let (E,7) be a tvs and G its finite codimensio-
nal subspace with & co-bese (X;,X;ye-. xp). Let (An) be a ge-
quence of (balanced) subsets of G such that

(1) G = \4)» Ajpand A+ A CA) L, for all nelly

(1i) every ~IG bounded subget is contained in some A .

Then every <« bounded subset of & is contained in some TL;: +

+2’“{§ 2 13 K
=4 aixizlai\u » 8;€K,
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Let BE be a family of all bounded closed and balanced sub-
sets of a tvs E,

Lemma 2. Let (E,7~ ) be 2 tvs and G its closed subapace

with the property (b). Let P be an algebraic complement of G in
E. Then for every Be By there exist G €Bp and a finite dimensi-
onal bounded subset A of F such that Bc Gn Q + A.

Proof. Let BCBB. Then GnBB is a finite codimensional
e m+1
subspace of Ep, where By = (/B and B, = % B, ne N, Let 7y
be the finest vector topology on EB for which all Bn are boun-
ded. A string (Vj) in EB is topological if every VJ abgorbs &all
Bn.'(clearly cIEBL- ¥pe In view of [2], p. 15, we obtain that
(B, B) forms & fundemental sequence of g bounded sets. By

Lemma 1 there exist n<N and a finite dimensional bounded sub-

z
% B
set T such that Bc Gn BnB + T. Since both projections of T on-
to G and onto F are bounded, there exist QeBE eand & finite di-
mensional bounded subset A of F such that Bc GnQ + A,

Proposition 1., Let (E,7 ) be an ultrabornologicsl tvs
and G its closed subspace with the property (b). Let F be an
algebraic complement of G in E. Then G is ultrabornological and
F i3 a topological complement and carries the finest vector to-

pology.

Proof. Clearly, (E,t) is the inductive limit space of the
family (EB,'C'BzBeBE) of ultrabornological spaces. For every

m+4

nel let H (B):= 2 BNG and BEBy, Let %y . be the finest
vector topology on Ep q:= Lﬂ{ H (B) for which all ED(B) are boun-
ded. Clearly, ’CB“;BnG & %p.ge If (G,7%) denotes the inductive
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1imit space of the family of ultrabornmological spaces (BB(IG’
’KBPB:BG.BE).then (G,”) is ultrabornological,[3], 4 , p. 62. Sin-
ce P endowed with the finest vector topology @ is ultrabornolo-
glcel ([8),Exemple 1,[31,(4), p. 62), the topological direct sum
(B,x):=(G,%) ®(F,0) is ultrabornological. Clearly ¥ £ o« . By
Lemma 2 the topologies o< and & have the same bounded sets.Sin-
ce (E,¢) and (E, ) are ultrabornological, it follows that o« =
= © , This completes the proof.

Corollary 1. Let E be an ultrabornological and ultrabarrel-
led tvs and G its closed subspace of countable codimension. Then
G is ultrabornological and ultrabarrelled and every algebraic ocom-
plement of G in E is & topological complement and carries the fi-

nest vector topology.

Proof. Observe that G has the property (b). Indeed, let (x,
be & co-base of G in E, Put G :=G + lin{x,,X;,...x,} for all ne K.
Let B BE' Since E is the strict inductive 1limit space of closed
subspaces G,,[1], p.29, then BC G, for some n€N, [3]),p. 28. Hen-
ce G has the property (b). In view of [31,p.90, G is ultrabarrel-
led. Applying Proposition 1 we obtain that G is ultrabornological.

Corollary 2. Let E be an ultrabornological tvs and G its
closed subspace with the property (b). Then any linear extensi-

on to E of a continuous linear functional on G is continuous.
We shall need the following

Lemma 3. Let (E, ™) be a boundedly summing tvs and G its
subspace with the property (b). Let F be an algebraic comple-
ment of G in E. Then for every B€ By there exist QeBE and a
finite dimensionsal bounded subset A of E such that BC Q' + A
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Proof. Let B&BE. We construct a metrizeble vector topo-
logy 'y on Ep, coarser than 7Ty, and such that 1Eg 2 V.
Indeed, since (E,¥) is boundedly summing, then there exists a
sequence of scalars (an) with 8 >0 and &,
such that Z e;B is bounded in E. If we put V = P azn_1iB,

+1éan for all neN

then for every neN we have Vnn + Vn+1c Vn. Clearly, every Vn
absorbs all B, , and hence (Vn) is a string in Ej, which genera-
tes a metrizable vector topology ‘\9'3 on EB such that <l EB £

= '\9'3. Since Tg is the finest vector topology on Eg for which
all B, are bounded, then 19'3 £ e Let (xq,X;4.. xp) be a co=-
base of Gn EB in EB. In view of Lemma 1 there exists me N such

that
—_—

% B o ;_".‘ .
BcGnE + 2 -ih,,e.ixixlailéﬂ.
— 3

=B . B_ i B
Let Pr= B, ~ and Q:= B, Clearly GNP “c GNP °. Since (Eg, 9%)

is metrizable and ‘D’lEB < Vg, 8o we have GNP “C GNP cGan.
This completes the proof.

Lemma 4. Let (E, ) be an ultrabornological tvs and G its
dense subspace,

(1) If G is of finite codimension in E, then G is locslly
dense,

(i1) If E is boundedly summing and G has the property (b),
then G is locally dense.

Proof., (i) Evidently, it suffices to carry over the proof
to the case when G is of codimension one. Suppose G is not lo-
cally dense. Then G must be locally closed. Let f be a linear
functional on E such that G = ker f, We prove that f is locelly
continuous., By [1], p. 31, £ is locally continuous if and only
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if it is bounded on local null-sequences, Suppose f fails that
property. Then f£40, so that f(xo) = 1 for some x,€E and the-

re exist sequences a8, — @ and x, =2, + bnxo’ zne G, bnc X,

n

-1
such that a X —> 0 and f(xn) = bn—>oo « Since anbn(b z, +
+ xo) -—> 0, then b;1 z,—2 =X, locelly. Since G is locally olo-

sed, it follows X, € G, o contradiction. Hence f is locelly con-
tinuous. Since E is ultrabornological, then f is continuous.
Thus G is closed, & contradiction. We proved that G must be lo-
cally dense in E,.

(11) Let P = U (Y B nGh:BeBy). To conclude the proot
it is enough to show that F = E, Suppose F4E and let X be an
algebraic complement of F in E. For every B¢ BE let FB =
= t,'JL le. Let 3 be the finest vector topology on FB for
which all WJ' are bounded. Clearly, w|Fp=< ¥ end (FB, TB)
is ultrabornological. Let (F,+*) be the inductive 1limit space
of the family (Fg, ¥p:B cBE). Then the topological direct sum
(E,¢):= (F,~}) ® (X,0) is ultrabornological, provided 6@ 1is
the finest vector topology on X, Clearly v < o« .« By Lemma 3
there exist Q €Bp and & finite dimensional bounded subset A such
that chl + A. Since both projections of A onto F and onto
X are bounded, there exist Se,BE end a finite dimensional boun-
ded subset R of X such that Bc 50_51 + R. Hence the topologies
« and ¥ have the seme bounded sets, and thus o« = ¥ . The
last is & contradiction, because F is closed in (E,« ) and den-

se in (E, ). Hence F = E.

Lenma 5, Let (E, ) be & tvs and G its locelly dense sub-
space with the property (b). Let £ be a locslly continuous map
from G into a metrizable and complete tvs F., Then there exists

e locally continuous extension T of £ to the whole space,
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Proof. Let B&Bg. Then Gi$ 8 locally dense finite codimen-
sional subspace of (G + Egy ©1G + By). Acoording to [1], p.
32, for every Be Bg there exists a locally continuous extensi-
on fy of £ to the space G + Bp. If 'fv(x)x- fB(x) for xeG + Eg
we obtain a linear extension T of £ to the space E, Let xn——)
—> 0 locally in E. There exist a scalar sequence a,—> @ eand
8 bounded set Bi={te x :|t)1<1,neN} such that 8,X, — 0 in
G + Ep. Since rB(xn)—> 0, BO % 18 locally contimuous,

Corollary 3. Let E be an ultrabornological tvs and G its
locally dense subspace with the property (b). Then G is ultra-

bornolcgical.

Remark, In L7), Proposition 13.1, we proved that every
tvs which admits a locally dense ultrabornological subspace
must be ultrabornological. In view of [3], p. 112, -we deduce

that "locally dense" cannot be replaced by "dense",

Corollery 4 ([1], p. 33). Let E be an ultrabornological
tvs and G its subspace of finite codimension. Then G is ultra~

bornological,

Proof. It suffices to carry over the proof to the case

when G 18 of codimension one., Two cases are possible: G is clo-
sed. Then G is ultrabornological by Proposition 1. G is dense.
Then G is locally dense by Lemma 4, Corollary 3 completes the

proof.

Let E be a tvs. By EX and B  we denote its algebraic end
topological dual, respectively. I;et v and 1 be two vector
topologies on E. By sup (v ,7") we mean the weakest vector to-
pology on E finer than ©~ and 3 .
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Corollary 5. Let (B, ) be an ultrabornological tvs with
E* 4 E°, Then there exists on E a veotor topology 2> different
from  such that (B,r ) and (E,>) are linearly homeomorphio
and such that (E, sup (¥ ,~*)) is ultrabornological.

Proof. Let £cE*\E’ and let S, = ker f. Choose x, with
t(xo) = 2, Define a linear map T of E into E by Tx = x = f(x)xo
for every xeE, Clearly 7 . 1dz. Let 2" be a vector topology
on B defined as the image of * by T. In view of [9], the proof
of Theorem 3.4, £ is continuous for sup (7 ,1). As easily seen

A*1Sy = v |8 Hence sup (z,1*)IS, = l|S,. By Corollary 4,

(Sf, x| St) is ultrabornological, and hence we have
(E,sup (x,7)) = (84, x| S,) @K is also ultrabornological.

Proposition 2. Let E be a boundedly summing ultrabornolo-
gical tvs and G its subspace with the property (b). Then G is
ultrabornological.

Proof. If G is closed, we apply Proposition 1. If G 1is
dense, then by Lemma 4 (ii) it is locally dense. Applying Co-~
rollary 3 we obtain that G is ultrabornological. If G is neit-
her closed nor dense, we take its closure and apply the previ-

ous arguments.

Since every locally convex tvs is boundedly summing, Pro-
position 2 can be applied to obtain the following

Corollary 6. Let E be & locally convex ultrabornological
tve and G its subspace with the property (b). Then G is ultra-
bornological.

Problem. Must (E,sup (v, ")) be ultrabornological if =
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and ¥ are non comparable ultrabornological topologies for a

vector space E 7

(1

[2]

[3)

[4]

[5]

L6l

7

[8]

£91

References

ADASCH N., ERNST B: Teilraume gewisser topologischer Vek-
torraume, Collectanea Math. 24(1973), 27-39,

ADASCH N., ERNST B.: Lokaltopologische Vektoraume II, Col-
lectanea Math, 26(1975), 13-18,

ADASCH N., ERNST B., KEIM D.: Topological vector spaces,
Springer Verleg, Berlin 1978,

DIEROLF S., LURJE P.: Deux exemples concernant des espaces
(ultra) bornologiques, C.R. Acad. Sci. Paris, 282
(1976), 1347-1350.

IYAHEN S.0.: On certain classes of linear topological spa-~
ces, Proc. London Math. Soc., 18(1968), 285-307.

K4KOL J.: Countable codimensional subspaces of spaces
with topologies determined by a family of balanced
gets, Commentationes Math. (to appear).

KJKOL J.: Some remarks on subspaces and products of ultra-
bornological spaces, Simon Stevin 57(1983), 83-97.

KOHN J.: Induktive Limiten nichtlokalkonvexer Raume, Math,
Ann, 181(1969), 269-278.

PLCK NoT., PORTA H.: Linear topologies which are suprema
of dual-less topologies, Studia Math. 47(1973),
63-73.

{101 VALDIVIA Il.: On final topologies, J. reine angew. Math.

Institute of Mathematics, A. llickiewicz University, ul. Matejki
48/49 Poznen, Poland

(Oblatum 23.11., 1983)

- 256 -



	
	Article


