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ADEQUATE FAMILIES OF SETS AND CORSON COMPACTS
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Abstract: In this paper we construct an example of a Cor-
son compac‘E Y for which the space C_(X) fails to be a Linde-

16¢ X -space, This example givu the negative answer for one
problem of A.V. Arhangel skii, The notion of an adequate fami-
1{ is used, We establish its connection with the classes of
Eberlein and Corson ocompacts and also with some set theoretic
problems,
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1. Introduction, The main result of this peper is the fi-
n;l solution of the problem of A.V. Arhangel ‘skil L1]: are the
following conditions

(1) X is a Corson compacty

(2) The space cp(x) is a Lindelof = -space;
equivalent for a compact space X ?

The most general results concerning the Lindelof property
of the space cp(x) were obtained by K;: Alster, R, Pol [5] and
S.P. Gul ko [2] who proved that C_(X) © is Lindelof for every
Corson compact X, R. Pol [6] constructed an example of a com-
pact space X with the properties that cp(x) is Lindelof and X

is not a Corson compact.
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In accordance with M. Talagrand [7], we denote by °£1
and ‘%2 the classes of all compact spaces X for which cp(x) is
Y -anelytic and a LindelSf = -space respectively.

It is worth while mentioning that the class ‘52 exactly
oconsists of the compact spaces X, the Banach space C(X) of
whioh L. VaZédk [4] calls WCD.

Por classes of Eberlein and Corson compacts we use the
symbole %t emd X respectively.

M. Talagrand [8] proved € c ‘¢, and showed in [9] that
these classes are strictly different. It is well kmown that
“%,c ‘52, but the question about the coincidence of these olas-
ses is still open. K. Alster and R. Pol [ 5] comstructed an ex-
ample showing that %, 4+ X . The inclusion ‘52 cX (i.e. im-
plication (2) => (1) was proved by S.P. Gul ko [3]. Fotice
that the same conclusion sasily follows from the L. Va3dk ‘s
work [4].

In this paper we show that the converse inclusion (i.e.
implication (1) => (2)) does not hold. The notion of an ade-
quate family of sets is essentially used throughout the paper.
The definition of bushes is given as a natural generalization
of trees. We construct once more an example of an Eberlein
compact which is not a uniform Eberlein compact. This example
is much simpler than the analogous one of Y. Benyamini and T.
Starbird [10].

All the results with the exception of Example 5.2 are ob-
tained by the first author.

2, Terminology and notation. Our terminology is stan~
dard. The symbol N stands for the set of natural numbers; R
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is the real 1line; |T| denotes the cardinality of a set T3 @,
is the first uncountable ordinaly D = {0,13 stands for the
two-point discrete space.

Por s compact space X we denote by CP(X) the space of all
real-valued functions on X endowed with the pointwise topology.

Por a topological space X let d4(X) be the densl ty of X and
¢(X) be the Souslin number of X, The closure of & subset Ac X
is denoted by [L]x.

Recall that Corson, Eberlein, strong Eberlein and uniform
Eberlein compacts are the compact subspaces of

>(R,?) =4ix ¢ rRY | supp x| £ £,3,
where supp x = {t € Tsx(t)# 033

o (R, =ix e R%: It e (0> €31 < », Ve > oly

6(D,T) =4{x DT | supp x| < K 3

LR, ={xeR% Z|x(4)%< o},
respectively.

A completely regular space % is a Lindelof =i -space if the-
re is a countable collection of closed subsets -{Pl} neN such
that for each zc 2 the set By, =N { [Fn]pz;ze ?,} 1s nonempty
and contained in Z, where (32 is the Stone-Gech compactifioce-
tion of Z. We can assume that the collection {Pn}nel! is closed
under finite intersections, therefore, if U is any neighborhood
of By in Z then ByC S U for some né N.

It (T,4) is a partially ordered gset, then p,qe T are
compatible if there exists se T such that s&p, s4q, otherwi-
se p and q are incompatible. (?,4) 1is occc if T does not con-
tain an uncountable subset of pairwise incompatible elements.
Elements p,q& T are comparable if p<q or q& P holds, otherwi-
se p and q are incomparable., Every totally ordered subset of

(T,4) is called a chain.
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3. Construction. The following definition introduced in

[7] plays the key role.

Definition 3,1, Let T be a set, 4 family (X of its sub-
sets is called an adequate (n-adequate) if it satisfies the fol-
lowing conditions:

1) O contains all one-point subsets of T.

11) A subset A of T belongs to (I 1ff every finite (k-
point, k&n) subset of A belongs to (L.

It follows from the definition of UL that if A € O , Bca,
then Be Ol . Put X mXym f7,3h € A3 c DT, where %, is the
characteristic function of A, As observed in [7], if ( is an
adequate family, then X is a compact space. We call X an adequa-
te compact in this case, Evidently, X is the Corson compact if

(L consists of at most oountable sets.

The above constructed compact space on the 2-adeqmate fa-
mily of sets coincides exactly with "the space of ocomplete sub-
graphs of a graph" defined by M. Bell [11],

The property to be a remainder of the countable discrete
space which he investigates is apart from the subject of our
paper.

A femily of all chains of an arbitrary partially ordered
set is the most useful example of adequate families.

Definition 3.2, A partially ordered set (T,<&) is called
& bush 1f for every teT the set * = {seTis<t} is totally or-
dered, A bush is called an A-bush if it does not contain an un-
countable chain. A pairwise incomparable subset of a bush is
called an antichain, Pinally, an A-bush is an S-bush provided
17| = ¥4 and it does not contain an uncountable antichain,
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The notion of a bush naturally generalizes the known con-
cept of a tree which we should obtain if we demand that the
sets Q are well ordered. In this case, under the additional as-
sumptions that all levels are nonempty and countable, any A-bush
is an Aronszajn tree and any S-bush is a Souslin tree. An Arons-
zajn troo. which is a union of a countable family of antichains
is called special [13]).

4. Results, Henceforth, X = X, is an adequate ocompact; a
is an adequate family of subsets of T. Consider the subset of
cp(x) {d; :teTd {0} , where dy(x) = x(t), xeX and (1]
is the constant zero-valued function, It is known [7] that this
set is closed in cp(x) and is homeomorphic with the space ¥ a
= T U{x} endowed with the following topology: T is the diso-
rete subspace of T*¥ and every neighborhood of the point ix3
is the complememnt of finite unions of members of .

The fact that T* is closed in cp(x) and separates the
points of X yields

Proposition 4.1. [7]. The space cp(x) is a Lindelof = -
space if end only if T* is the same.

Theorem 4.2. Let (T,<) be a bush. Let (L be a family of
its chains and X = X, be an adequate compact. Then cp(x) is a
Lindelof = -space if and only if T is a union of a countable
family of antichains.

Proof: (if). Assume that T -”};JN T,, where every T, is an
antichain., Then Tnu{x} is the one-point compactification of
the discrete space 'rn for every n€ N, hence, T* has the type

Kg . Consequently, in this case cp(x) has the type K. (ef. 7))
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and, moreover, it is a Lindelof = -space.

(only if). If cp(x) is & Lindelof X -space then,sccord-
ing to Proposition 4.1, the space T™ is the same. By the de-
finition, there is a sequence of sets {!n§ ney 3nd & collection
of compacts By3t for each point t6 T so that, for every neigh-
borhood U of the set Bt' there is ne N such that Btc Pnc U, De-
note by Ay = t*\ ($\B,), teT and V; = {teMmtecP c A, nel.
The set At is open and contains Bt' hence, it is clear that the
family {Vn’. ney covers T. Observe that the compact B, does not
contain an infinite discrete subset, therefore, it follows from
the definition of the topology on ¥ that for each t&€ T the
set B, does not contain an infinite chain., From this we conolu-
de that the set 'invn is finite, because Vnc l‘nc ‘t and ?nvnc
c?:n By for every teV,. Denote by

"N
L ftev: | taV | =m, neck, m = 0,1 00080

The set W, . is an antichain, because it follows from %< %,,
1
oD
where t,,t,e V,, that 13 a1 Bnvle Tus = Uy U, Yom
and every 'n = is an antichain,
’

Coroll .3. Let (T,£) be an Aronszajn tree. Then

cp(x) is a Lindeldf = -space if and only if (T,4) is special.

Corollary 4.4. Let (T,£) be an S-bush (in particular, a
Souslin tree)., Then X is a Corson compact, for which cp(x) is
not a Lindelof X -space.

Notice that every S-bush contains & Souslin tree. The proof
of this statement, in fact, could be easily extracted from [12].
Thus we have

Theorem 4,5. The existence of an S-bush is equivalent to

the Souslin problem.
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It is known that, by the theorem of J. Baumgartner, if
Martin axiom plus 2$° > 55, (MA + “ICH) is assumed, then every
Aronszajn tree is special, A slight generalization of the W.
Fleissner’s proof [ 13, p. 18] allows us to establish the analo-

gous assertion for A-bushes.

Theorem 4.6. (MA + TCH). Let (T,4) be an A-bush and
&
|?l<2 ° Then T is a union of a countable family of antichains.

Nevertheless, there is an A-bush (T,<) with I = 2¥° and
which cannot be decomposed into a countable family of emti-
chains. It is the matter of Example S.1.

An adequate compact constructed on an S-bush has some more

properties.

Theorem 4.7. Let (T,<) be an S-bush. Let (X be a family
of its chains and X = Xy . Then a(x) = &,, o(X) = # .

Proofs X is & subspace of DT, then d(X)£ |l = K. The
converse inequality follows from the nonmetrizability of X. In
order to prove the remaining part, according to [11, 3.3], it
suffices to show that the partially ordered set (P, ) consist-
ing of all finite elements of L , partially ordered by A<B
122 BCA, is cco. Suppose, otherwise, that {A‘g“‘,1 is an un-

countable collection of pairwise incompatible elements of
(P,<). Denote by m = max {tste A} . Since (T, %) contains
no uncountable antichain, there are distinct o, 3 < @, such
that m < m . Because @, 18 & totally ordered subset of
(T,£), it follows that A U Ay € @, eaod the elements A , Ag
are compatible in (P,%). The contradiction proves the theorem.
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As was shown by A.V. Arhangel ‘skil (cf.[1]) the construc-
tion of such a Corson compact in the framework of ZFC is impos-
sible,

Theorem 4.8. Let X be an adequate compact. Then X is an
Eberlein compact if and only if there is a partition T 'q:'EJN T:L
such that | supp xNT, | < x  for each x€X and 1€N,

Proof: (if). Denote by ;y the projection of X onto Ti’
Then the diagonal product Asfizx —, Uy 974(X) 1s the homeo-
morphic embedding of X into the countable product of strong E-
berlein compacts. Hence, X is an Eberlein compact.

(only if). Clearly, X is the zero-dimensional compact. For
the zero-dimensional Eberlein compact X the space cp(x,ﬁ) has
the type K¢ as it was observed by many authors ([51,(7]). T*
is olosed in cp(x,:b ), hence, T* also has the type Kg . Then
™ =LYy Tiu-ix} and every T, u{x} 1is compact. This means that,
if AcT; end A€ UL , then |Al< Foe

Theorem 4.9. Let X be an adequate compact, Then X is a uni-
form Eberlein compact if and only if there is a partition T =
-‘."Le}N T, and an integer-valued function N(i) such that
I supp xn T, I< H(1) for each xeX and i€N.

Proof: (if). The argument is the same as in the proof of
Theorem 4.8 with the slight difference that sri(x) in this case
is a uniform Eberlein ocompact.

(only if). We may assume that for each te T the function

Xigy € Xo Then the set S = { "m” gep 18 disorete and has & uni-
que limit point ® in X, According to [10, Lemma 3], there is
a partition T '@L‘)N (N p @nd neighborhoods Uy for each Zigyr
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t&€T in X such that if t1,t2,...,tn+1 e |"!1 are distinct, then
+4

:(\4 Ut = @. Without loss of generality we can assume that
- J

each Ut is basic, i.e.
U, ={yeXiy(t) =1, y|ut= 03, where M,c T, |M/\l< ..

o0
Thus My = T

o , Where Pn,m ={te MM | = m$. Renum-

n,m
bering r‘n,m' we obtain the partition T -iYN T, and integer-
valued functions n(i) end m(i) such that U, ={ye X:y(t) = 1,
Y|y, =0% where M cT, iM ) = m(i) for each t€ Ty, and

t

m(&)
"04 Utj = § for arbitrary distinct t, ,tz,...,tn(i)e T;. This
partition is required. The function N(i) mey be chosen as fol-

lows: N(i) = 032;_2, where m = (m(i) + 1)2 & 1, n = n(i). To

prove this, suppose on the contrary that there exist xe X and
i€ N such that |supp xn Ti\ZN(i). For every Ac supp xNTy; with
JAl = n(i) there are distinct t,sc A such that U,nU = g, ot-
herwise, ’{AGQQAUt
mulate the situation to the languaege of the graph theory. We

in contradiction with tQAUt = @. Refor-

have & graph of N(i) vertices. The vertices t and s are joined
by en edge iff U, nU_ = @. This graph has the property that

for every n(i)-tuple of vertices there exists the pair of ver-
tices which are joined by an edge. Then the Erdos-Szekeres s
estimate for the Remsey problem [15, p. 30] ylelds that there
is a complete subgraph with m vertices. Since m = (m(1) + 1)2 +
+ 1, it is easy to conclude that for some vertice %, M1 >
>m(i) holds. This is & contradiction with our assumptions and

the theorem is proved.

5. Exemples. As has been noted, every adequate compact
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is zero-dimensional. But any zero-dimensional Corson compact 1is

not necessarily a compact constructed on some adequate family of
gets., To see this it suffices to take a nonmetrizable first-co-
untable zero-dimensional Corson compaci, for instance, the Ale-
xandroff double of the Cantor cube Qso. If it were adequate,

then in consequence of nonmetrizability, 1t would contain a one-
point compactification of the uncountable discrete space in con-

tradiction with the first axiom of countability.

Example S.1. Let Q be the rationals. By 6Q we denote the
get of all bounded well ordered subsets of Q ordered as follows:
s<t iff S is a proper initial segment of t. © Q is clearly a
tree without uncounteble chains. Then by L14, Theorems 2.4, 3.3
(11)] it follows that €Q is not special.

The second example described below is obtained by the "dou-

bling" of the space constructed in [5].

Example 5.2 Let T be an arbitrary subset of the reel line
R with |TI = .)41. It can be well ordered by the type @j. De-
fine the partial ordering on T: s8<t iff s is less then t in
both the reals and the ordinals order. Denote by (/L1 and 062
the femilies of all chains end anticheins of (T, &) respective-
ly. It is well known [13, p. 8] that A= &, v UL2 consists
of at most countable sets, hence X = X, 1is an adequate Corson
compact. Let us observe that, according to the Ramsey theorem
(13, p. 7], every infinite subset of T contains an infinite sub-
set which belongs to the family (L . Show that T* and conse-
quently cp(x) fails to be & Lindelof X -space. Suppose on the
contrary that there is a family of compacts {iF 3

n’ ne
Stone-Cech compactification (T*), closed with respect to fini-

N from the

te intersections, and such that for each point xe T* the set
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B, = ﬂ&Fn:x eF ,ne N} is nonempty end contained in T#, Every

set By is compact, therefore it is finite, and since jrl =¥, it
is easy to see that some Bx is different from any Fn. We can sup-
oge that =. ®

P at By AW n’ where {n;3c N and Fni: Fni+1' Fni* By

for each i< N, Pick up points x4 & Fni\ Fn1+1. The set -ixil 1eN

ig infinite, hence, it includes some infinite subset which be-
longs to (4 . Without loss of generality we can assume that
the set {xi} 1eN has itself this property., Then, on the one hand,

{xj} 1eN is a discrete subset of T* and, on the other hand,from

¢ *hQN [-‘.xii, iz k}]a(Tg) CRQNFni = BxCT*

it follows that the set -ixi} ieN hes & limit point in T¥, This

contradiction proves the assertion.

Example 5.3. Denote by Q.  the set of all ordinal numbers
less then <, and put T = O = £, Partiel ordering on T is:
(oLqy By)< (ocz,ﬂz) 122 K q< Xy, fBq > /3, Every chain of
(T, ¢) is finite. Indeed, 1f {t} joy 18 & chsin, where ty =
= (g, (3;), then we can assume that oy <,<..., hence B>
> B> e holds, which is impossible. (T, £) has the following
property: for eny its partition at a counteble family of subsets
at least one of the subsets contains chains with any finite
lengths. Let us prove this claim. If T = yA, for each < € {1,
neN, denote by Ai’ ={BeQ:(x,B)e A}, Then “L‘/NAi = 0 and

o, = sup sup A%, One easily sees that for each « & L there
exists ne N such that sup A;' = ¢,. Consequently, there exist

Ffrce, \Cl=25, andn € N such that sup A;' = w,, for eve-
o o

ry o« € ' . We claim that for every natural k the set “n con-
o

tains & chain with the length k. To prove this let us renumber
naturally the first k elements of Miolg< Xy<ons Lye Choose
- 243 -



“x

a point ﬂkSL: o Then sup A, =t 5 @, implies the existence
) o
o
of b, <A ! with B,_,>B,. Proceeding by induction we ob-
o
o
tein the finite sequence [, <3, ,<...<[3,, where fRye ‘n: .

Clearly, {(oci, ﬁi)}fﬂ is the chain and is contained in A .
o

If X is an adequate compact construoted on the family of
all chains of (T,4 ) then, evidently, X is a strong Eberlein
compact but it is not a uniform Eberlein compact by virtue of
Theorem 4.9.

The same example shows that for an arbitrary partially or-

dered set Theorem 4.2 is not true.

The authors express their gratitude to S.P. Gul ko for nu-

merous helpful discussions and encouragement.

Remarks. Recently we have been informed that K. Alster
and R. Pol proved that their example from [5] has the same pro-
perties as our Corson compact in Example 5.2,

Also, after this paper had been prepared for print, we dis-
covered that D, Kurepa, in the paper Ensembles Ordonneas et Rami-
fies, Publ. Math., Univ. Belgrade 4(1935), introduced the notion
of pseudotrees which coincide with one of our bushes., But our

classes of bushes are investigated with other purposes.
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