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Abstract: In this peper results on thg styucture of per-
fect classes in the sense of A.V. Archangel skii [1] are pre-
sented. We give topological characterizations of compact spa-
ces X for which the space C_(X) of all continuous functions

with the topology of pointwise convergence is a X -analytic
space or a Lindelof = -gpace,

Key words: The space cp(x), ¥ -analytic spaces and Lin-
delof Z-spacea, perfect classes of compacts.

Classification: 54C35

I. A.V. Archengel ‘skii [11 introduced the notion of the
perfect class of topological spaces and proved the following
remerkable theorem

(x) Let % be a perfect class, X be a compact, YcC CP(X)
be a subspace seperating points of X and Y € 5 , Then
Cp(X) e P.

Moreover, A.V. Archangel skii [1] has shown that the class
(‘Pl of all X -analytic spaces and the class &, of &ll Linde-
1ot > -spaces [1 y 3, 6] are perfect. We need here some
strengthening of the Archangel'skii ‘s definition of a perfect
class (in [1) somewhat weaker than condition (A3) below is re-
quired). We do not know whether our definition is equivalent
to the original one, but observe that all results of (1) hold
in the new situation; the class ¥, and the class 3"’2 satisty
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our modification and, actually, we are able to establish new
facts on the structure of "perfect"” classes in this regard.
(See, for example, Remark 1.) Throughout this article we do not
use the Archangel ‘skil ‘s definition, fer this reason we venture
to preserve the same name "perfect" for the next notion:

A class P of topological spaces is said to be perfect if
it satisfies each of the following conditions.

(A1) P contains all compact spaces and the countable
discrete space N,

(A2) 1 X ¢ P and Y is a continuous imege of X or a clo-
sed subset of X then Y ¢ P,

(3) 11X €%P , ncN, then ”Eran e P,

It ?® is a perfect class we denote by 4(P) the class of
all compact Spaces X such that X ¢ € () if and only if
cp(x) € @ ., The main section III of this paper is devoted to
a study of classes ¢, = €(P)) ana ¢, = ‘G(@Q), where

T1 end 7, are as above. We give the characterization of

these classes which is similar to the Rosenthal ‘s one of Eber-
lein compacts [4] and obtain some consequences of our charac-
terization. Results in the section II are that the class ¥4(%)
is closed under some standard topological operations. We prove,
in partiocular, that if a Corson compact X is a countable union
of Eberlein compacts then X € “81. The known example in this
regard (M. Talagrand [5]) states that there exists a Corson
compact with these properties which is not an Eberlein compact,

Our terminology and notations are standard and follow the
previous author’s and A.G. Leiderman’s paper [6]. In particu-
lar, we denote by = (T) the X -product of real lines having

T as an index set,
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II. Throughout this section P denotes some perfect class.

Theorem 1. The class P contains any countable union and

any countable intersection of its elements.

Proof. &) Let X be a union of its subspaces xn and
Xn ¢ ® , neN. Then X is a continuous image of the disorete
sum Y 'm?N xn and Y is homeomorphic to the closed subspace

of (m;QN X )= N, Therefore, we obtain X € ® by (A1) - (A3).
b) Let X be a common subspace of X € »® , neN, and

X -nQN xn. Then X is naturally homeomorphic to the "diagonal®™
in WT‘TN X,» hence X can be identified with a closed subspace

of this product and X ¢ ® by (A2) and (A3).

Remark 1. By (A1) and Theorem 1 K. -spaces, hence by (A2)
K -analytic spaces belong to every perfect class 4 , Therefo-
Te 5’1 is the smallest perfect class. Is it true for perfeot
classes in the sense of A.V. Archangel skil?

Por a continuous mapping o :X —> Y, the induced contimuous
mapping aroscp(Y)—a cp(x) is defined by the formula o (f) =
= f o,

Theorem 2. The class ¥ (@) is closed under the follow-
ing operations:

a) countable products,

b) {finite unions,

¢) countable intersections,

d) ocontinuous images,

e) closed subspaces.

Proof. Let X be a product of X € %(P) and ¥ X —>X,

be a projection for each n<N. Then the set Y -ny"ﬂg(cp(xn))
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lies in cp(x) and separates points of X. By (%) and Theorem 1
we have (a), Assertions d) and e) follow from (x), (A2) and
the next general fact: o is an injection (a surjection) iff
7% 18 & surjection (an injection). To prove b) it is enough
to remark that the map f+—> (f)x ,f|x ), where X = XyuX, and
1 2

reCp(X), is a homeomorphism of cp(x) with a closed subspace of
cp(x,)x Cp(xz). Finally, the same reasoning as in the part b)
of the proof of Theorem 1 proves the point o). Q.E.D.

It should be mentioned here that a generalization of the
point b) of Theorem 2 for countable unions 1s falge, Indeed,
let X = bN be a compactification of N whose remainder bN\ N is
homeomorphic to the one-point compactification of the uncount-
able discrete space. Then X is the union of bN\ N and single-
tons {n}, neN; all of these sets are Eberlein compacts and the-
refore they are elements of €1 It is evident that X is sepa~
rable and nonmetrizable, hence, X is not a Corson compact and
by [7] X 4 €,. However, 1f we add to conditions on X to be &
Corson compact then the generalization mentioned above is true,
To prove this essertion we need some new facts concerning Cor-
son compacts.

Let us fix a Corson compact X and some embedding of X into
2 (T). One can consider the point x sy X € T, and one can
suppose that x(% ) = O for every x € = (7). Moreover, we may as-
sume that X separates points of T v i{x} , We equip the sget
T u{x! with the weakest topology for which any x€X is conti-
nuous. We denote the topological space determined in this man-

ner by 'I‘x. It is obvious that the next assertion holds,

Lemma 1. The mapping 2 : Ty —-)Cp(X) defined by 2¢(t)(x) =

= x(t), tely, xeX, 18 a homeomorphism.
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Lemma 2. There exigts an open cover -('T;"-,oc € A} of the
set Tx\{x} consisting of at most countable discrete disjoint
pubsets of ’J.‘X such that

1) sets [ae,(T;’ )]cp(x)\ {0} are disjoint in cp(x),

2) if PcTy, x € P am [Pn F1£1 for every ot ¢ A then
2¢(P) is closed in cp(x).

Proof. Since X is a Corson compact by assumption, it fol-
lows from Gul ko ‘s theorem [23 3] that there is a linear injec-
tion uch(x) —> = (S) for some set S. Observe that ue (%) =
=0 and put 2 = u ¢ *ae(Tx). The topology of the space Ty is
such that TX\U ias finite or countable for any neighbourhood U
of the point x . It follows that sets Z_ ={ze€Z3z(8)+ 0},
8¢S, are at most counteble, Letting oC,(s) = 18%, by induction
we define

pyp(8) = Ulsupp 24262, s e (8)}, nZz1,
l‘(s) 'mgan(s)’ BES.

It is easy to see that the sets «(s) are countable and either
disjoint or coincident. The last fact meens that the sets
2 (a) " (UR Zs,;s'e o« (8)} are open and either disjoint or coin-
cident, too. Finally, we put T50%) = (u ¢ %) 2 . It 18
easy to examine that the femily of sets T;(B)is desired.

QeE.De

Teke now {ti3ne N} - some enumeration of T;' and put

Tg o {t';’; o¢ € AY. The set T; 18 discrete and ae(T;) v{03} is
closed in cp(x) by Lemma 2.

Theorem 3. Let X be a Corson compact. Then there exists
a subspace Yc cp(x) which seperates points of X and which is

a union of closed (in cp(x)) sets X such that ¥, {03 is
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discrete for each ne N and the sets yn\{o; are disjoint.

Proof. It suffices to put Y = oe(Ty) and Y = ae(T;) ¥
u{0}, neN. Q.E.D.

Since ac('.l‘x) separates points of X, we infer from (%) and
Theorem 3:
Theorem 4. If X is a Corson compact then cp(x) e P 1ire

']:xed"’.

Definition 1. A set X c = (T) is said to be order closed
if it satisfies the next condition: x€X and |y(t)| £ | x(¢)|
for every tC T imply y< X. The order envelope oe(X) of X c = (T)
is the smallest order closed subset of = (T) containing X.

Lemmg 3. If X ¢ =(T) is compact then oe(X) is compact,
too.

Proof. One can consider spaces X and oe(X) lying in R T
and verify that oe(X) is closed in R T, Notice that X (and the-
refore oe(X)) in fact lies in some product of intervals

[-et,et], t €T. This proves our assertion.

Lemma 4. If a compact X ¢ = (T) is order closed then
u(Tx) is closed in cp(x).

Proof. It easily follows from definitions of topologies
in cp(x) and in Ty.

Theorem 5. Let X be a Corson compact and X € % (4°), Then
for any embedding X into =(T) the order envelope oe(X) belongs
to €(F), too.

Proof. oe X-topology on T u{ix} is a priori finer than
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X-topologys but on T;‘ u{ix? these topologies coincide, because
‘1‘2 is discrete and every oe X - neighbourhood of %X contains
some X-neighbourhood. Thus the spaces Tx and To.(x) are count-
able unions of the same subspace I; vdix} , neN. The desired

conclusion follows from Theorems 1 and 4.

Theorem 6. Let X be a Corson compact and X be a countab-

le union of elements ‘€ (%). Then X € £ (%).

Proof. Let us fix an embedding X ¢ X(T) end put

X, = 6,(1) ={x ¢ =(T)y | supp x 1413, Then X  is homeomorph-
ic to the one-point compactification of the disorete space T,
therefore X, is an Eberlein compact and X & %4 (%) by Remark
1. 12X = JyX end X 6 ¢£(F), we can aseume that X cX,C
CX,C +.o by Theorem 2(b). Every epace X, n = 0,1y000, Bepara-
tes points of T u {x} and these spaces give the increasing
sequence of topologies on T v £x} having X-topology as their
upper bound., It follows that the diagonal product of mappings

m'nx‘!x-% ‘!x , n€e N, is the homeomorphis mapping of 'J.‘x onto a
. n
closed subset of TI . T . Using (A2), (A3) and Theorem 4, we
meN In
complete the proof.

Corollary 1. If a Corson compact X is a countable union
of Eberlein compacts then X & €,.

III. We begin this section with some characterizations
of % -analytic spaces and Lindeldf =i -spaces,

Definition 2. Let X be a topological space and 7° be a
femily of open sets. The subset Yc X is said to be y'-compact
1f some finite subfamily of 7 covers Y.
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Theorem 7. a) The space X is X -analytie iff for every
ncX and every n-tuple (k, .....kn) of integers there exists
the closed subdset ‘k1 c X such that X -‘L.l" A

posey

Akv""kn = U ‘t,....,kn.k and the following is fulfilled:

for any open cover 7 of X and for any sequence {k.]‘d of in-
tegers the set ‘t1 '“"kni. 7T —-compact for all sufficiently

large nc X,

b) The space X is a Lindelof X -space iff there exists
a countable family (A of closed subsets of X such that for
any open cover 7 of X the subfemily {A ¢l j A is 7 -compact}

covers X.

Proof. We prove only the part (b), because the part (a)
oan be verified by the seme mammer. If X is a Lindelof =-spe-
ce, there is a countable family 3 of closed subsets of 3X
(AX 1s the Stone-lech compactification of X) such that B =
= N{B ¢« B 3xcAlcX for every xcX. Ve can assume that 3B
is closed under finite intersections. The family U ={BnX;
B e« B} satisfies all our requirements. Indeed, let 3 be an
open cover of X and x¢ X. There are G,,...,Gn from 3 , for
which B c GV cceUGpe It 1is evident that we have B _cBc
€ GV.ceUG for some B ¢ B , therefore, A = BaX is -
compact and contains the point x. It completes the proof,

Definition 3. The family o« 1s called weakly 6 -point-
finite if there is L, € such that for every x€X we have
<= U{asn;ntlx} where N s{nech; <, is finite at the
point x}. The family o« is called T,-separating points of X
if for amy two different points there is & o« oontaining
only one of them.
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The next two theorems are suggested by the well-kmown Ro-
senthal ‘s theorem [41.

Theorem 8. Let X be & compact. Then the following are e-
quivalents

) X e,

b) X has a weakly & -point-finite ‘!o-lopmtiu family
of open Fy subsets,

¢) there is the embedding of X into = (T) and T,cT for
each nc ¥ such that T = U{‘!n;nclx'! for every x€ X where
) w={nch T,Nsupp x is finitel.

Proof. a)=s b). Since X is e Corson compact we can assu-
me that X is embedded in X (T) in such a way that 0<£ x(t)«1
for all x¢X and tcT. We can also assume (by Theorems 2(b) and
5) that {x & = (?)y | supp x161%c X and X 1is order closed. Let
Q be a set of all rational numbers and define

ok = U{u(.r;rsQn(o,l)};

oy, m{U 43t 6Ty

U, ={xeXjx(t)>rl.

It is clear that each Urt is an open Fy set and oc is !o-np&-
rating. Moreover, it is easy to check that oc is a weakly & -
point-finite family as any oc., is the seme. Let 5:1-—# X be a
mapping defimed as follows: lr(x)(t) = x(t) 12 x(t)2 r, other-
wise M (x)(%) = 0. It is evident that lr(I) is a compact snd
M.(X)c X, Thus lr(x) is a closed subset of X, hence, M (X) e ‘62

and ,5“’e '.Pz by Theorem 4. By Theorem 6(b) there is the coun-

table femily L, =fA_yneN} of closed subsets of !"r(x) such

that
(1) Ufd e Uy Ats + -compact} = Tlr(n
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for any open cover 7 of Tlr(I)' We put o '{Urt € Xy
teAm} and show that the sequence o satiafies all condi-
tions of Definition 3. To this end let us fix x€X and an open
cover ¥ of TN (x) @8 follows: 7 consists of the set

Tb&,(x)

family of all 4 -compact seis A . covers ’ur(x)' However, it

\ supp Mr(x) end pingletons {t}, %€ supp lr(x). Then the

1s eesy to check that A, 1is 7 -compact iff A n supp %(x)
is finite iff . is finite at the point x. Therefore, the
condition (1) is equivalent to the equality

oy = U Loy o€ is finite at the point x1},

r
as required.

(b) => (c). Let £ :X—>[0,1] be a continuous function such
that £71(0) = X\U for each U € < . Define arsX—> 3 (e¢) by
a(x)(U) = fu(x). Then or is a homeomorphism. It is easy to see
that o , T = o~ and T, = o¢ , nel, satisty (o).

(¢) => (a)., If X satisfies (c) then oe(X) satisfies it,
too. We will assume that X is order closed itself, It remains
to verify that Ty e 5’2. To this end define sets Az =N{ Ty
k € 6% where 6 runs over the set L of all finite subsets of
N. Let 3 be any open cover of '.I‘.x. By the definition of the to-
pology in Tx we can assume that 9 consists of the set
TX\A.L?'! supp X, and singletons it ¢ ‘Lq;'l supp x, for some
Xqpees Xy in Xo For te Ty by (c) we can find n € N such that

Tnkn supp X, is finite for k = 14000 ,me Denoting €= 4ny,...

...,nm} we have te A, and Ay 1s 7 -compact. Thus, we get a
cover of '.l‘x consisting of 7y ~-compact sets. By Theorem T(b) 1t

suffices for the proof,
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The main steges of the following theorem are similar to
Theorem 8 and for this reason its proof is omitted.

Theoren 9. Let X be & compact. Then the following &re e-
quivalent:

ﬂ) X € ‘%1,

bv) X has a To—sepurating ferily 7 of open Fy putrets
and subfamilies Tk1...knc gy for any n-tuple (kqpeeesky) of
integers such that

- u =

DI SRR KA T AL

2) for every xe¢ X and any sequence -?k'} neN of interer
there is n, such thet Tk.‘...kn is finite at the reint x for
n2 no.

¢) There is an embedding X into > (T) in such a way thst
for some subsets '1.‘k1 x € T, the following conditions are ful-

ceeky

filled:

DT T Tigaeok, TWEN Tkt

2) 1t &kn\ is a sequence of integers amd xe¢ X then the
set Tk kf\ supp x 1is finite for all sufficiently large e.

1‘.0 n

Remark 2. It should be noted that part (c) of Theorems T

and 8 give us a new information even for Eberlein compacts.

Corollary 2. Let X € "&2. Then there exists a countable
tamily (U of closed subsets of X such thai N{A el yxcA}

ip an Eberlein compact for every x€X.

Proof. We cen assume that X satisties (c) of Theorem 8,
i,e, there is T and T c T for ne N such that X c = (T), T =
= UALT 3ne le for every x€ X where N_ is the set of all n¢ N
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for whish !nn supp X is finite. We can assume that X separates
points of P uix} . Let R, be a retraction im X (T) defined
by l.(x)(t) = x(¢) it teT , otherwise Rn(x)(t) = 0, Denote
6,(?) =fx e (1), | supp x| £ Klend A « {53 6, (Msnc,
kcN}, It is evident that all elements of (L are compact. If
z¢X snd ncN,, then R maps Ay =N {4 & 3xcAl into »
&-product of real lines, therefore, R ( X)) is an Eberlein
compact. Simce T = U -(!n;nel:}, the family of mappings R,
6N, , separates points of (L . It follows that the diagonal
product of l. is a homeomorphism of a, into the countable
product of Eberlein compacts R ( (0. ), ne¥ , hence, X 1s an
Eberlein compact too, as it is required.

Corollary 2 allows us to state next questions:

(1) Is the condition of Corollary 2 sufficient for
ek,

(2) (S.P. Gul'ko). Given X € ¢,, do there exist Eberlein
compacts X, and Corson compaots X such that X -‘.:Ju X,y and
X is a contimuous image of a closed subset of QITN I,
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