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Abstract: A uniform space is called & -di-crotu{ refin-
able If every epen cover of the space has a 6-uniformly dis-
erete refinement. This paper deals with some special covering
properties comnected with 6 -discrete refinability. We give a
characterization of &-discrete refinability and show that 6 -
discretely refinable, uniformly countably paracompact spaces
are supercomplete.
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1. Introduction. As paracompactness is one of the most
important and fruitful concepts of general topology, it is
natural to consider paracompactness in uniform spaces. (See
{51,16),[10], and [18].) In this paper we shall consider 6 -
discretely refinable spaces that were studied in [6] end [9].
The results concern the relation of 6'-discrete refinability
to other covering properties.

We refer the reader to [14] for information on uniform
spaces, If & end » are uniformities on X, then “/y de-
notes the collection of all covers of X with a refinement

of the form {U;N V%} where {01} € “ and {V’j‘} € Y for each
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i. The precompact reflection of «X will be denoted by p« X.
The fine uniformity (resp. the fine space) associated with a
completely regular space X is denoted by 3 (X) (resp. F x).
A uniform space is uniformly paracompact if every open cover
YV of X has a uniformly locally finite open refinement, or,
equivalently, the cover ¥ <% consisting of all unions of fi-
nite subsets of 7V is always uniform. (See [18].) Analogous-
ly a space (LI is uniformly countably paracompact if every
countable open cover of X has a uniformly locally fimite open
refinement. A space is uniformly pare~Lindelof if every open
cover of the space has a uniformly .loea.‘l.ly ocountable open re-
finement. '

A collection U of subsets of X is called & -uniformly
discrete if it is a countable union of its uniformly discrete
subcollections. A uniform space @ X is called 6 -disoretely
refinable if every open cover of X has a © -uniformly discre-
te refinement.

The symbol C(wX) (resp. C(X)) denotes the set of all uni-
formly contimuous (resp. contimous) real-valued funciions om
“X (resp. on X) end C ¢ . (resp. C ) denotes the uniformity
on X with the sub-basis

£277(U): % 1s & uniform cover of R, 26 c(ux),

(resp . £ C(X))3.
A hypercozero-set of the first class has the form U , &
being a 6 -uniformly discrete family ranging in
cos(uX) *4coz f:2eC(wX)}. (See (8], page 56.)
The collection of all hypercozero-sets of the first class will
be denoted by h(”oos(yx).
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2. Two characterizations. Z. Prolik proved that a uni-
form space X is © -diseretely refinable if and only if,
any two closed and disjoint subsets of X x A X can be sepa~
rated by members of h(nooz((u.x x 9 A X). Our first remark
is concerned with replacing h“)oos - normality by an eqive-
lent covering condition. In the following lemma, m denotes
the metrioc-fine coreflection and -v“) denotes the Ginsberg-
Isbell derivative of a uniformity » , »{1) = V/y .

Lemma 2.1.3 Let « X be a uniform space. Then
2V oos(uX) = cos((m ).

Proof: Pirst recall that mu 1s a point-finite uniformi-
ty and hence (I(J-)(1) is & uniformity. To show that
2 sos(uX) € oos((me){1X), 1t 1s enough to show that
Ee UtHgacateoos((me) (1), provided A} 1s o unifors-
1y discrete family ranging in cos(wX). Take for each a€i
1,6 C(wX) such that H = cos 2,. Clearly £= =2 is uni-
formly contimmous on (-p)(‘)x. Thus, He oos((-y.)“)x). sin-
ce H = coz £,

on the other hand, et H& coz((m@){1)X). By (8] there
1is a sequence {%U 1 of elements of (:l(b)“) sach that

He U{U §ThU ¢ U, and S¥(U,Up)C Huin 6 ©}-
We may and shall suppose that U are of the form
Uy ={WNWsV & wo.ve Uyl
Wao Vy being & -uniformly discrete completely cos(@X)-
additive covers, since such covers form a besis in muX.
Define for W € W,
f-uivAniVe Vy,WnVcEL

It 1s clear that for each » iWi¥W ¢ W} is a €-uniforsly
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digerete femily ranging in cos(¢X). Thus, neh(”eoz((u.x),
since B = ULU {WaW e W lin € @3-

We say that a uniform space (u.x satisfies the condition
(%) 1f for every pair A, B of closed and disjoint subsets of
I there is a sequence {% % in {A«“) such that

NE8t(A, U )im 6 @3InMNL8t(B, U )ine @} =4,

Remaxk: The spaces satisfying the condition (k) are nor-
mal. Indeed, if A, B are closed disjoint subsets of X and the-
Te exists a normal sequence il % with the intersection pro-
perty given above, then A and B have disjoint closures in the

pseudometric space corresponding to this normal sequence.

Lemma 2,2,: Let X be a uniform space. Then X satisfies
the condition (% ) if and only if, any two disjoint closed sub-
sets of X can be separated by hypercosero-sets of the first
class.

Proof: PFor sufficiency, one can easily see that X is a
normal space and h(”ooz((&x) = 00%(Z'X). Denote by D X the
distal modification of X, generated by all finite-dimensio-
nal uniform covers of X, Since X and D « X have the same u-
niformly discrete families and cos(4X) = coz(D « X), 1t 1is
clear that h{Moos(u 1) = n¢"oos(d @ X). Pollowing the proot

of Lemma 2.1 one can prove that h“)ooz((«,x)c coz((D‘u)G ).
Let A and B be closed disjoint subsets of X. It is easily seen

that the cover % =X - A,X - Bem(Du){")x. Thus there ex-

ists & uniformly contimous mapping f:(Dw)()x —>(M,¢) into
some metric space and an open cover 7V of M such that

£ (7)< U . Let V, be a cover of (M,©) by 1/n balls. Then
the desired sequence is {1 vt.
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On the other hand, suppose (x ). For any disjoint closed
sets A and B we may, of course, construct a normal sequence
v n} of covers in (m @)(1) satisfying the separation proper-
ty from (X ). Thus, A and B have disjoint closures in the uni-
formly contimous pseudometric corresponding to this sequence.
Hence, A and B can be separated by sets belonging to
oos(-y-)(‘)x - h(”ooi(e-l).

We obtain the following corollary.

Theorem 2.3.: Let @ X be a uniform space. The following
statements are esquivalent:

(1) X is 6 -discretely refinable;

(11) X x 7 3 X satisfies the condition (X).

Proof: The claim follows immediately from the results
of (8], where it was we proved X is @ -discretely refinab-
le iff any two disjoint closed subsets of X x FAX cen be
separated by a bypercozero-set of the first class.

Proposition 2.4.: Let X be a uniform space. Then the
following statements are true:

(1) X satisfies the condition (%) iff for every pair A and
B of closed disjoint subsets of X there exist a closed
cover 1P % of X and a sequence {U_% of covers in &(1)
such that for each n
St(A, U INSEB U IND, =6

(11) (u—x is & -discretely refinable iff for every open co-
ver V there exists a closed countable cover {!n} of X
such that for each n the restriction

VP, is  uniform cover of P,
Proof: Exercise.
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Remark: A uniform space « X is C-normal L10] if every
finite open cover of X belongs to (4-(1). The above proposi-
tion and Theorem 2.3 show that the condition (%) is related
to C-normality as 6 -refinability is related to uniform para-
compactness. (Recall that a topological space X is called sub-
normal [2] if any two disjoint closed subsets of X can be se-
parated by Gy -sets.)

6 ~discretely refinable — hn)ool-noml

. .
. L]
o .

uniformly paracompast —> C-normal

Lemma 2,5.:1 Let «X be a uniformly countably paracompact,
G -discretely refinable metrio-fine uniform space. Then (41
is uniformly paracompact.

Proof: it is enough to show that 7" <% is a uniform co-
ver, provided ¥ is a 6-uniformly discrete open cover. Let
Ve t,J V', each ’ll'n being uniformly discrete. Let U be a
uniform cover such that wZ LU ’U’n}<0 . Take for any n a
uniform cover W suoh that ist(v, W )W e Wt witnesses

disoreteness of V,..., V. Take for each x n €@ such

n
4 X >
that St(x, U ) c Uy U V4. Obviously, the cover

G =48%(x, U A Wm‘)sxex} refines V<% . Since “Xis
metrio-fine, G is a uniform cover.

A family &V‘! of subsets of a uniform space «X is called
€ -uniformly disoretely refinable if there exists a 6 -uni-

formly disorete colleotion AU refining iV,t such that UU =
= U {V“'z.

- 208 =



Lemma 2,6,: Let « X be a uniform space, let >’ be a oom-
patible uniformity on X such that every uniformly discrete fa-
mily in v X is 6 -uniformly discretely refinable in (+“X. Then
@X 1s 6 -discretely refinable, provided ( «« A V)X is 6=~
discretely refinable.

Proof: It is enough to show that any uniformly disorete
family in ( @ A V)X is € -uniformly discretely refinable in
« X.

Let % = {H_:a<A} be a unifommly discrete family in
( @ A » )X. Then there exist covers U/ and vV €& -uniformly
discrete in @« X and » X respectively such that WA U wit-
nesses the discreteness of @ . Obviously, 7" hes a 6 -uni-
formly discrete (in @ X!) refinement V' . Let W= vw,,

V= UV, , W,, 7V, being uniformly discrete families in
~X. Then for every n, m
g,n'm ={H,nVnTU:a€A, Ue WyoV € 1)‘m‘§

is a uniformly discrete family in w X. Thus,
G = ;qu,n'm is & & -uniformly discrete refinement of I

Corollary 2.7.: Let @ X be a uniformly countably para-
comp ct uniform space. Then the following statements are equi-
valent:

1) @Xis & -discretely refinable;

ii) m @wX is uniformly paracompact.

Corollary 2,8.: Let wX be a uniform space. Then the
following statements are equivalent:

i) wXis 6 -discretely refinable;

11) m(C A~ @)X is uniformly paracompact.

Remark: It should be noted that the term C cannot be o-
- 209 -



mitted from ii) in Corollary 2.8. To see this, let X be the
set 01 X @ and define a uniformity @ on X by the basic co-
vers

U, =iiplxwicsfl= @ 3 ui(pB,n): <t ,new}

where & < 601. Then wX is a 6’ -uniformly discrete metric-
fine space which is not uniformly paracompact, Indeed, the co-
ver of X by one-point sets does not have a uniformly locally
finite refinement. In this context it should be noted that M X
is uniformly para-Lindelof.

3. Supercompleteness. A uniform space is supercomplete
(C13)) if the hyperspace H(uX) of all closed subsets of X
(0141, p. 28) 1s complete. By [13], @ X is supercomplete if
and only if, X is paracompact and A u X = F X, where A is
the Ginsberg-Isbell locally fine coreflection. Uniformly para-
compact spaces are supercomplete since by [18] the equation
pg,/(.Ax = ¥ X holds for every uniformly paracompact space
4 X. On the other hand, complete 6 -discretely refinable sp &~
ces need not be supercomplete. The second author has shown in
[12]1 that a fine paracompact p-space X has the property that
X x Y 18 supercomplete for any fine separable metrizable space
Y if and only if, the space X is C-scattered.

Let X be a completely reguler space. Then by Theorem 2 in
£5), X 1s Lindelof if and only if, CX is uniformly paracompact.
Indeed, one can show that X is Lindelof if and only if, CX is
supercomplete. A paraccmpact space X is uniformly countably
paracompact if and only if, every fe C(X) is uniformly locally
bounded. (See [101,) Thus, if X is a paracompact non-Lindelof

spece, then CX is a uniformly countably paracompact space which
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is not supercomplete., Moreover, we obtain the following result:

Proposition 3.1.: Let X be a uniformly countably para-

compact, 6 -discretely refinable space. Then every open cover

of X belongs to p@/(w(”.

Proof: Let U be an open cover of X. Por each xe€ X, choo-
2
se V. €V end an open U, e @ such that St°(x, U )cV,.
Now W =4St(x, ‘ux)zxe X} is an open cover of X end hence it
hes & © -uniformly discrete open refinement W’ . Write W’ =
= U ’tlfn. where each Wn is uniformly discrete relative to
(un

table open cover of X. By uniform countable paracompactness the

e@ .Put G, =U W, . Then q--ﬁ.(}nxnew} is a coun-

A
cover g.:w is uniform, For each n € @ define U, = U ;A
Aeee AU . Let

A L
® o= UM 6y)

end let ¥ = ULE ne @}t , Then ¥ e @L“) and each member

of 3 is contained in the union of & finite subfamily of W~

Given H ¢ # , let FycX be a finite subset with

Hec Ust(x, U, ):ixeFylk. Put Uy = AL U _:xePyl. If x€H,
then there is & ye¢ Fy such that x¢ st(y, ’zly) end consequent-
1y st(x, Uyc sti(y, U). Thus,

{Stz(y. ’uy)zyc Fy3 M H and e fortiori
{Vy:ycFH} MH is a uniform cover of H. Put

D = AHAV,:x€ Pyl
Then D e p@/(k(” and B < VY, as required.

Corollary 3.2.: If X is a uniformly countably paracom-

pact and uniformly pera-LindeJ.3t space, then every open cover

of X belongs to pp./,_u-(”.
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Proof: Trivial, since uniformly para-Lindelof spaces are
6 -discretely refinable.

Corol «3.: Uniformly countaebly paracompact, & -dis-
cretely refinable spaces are supercomplete. In partioular, uni-
formly countably paracompact uniformly para-Lindelof spaces are

supercomplete.

Remark: By an argument more elaborate than that used in
proving 2.5 and 2.6 one can establish the following: the local-
ly fine coreflection of & uniform space «X is & -discretely
refinable iff m «w X is supercomplete. (This follows from the
fact that the metric-fine coreflection of a locally fine space
is locally fine.)

In the following we shall consider a special class of su-
percomplete spaces. A uniform space lux is equinormal if any
two two closed disjoint subsets of X are separated by (4.~un1-
form neighbourhoods.

Proposition 3.4.: Let X be an equinormal and uniformly
locally connected space. Then every continuous real-valued func-
tion on X is uniformly continuous.

Proof: Let £:X — R be & continuous function. One can ea-
sily for € > O construct two closed disjoint sets A, ,chf(x)
such that

1) a(Aqy,A;) Z€/8

2) for each rcf(X) d(x,AjUA,)<€/8

3) for each acAy if la” - al<€/4, a’c Ay, then & = a’.

Teke By = -1 “1)' Then B,, B, are closed disjoint sub-
sets of X. Then there is a uniform cover U of ‘u-x consisting
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of connected sets such that St(Bv'u)n B, = @. Let for U &
< aiam £(U) Z © . Then there are r,<r,€f(U) such that
r, - r1>3€/4. Since U is connected, I(U):(r1,r2). Thus,
obviously, £(U)n Aq#@+2(U)n Aj. Contradiction.

Corollary 3.5.: Let wX be an equinormal and uniformly
locally connected space. Then every family ¥ of real-valued
continuous functions on X with topologically discrete family
of supports is equiuniformly continuous.

Proof:s Let ¥ = 4f.}, let e > 0. Since = =12, is uni-
formly continuous, we can find a uniform cover U of X con-
gisting of connected sets such that for U e U daiam £(U) <€/2.
Let fhere be, for 'some a &nd some U, points x and y such that
\fa(x) - fa(y)\ > &€ . We may suppose x€coz £, fa(y) = 0.
Then fa(x) z € ., Thus, fa(U) ><0,€> , which is impossi-
ble.

Remark 1l: The uniform spaces whose continuous real-valu-
ed functions are uniformly continuous, were characterized by
Atsuji [1), It seems that our proof of 3.5 cannot be simpli-
fied by the results proved therein.

Remark 2: 1In [16], J. Negata stated that a locally com-
plete, paracompact, equinormal and uniformly locally connec-
ted space is complete., However, if the cardinelity of the spa-
ce is non-measurable, then by Katdtov-Shirote theorem the spa~
ce is realcompact and consequently (by Proposition 3.4) C X =
= C 7% X is complete., Hence, barring meamrable cardinals it
follows that w < C % X is complete even without the assumpti-
on that the space is locally complete., However, the full use

of 3.5 give even nore.
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A family ¥ of functions is called € -equiuniformly con-
tinuous if it is the union of countable collection of equiuni-

formly continuous families,

Lemma 3.6.: Let X be & uniform space such that every
open cover of X has a 6 -equiuniformly continuous partition

of unity. Then m X is fine uniformly compact.

Proof: Suppose that Va = €0z ta' {fa} being an equiuni-
formly continuous pertition of unity, Then the map f = (fa)A:
t »X — £,(A) is unifornly continuous. Define B, = {x:
tx  £(X), x(e) > 0%. B, is an open cover of f£(X), thus {Val is
& uniform cover of mw X simce V, = ! ().

Now, let ¥ = U S'n, each '&"n being an equiuniformly ocon-
tinuous femily. Then

En(xy) = sup {12,(x) - £,(y) 32, € ¥} is uniformly
continuous pseudometric, & (x,y)< 1. Thus,

g(x,y) = =271 & ,(x,y) 1s uniformly continuous and all
functions from F are Lipschitz with respect to & . Replacing
a function f e Tn by 2" copies of the function 2~Pf we get an

equiuniformly continuous partition,

Lemma 3.7.: Let « X be an equinormal, uniformly locally
connected, topologically paracompact space. Then m (u.x is a

fine uniformly paracompact space.
Proof: Since every open cover of a paracompact space has

a partition of unity with a topologically discrete family of
supports, the claim follows immediately from 3.4 and 3.6.

Corollary 3.8.: Let X be an equinormal, uniformly lo-
cally connected, topologically paracompact space. Then “X1is

supercomple te,
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Proof: By 3.4, wX is uniformly countably paracompact.
Thus, the claim follows from 3.3 and 3.7.

4., Concluding remarks. We have not been able to solve ihe
question whether a uniformly countably paracompact, uniformly
para-Lindelof spaces are uniformly paracompact. In a metric
case, the answer is yes, since a uniformly countably paracom-
pact space is uniformly paracompact [11)., In distal spaces
(81, the answer is likewise yea, since each distal space hes
a basis of covers which are finite unions of uniformly discre-
te families. Obviously, the answer is affirmative for both lo=-
cally fine and separable spaces. Distal, locally fire and se-
parable spaces have one property in common: they admit & point-

finite basis. In fact, we have the following simple result.

Proposition 4.1.: Let wX be a uniformly para-Lindelof,
uniformly countably paracompact uniform space with point-fini-
te basis. Then s X is uniformly paracompact.

Proof: Let U be an open cover of X. As (u.x is uniform-
ly para-Lindelof, there is a uniform cover V' , uniformly lo-
cally finite with respect to the cover W , such that for each
V « V' there is a sequence {UX} such that V ¢ UUX, UX e U.

Define V, = U{Uzzv e V%, Since X is uniformly countab-
1y paracompact, there exists a uniform cover M of X, B < %,
such that B < 4V 3% , Take B € B . BcV,u...uV,. B in-

tersects just Vq,...,V, from 7" . Thus
v
B 5?4 e Ul
Thus, B < U<“ and « X is uniformly paracompact.
A collection U of subsets of a topological space X is
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called a k-network if for each compact subset Cc X and each
neighbourhood U of C there is a finite subfamily ¥ ’c 7 such
that Cc U U’c U, A regular space with a &-locally finite k-
network is called an w-space [17]. The proof of the following
lemma is straightforward.

Lemma 4.2.: A uniform space X is a 6 -discretely re-
finable K -space if, and only, @ X has a 6 -uniformly local-
ly finite k-network.

M. Kubo proved in [15] that if X is a paracompact & -
space, then the hyperspace K(X) of compact subsets of X is a
paracompact {5 -space, The same proof can be modified to es-—
tablish the following proposition.

Proposition 4,3.: If “ X is & & -discretely refinable
% -space, then so is K( u X).

M. Coban noted in [3] that the hyperspace K(X) of a para-
compact p-space is a paracompact p-space. It is not difficult
to establish the following enalogue.

Proposition 4.4.: If wX is a & ~discretely refinab-
le p-space, then so is K( «X).

Acknowledgment: The authors express their gratitude to

Z. Prolik for discussing paracompactness in uniform spaces.
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