

Werk

Label: Remarks

Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log22

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ANNOUNCEMENT OF NEW RESULTS

EXTENSIONS OF MAPPINGS FROM PRODUCTS

M. Hušek (Sokolovská 83, 186 00 Praha 8, Czechoslovakia), J. Pelant (Žitná 25, 115 67 Praha 1, Czechoslovakia), oblatum 20.12. 1983

In the following results, {X,} is a family of metric spaces, I is a subset of ΠI_i such that \overline{I} is regularly closed. <u>Proposition.</u> For every locally finite cover $\mathcal U$ of X composed of sets regularly open in X there exists a σ -discrete (in ΠX_1) locally finite (in the G_{σ} -closure of X_{ν} ($\Pi X_1 - \overline{X}$)) collection V composed of basic open sets in πX_i such that the trace of V on X refines $\mathcal U$.

Corollaries: 1. The fine uniformity of X is the restriction of the fine uniformity of the $G_{d'}$ -closure of X $\sqrt{\Pi}$ X_i - X_i.

- 2 (Ščepin). Every regularly closed subset of ΠX_i is a zero set.

 3. Every continuous mapping on X into a Banach space (normed space if X is closed) can be continuously extended onto the $G_{\sigma'}$ -closure of X_{\cup} ($\Pi X_i \overline{X}$), in particular, onto ΠX_i if $\overline{X} \overline{X}$
- contains no nonvoid $G_{O'}$ -subset of ΠX_1 .

 4. Every continuous mapping on X into a topologically complete space (e.g. into a paracompact or realcompact space) can be continuously extended onto the $G_{O'}$ -closure of X.
 - 5 (Pelant). Locally fine spaces are subfine.

The above results can be applied e.g. when X contains a Σ -product of $\{X_{\underline{i}}\}$ or is regularly closed; or as the description of the fine uniformity on TI I,

In the case that $pr_JX = W_JX_i$ for all countable J, we can prove an analogy of the Proposition also for paracompact p-spaces X_i.

