Werk Label: Article Jahr: 1984 **PURL:** https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log21 ### **Kontakt/Contact** <u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen # COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,1 (1984) ## TWO NOTES ON LOCALLY FINITE CYLINDRIC ALGEBRAS P. ZLATOS Abstract: Locally finite cylindric algebras of any dimension are shown to be equivalent as a category to a variety of heterogeneous algebras. The notion of relative homomorphism of cylindric algebras generalizing the notions of homomorphism and relativization map is introduced. Based on some metalogical considerations uniform relativizations and uniform relative homomorphisms of locally finite cylindric algebras are studied. Key words: Cylindric algebra, locally finite, neat reduct, heterogeneous algebra, relativization, homomorphism. Classification: Primary 03G15 Cylindric algebras provide an algebraization of the predicate calculus. But from the metalogical point of view, the locally finite (dimensional) ones corresponding to finitary first order theories are of main interest. For any infinite ordinal α the class Lf_{α} of locally finite cylindric algebras of dimension α is a proper subclass of the variety CA_{α} of all α -dimensional cylindric algebras, closed under subalgebras, homomorphic images and finite direct products. However, for α infinite Lf_{α} suffers from a defect - it is not a variety, being not closed under infinite direct products; it is not even an axiomatic class - the closeness under ultraproducts fails. One aim of this note is to show that Lf_{α} considered as a category with ordinary homomorphisms is equivalent to a variety of heterogeneous algebras, providing so with a supplement the results of Andréka, Németi [2] describing the first order theory of Lf_d. The second part starts from the definition of the notion of relative homomorphism generalising both the notions of homomorphism and relativisation map. As communicated to the author by Mémeti [10], this question was raised by Henkin. As expected, cylindric algebras with relative homomorphisms form again a category. After it, the results will be applied to obtain the definitions of uniform relativisation and uniform relative homomorphism of locally finite cylindric algebras which are more sound with the concepts of relativisation of formulas and relative interpretation between first order theories known from the first order logic, contributing to the solution of Henkin's question and providing the paper of Zlatoš [14] with some necessary background. The author would like to express his gratitude to Istvan Nemeti for valuable discussions and improving remarks. ### 1. The equivalence of Lf. and HCA. For fundamentals on heterogeneous algebras and category theory the reader is referred to Birkhoff, Lipson [3] and to Mac Lane [8], respectively. Concerning cylindric algebras we accept the terminology and notation of Henkin, Monk, Tarski [6], with some minor modifications to be just introduced. For typographical reasons algebras are denoted by underlined capital Latin letters instead of (nonunderlined) German ones. Their universes are denoted by the same letters without underlining. In the definition of α -dimensional cylindric algebras, α is allowed to be an arbitrary set, not just an ordinal. For $\underline{A} \in CA_{\alpha}$ and $p \subseteq \alpha$, $\underline{Rd}_{p}\underline{A}$ denotes the reduct of \underline{A} obtained by deleting the cylindrifications c_{i} for $i \in \alpha \sim p$ and diagonal elements $d_{i,j}$ for $\langle i,j \rangle \in {}^{2}\alpha \sim {}^{2}p$. Clearly, $\underline{Rd}_{p}\underline{A} \in CA_{p}$. Let us recall that for a CA_{α} \underline{A} and $x \in A$ the dimension set of x is $$\Delta x = \{i \in \alpha : e_i x \neq x\},$$ and \underline{A} is locally finite ($\underline{A} \in Lf_{\alpha}$) iff Δx is finite for each $x \in A$. Since $Lf_{\alpha} = CA_{\alpha}$ for α finite, we assume that α is a fixed infinite set containing a distinquished element θ , from now. Nevertheless, all the results bellow trivially remain true for finite α , as well. Fin α denotes the set of all finite subsets of α . A heterogeneous cylindric algebra \underline{G} of dimension α consists of the following data: - a nonempty set G_p for each $p \in Fin \propto$, together with operations +, ·, -, 0, I, c_i , d_{ij} (i,j \in p) of usual arities converting G_p into a cylindric algebra $\underline{G}_p \in CA_p$; - unary operations $\overrightarrow{pq}\colon G_p\longrightarrow G_q$, $\overleftarrow{pq}\colon G_q\longrightarrow G_p$ for all $p\subseteq q\in Fin \ll$, subject to conditions - (1) $\vec{p}_p = Id^{\dagger}G_p$, (2) $\vec{q}_p \cdot \vec{p}_q = \vec{p}_p \cdot (p \leq q \leq r)$, (3) $$\overrightarrow{pq}: \underline{G_p} \longrightarrow \underline{Rd_p}\underline{G_q}$$ is a homomorphism of GA_p 's $(p \subseteq q)$, (4) $$c_{\underline{i}}\overrightarrow{pq}x = \overrightarrow{pq}x$$ $(p \leq q, i \in q \sim p, x \in G_p),$ (5) $$\overrightarrow{pq} \circ \overrightarrow{pq} = Id \cap G_p \quad (p \subseteq q),$$ (6) $$\overrightarrow{pq}(\overrightarrow{pqx}) = e_{(q \sim p)}x$$ $(p \in q, x \in G_q)$, (where $e_{(r)}x = \begin{cases} x & \text{if } r = \emptyset, \\ e_{i_1} \cdots e_{i_k}x & \text{for } r = \{i_1, \dots, i_k\} \in \text{Fin } \infty \end{cases}$): All the conditions above can be easily reformulated into identities, hence, heterogeneous algebras of dimension α form a variety HCA $_d$. Any $\underline{G} \in HCA_{\alpha}$ raises to a direct system of finite dimensional cylindric algebras $\langle \underline{G}_p, \overrightarrow{pq}; p \subseteq q \in Fin \alpha \rangle$ over the directed poset $\langle Fin \alpha, \subseteq \rangle$. We put $$\underline{D1} \underline{G} = \underline{1im} \langle \underline{G}_{p}, \overrightarrow{pq} \rangle$$. The last formula needs an explanation since the algebras \underline{G}_p are not of the same type. Nevertheless, the standard direct limit (colimit) construction, as described e.g. in Grätzer [4], still works since the types of the \underline{G}_p 's form a direct system, too, and all the necessary preservation properties are guaranted by the identities (1) - (6) of HCA_d . In this way $\underline{Dl}_{\underline{G}}$ naturally becomes an algebra from Lf_d . Details are left to the reader. From the metalogical point of view the transition from \underline{G} to \underline{Dl} \underline{G} presents the effect of reconstructing the cylindric algebra of a theory in variables v_i ($i \in \alpha$) from its parts formed by formulas depending only on finitely many variables $\mathbf{v_i}$ (i \in p) where p runs over Fin α . Similarly, if V is a set and $\underline{\mathbf{G}}_p$ is the cylindric algebra of all subsets of the cartesian space p_{V} , $\underline{\mathbf{Dl}}$ $\underline{\mathbf{G}}$ can be identified with the cylindric algebra of all subsets of q_{V} depending only on finitely many coordinates (i.e. a relation $\mathbf{r} \subseteq q_{V}$ belongs to $\underline{\mathbf{Dl}}$ $\underline{\mathbf{G}}$ iff there is a finite subset $\mathbf{p} \subseteq q_{V}$ such that for all $\mathbf{a}, \mathbf{b} \in q_{V}$ holds: if $\mathbf{a} \upharpoonright \mathbf{p} = \mathbf{b} \upharpoonright \mathbf{p}$ then $\mathbf{a} \in \mathbf{r}$ iff $\mathbf{b} \in \mathbf{r} = \mathbf{consult}$ [6], [7]). Given a homomorphism $h\colon \underline{G} \longrightarrow \underline{H}$ in HCA_d the direct limit construction yields a homomorphism $$\underline{D1} \ h = \underbrace{1im}_{p} h_{p} : \underline{D1} \ \underline{G} \longrightarrow \underline{D1} \ \underline{H} \ .$$ We have obtained a functor $\underline{Dl} : HCA_{\alpha} \longrightarrow Lf_{\alpha}$. On the contrary, to each $\underline{A} \in Lf_{\infty}$ one can assigne a heterogeneous cylindric algebra $\underline{Nr} \ \underline{A}$ - the neat reduct complex of \underline{A} - in the following way: For $p \in Fin \propto (\underline{Nr} \ \underline{A})_p = \underline{Nr} \underline{A}$ is the p-th neat reduct of \underline{A} ($\underline{Nr}_{\underline{p}}\underline{A} = \{x \in A: \Delta x \subseteq p\}$ and $\underline{Nr}_{\underline{p}}\underline{A} \in CA_p$ is a subalgebra of $\underline{Rd}_{\underline{p}}\underline{A}$ - see [6]), for $p \subseteq q$ $\underline{pq}: \underline{Nr}_{\underline{p}}\underline{A} \longrightarrow \underline{Nr}_{\underline{q}}\underline{A}$ is simply the inclusion map and $\underline{pq}: \underline{Nr}_{\underline{q}}\underline{A} \longrightarrow \underline{Nr}_{\underline{p}}\underline{A}$ is the generalized cylindrification $c_{(q \sim p)}$. Obviously, an algebra from \underline{HCA}_{∞} was obtained. The intuitive metalogical or geometrical meaning of this construction is self-explanating. If $f: \underline{A} \longrightarrow \underline{B}$ is a homomorphism in Lf_{α} then the system of restrictions $f_p = f \upharpoonright Nr_p \underline{A} : \underline{Nr_p} \underline{A} \longrightarrow \underline{Nr_p} \underline{B}$ defines a homomorphism $\underline{Nr} f = \langle f_p \colon p \in Fin \alpha \rangle \colon \underline{Nr} \underline{A} \longrightarrow \underline{Nr} \underline{B}$ in HCA_{α} . In this way a functor $\underline{Nr} \colon Lf_{\alpha} \longrightarrow HCA_{\alpha}$ was obtained. Theorem 1. The functors \underline{Dl} and \underline{Hr} are pairwise inverse equivalences between the categories HCA_{sc} and Lf_{sc} . Proof. One has to show that there are natural isomorphisms $\underline{a}: \underline{Id} \vdash \underline{HCA}_{\alpha} \xrightarrow{\sim} \underline{Hr} \circ \underline{Dl}$ and $\underline{\theta}: \underline{Dl} \circ \underline{Nr} \xrightarrow{\sim} \underline{Id} \vdash \underline{Lf}$, i.e. that for all $\underline{h}: \underline{G} \longrightarrow \underline{H}$ in \underline{HCA}_{α} and $\underline{f}: \underline{A} \longrightarrow \underline{B}$ in \underline{Lf}_{α} the following two diagrams commute: The verification based on (1) - (6) is straightforward. The functor \underline{Dl} can be regarded via the composition with the embedding $\underline{J}\colon Lf_{\alpha} \longrightarrow CA_{\alpha}$ as a functor $\underline{Dl}' = \underline{J}\circ \underline{Bl}\colon HCA_{\alpha}$. On the other hand, the neat reduct complex construction applies to arbitrary cylindric algebras not just to locally finite ones, giving an extension $\underline{Nr}'\colon CA_{\alpha} \longrightarrow HCA_{\alpha}$ of \underline{Sr} . Corollary 1. The functors Dl' and Mr' are adjoint, (of course, Dl' is the left and Mr' the right adjoint). Proof. Both possible ways, either to constitute the natural isomorphism of homesets $CA_{\alpha}(\underline{D1'G}, \underline{A}) \cong HCA_{\alpha}(\underline{G}, \underline{Hr'A})$ er via the unit $\underline{a'}: \underline{Id} \cap HCA_{\alpha} \longrightarrow \underline{Hr'} \circ \underline{D1'}$ and counit $\underline{\theta'}: \underline{D1'} \circ \underline{Nr'} \longrightarrow \underline{Id} \cap CA_{\alpha}$ extending \underline{a} and $\underline{\theta}$, respectively, are straightforward. (Note that $\underline{a'}$ is still an isomorphism.) Corollary 2. Lf. is a full coreflective subcategory of $CA_{\rm cl}$. Proof. Dl o Nr' is the right adjoint to the inclusion functor \underline{J} . The natural embedding \underline{Dl} Nr' $\underline{A} \longrightarrow \underline{A}$ is the coreflection of the object $\underline{A} \in CA_{cl}$ in Lf_{cl} . (Of course, this result can be established also directly. Namely, in every $\underline{A} \in CA_{cl}$ the finite dimensional elements form a subalgebra of \underline{A} which is isomorphic to \underline{Dl} Nr' \underline{A} , and the inclusion map has the desired universal property.) From Theorem 1 follows the fact proved by Andréka, Gergely, Mémeti, Sain [1] that the category Lf_{ω} is both complete and cocomplete. The proof of existence of products in Lf_{ω} and their description is due already to Preller [11]. We can give an alternative description of Lf_{ω} -products: To compute ${}_{1}P(\underline{A}_{t}:t\in T)$ in Lf_{ω} one has first to compute $P(\underline{Mr},\underline{A}_{t}:t\in T)$ componentwise, meaning $$(P(\underline{Nr} \underline{A_t}: t \in T))_p = P(\underline{Nr} \underline{A_t}: t \in T)$$ the right side product being already direct, and pass to the direct limit $$P(\underline{A}_t: t \in T) \cong \underline{D1} P(\underline{Nr} \underline{A}_t: t \in T)$$. Remark. In the special case $\alpha=\omega$ (the set of all natural numbers 0, 1, ...) the type of algebras in HCA_{α} can be done less cumbersome. Any algebra $\underline{G} \in \text{HCA}_{\omega}$ is completely determined by its components \underline{G}_n and unary operations $\underline{J}_n=n n+1$: $\underline{G}_n \longrightarrow \underline{G}_{n+1}$, $\underline{e}_n=n n+1$: $\underline{G}_{n+1} \longrightarrow \underline{G}_n$ ($n \in \omega$). (Let us recall that $n=\left\{0,1,\ldots,n-1\right\}\in \text{Pin}\,\omega$ for $n \in \omega$, so that $\omega \in \text{Pin}\,\omega$.) Finally, we give the description of the variety (equivalent to) HCA_{ω} in this presentation: An algebra \underline{G} in HCA $_{\omega}$ consists of a system $\langle \underline{G}_n \colon n \in \omega \rangle$ of algebras $\underline{G}_n \in CA_n$, homomorphisms $j_n \colon \underline{G}_n \longrightarrow \underline{Rd}_n\underline{G}_{n+1}$ and mappings $e_n \colon \underline{G}_{n+1} \longrightarrow \underline{G}_n$ satisfying $$c_n j_n x = j_n x$$, $e_n j_n x = x$, $j_n e_n y = c_n y$ for all $n \in \omega$, $x \in G_n$, $y \in G_{n+1}$. The reader can compare the heterogeneous cylindric algebras of dimension ω with the heterogeneous clones of Taylor [13]. The analogy is transparent. The former provide an algebraisation of the first order logic while the latter do the same for the equational logic. ### 2. Uniform relativisations and relative homomorphisms Let $\underline{A} \in CA_{\alpha}$, $a \in A$. The relativization of \underline{A} with respect to \underline{a} is an algebra of the same type type as \underline{A} denoted by $\underline{Rl}_{\underline{a}}\underline{A}$ with carrier $Rl_{\underline{a}}\underline{A} = \left\{ x \in A \colon x \leq a \right\}$. The Boolean operations and diagonal elements in $\underline{Rl}_{\underline{a}}\underline{A}$ are defined in such a (unique possible) way that they are preserved by the canonical map $rl_{\underline{a}} = \left\langle a \cdot x \colon x \in A \right\rangle \colon A \longrightarrow Rl_{\underline{a}}\underline{A}$. The cylindrifications c_1^a on $\underline{Rl}_{\underline{a}}\underline{A}$ are defined by $c_1^a x = a \cdot c_1 x$ for $a \geqslant x \in A$ (see [6]). In general $\underline{Rl}_{\underline{A}}$ needs not to be a CA_{α} , and even if this is the case, the relativization map $rl_{\underline{a}} : \underline{A} \longrightarrow \underline{Rl}_{\underline{A}}$ needs not to be a homomorphism unless $\Delta a = \emptyset$ - otherwise it does not preserve the cylindrifications (see Németi [9]). So it seems meaningful to try to define a minimal class of maps between CA_{α} 's closed under identity and composition containing both homomorphisms and relativization maps. Let us regard the relativization maps in form $rl_{\alpha} = \langle a \cdot x : x \in A \rangle : A \longrightarrow A$ for this purpose. Let \underline{A} , $\underline{B} \in CA_{\alpha}$. A map $f: A \longrightarrow B$ is called a relative homomorphisms from \underline{A} to \underline{B} if there is a homomorphism $h: \underline{A} \longrightarrow \underline{B}$ such that for each $x \in A$ holds $fx = fI \cdot hx$, i.e. iff f decomposes into a homomorphism and a relativization map Obviously, every relative homomorphism $f: \underline{A} \longrightarrow \underline{B}$ preserves joins and meets (regarding f as a map $f: \underline{A} \longrightarrow \underline{Rl}_{fl}\underline{B}$, it preserves all the Boolean operations and diagonal elements, as well). We subsume all the basic facts about relative homomorphisms in the theorem bellow. Theorem 2. (i) Every homomorphisms of cylindric algebras is a relative homomorphism. A relative homomorphism f is a homomorphism iff fI = I. - (ii) For every $\underline{A} \in CA_{\alpha}$, $a \in A$ the relativization map rl_{a} is a relative endomorphism of \underline{A} . - (iii) If $f: \underline{A} \longrightarrow \underline{B}$, $g: \underline{B} \longrightarrow \underline{C}$ are relative homomorphisms of α -dimensional cylindric algebras then $g \circ f: \underline{A} \longrightarrow \underline{C}$ is a relative homomorphism, as well. (iv) Every class of mappings between CA 's containing all the homomorphisms and relativization maps closed under composition has to contain all relative homomomorphisms between them. Proof. (i) and (ii) are trivial, (iv) was already preved (see the last diagram). As for (iii), let h: $\underline{A} \longrightarrow \underline{B}$, k: $\underline{B} \longrightarrow \underline{C}$ be the homemorphisms inducing f, g, respectively. Then g of is induced by k o h. Let us compute for $x \in A$: $$(g \circ f)x = g(fI \cdot hx) = gfI \cdot gI \cdot khx = (g \cdot f)I \cdot (k \cdot h)x$$. A deepper study of the category CA with relative homemorphisms is postponed, as usual, into some future works. Let us turn our attention to another but related problem concerning locally finite cylindric algebras. The following type of relativization can be found quite often (if not exclusively) in the first order logic: Given a unary predicate (or a formula with a single free variable) P such that $\exists x P(x)$ holds, the value of any variable occurring in a formula φ is bounded by P (e.g. $\varphi^P(z) \equiv (P(z) \Rightarrow \exists x (P(x) \land \forall y (P(y) \Rightarrow x \neq z \land R(x,y,z)))$ corresponds in this way to $\varphi(z) \equiv \exists x \forall y (x \neq y \land R(x,y,z)).$ In the cylindric set algebra of all subsets of the Cartesian space "V this presents the effect of relativization with respect to an element "U where U is a nonempty subset of V. However, for $\underline{A} \in Lf_{\alpha}$, $a \in A$, $\Delta a \subseteq \{0\}$, $c_0a = I$, the element $\prod_{i \in \omega} s_i^0a$ corresponding to "U needs not to exist, so that the procedure of relativization by meeting with a single element as described in [6] does not apply. Nevertheless, work ing locally one can still obtain a reasonable construction fellowing the relativization from the predicate calculus. The previous results previde us with the necessary tools. Let us recall from [6] that s_j^i (i, j $\in \alpha$) denotes the substitution operator of the j-th coordinate in place of the i-th one, i.e. for $i \neq j$ $s_j^i x = e_i(d_{i,j} \cdot x)$ and $s_i^i x = x$. The reader should keep in mind that every s_j^i is an endomorphism of the Boolean part of a CA and that the substitutions are preserved by homomorphisms of cylindric algebras (see [6]). Let $\underline{A} \in \mathbf{Lf}_{\infty}$, $\mathbf{a} \in A$, and $\Delta \mathbf{a} \subseteq \{0\}$. For each $\mathbf{p} \in \mathbf{Fin} \infty$ we put $$p_{a} = \prod_{i \in p} s_i^0 a$$, in particular, $^{p}a = I$. Obviously, $^{p}a \in Nr_{p}\underline{A}$ for each finite p. Let $_{\underline{A}}^{N}$ denote the relativisation $_{\underline{R}}^{1}$ $_{\underline{R}}$ $_{\underline{A}}^{N}$ of the neat reduct $_{\underline{N}\underline{r}}\underline{A}$ with respect to ^{p}a . According to [6, Theorem 2.2.13] $_{\underline{A}}^{N}$ $_{\underline{R}}^{p}a \in CA_{p}$ for each $p \in Fin \, \alpha$. We would like to convert the system $(_{\underline{A}}^{N})^{p}a : p \in Fin \, \alpha)$ of finite dimensional cylindric algebras into an α -dimensional heterogeneous cylindric algebra. For $p \in Q$ 6 Fin α we put $$\overrightarrow{pq}x = {}^{q}a \cdot x \qquad (x \in A \upharpoonright^{p}a),$$ $$\overrightarrow{pq}y = {}^{p}a \cdot c_{(q \sim p)}y \qquad (y \in A \upharpoonright^{q}a).$$ (In the sequel the signs of cylindric algebra operations always denote the operations from the original algebra \underline{A} so that the operations in the $\underline{A}^{hP}a^{r}s$ have to be expressed according to their definition.) The just described construction gives the following result: Theorem 3. Let $\underline{A} \in Lf_{\alpha}$, $a \in A$, $\Delta a \subseteq \{0\}$. Then $(\underline{A}^{\dagger p}a, \overrightarrow{pq}, \overrightarrow{pq}; p \subseteq q \in Fin \alpha)$ is a heterogeneous algebra of the same type as the neat reduct complex $\underline{Nr} \underline{A}$ satisfying conditions (1), (2), (3), (4) and (6). It satisfies condition (5), i.e. it is a HCA_{α} iff $c_0a = I$. Proof. The verification of conditions (1) - (4) is easy. As for the condition (6) we assume that the set $q \sim p$ contains exactly two elements i and j. The general case follows then by induction. Let $y \in \mathbb{A}^{n,q}$ a. Then $$\vec{pq}(\vec{pqy}) = {}^{q}a.{}^{p}a.c_{i}c_{j}y = {}^{q}a.c_{i}c_{j}(s_{i}^{0}a.y) = {}^{q}a.{}^{q} \sim {}^{\{i\}}a.c_{i}(s_{i}^{0}a.c_{j}y) = {}^{q}a.c_{i}({}^{q}a.c_{j}y)$$ which is the generalized cylindrification $c_{(q \sim p)}y$ in $A^{pq}a$. If $c_0a = I$, observe that for any $r \in Fin \propto c_{(r)}^{r}a = I$. Let us compute for $x \in A^{pq}a$, $p \subseteq q \in Fin \propto$ $$\frac{d}{d}(\overrightarrow{pqx}) = p_{a \cdot c_{(q \sim p)}}(q_{a \cdot x}) = p_{a \cdot x \cdot c_{(q \sim p)}}q^{-p}a = x$$ which proves (5). To show the necessity, it suffices to realize that $$\emptyset$$ {0} (\emptyset {0} I) = c₀a. Passing to the direct limit $$\underline{D1} \langle \underline{A} | p_a, \overrightarrow{pq}, \overrightarrow{pq} \rangle = \underline{\lim} \langle \underline{A} | p_a, \overrightarrow{pq} \rangle$$ an algebra of the same type as \underline{A} called the uniform relativization of \underline{A} with respect to a and denoted by $\underline{A}^{\dagger \omega}$ a is obtained. Theorems 1 and 3 yield immediately Corollary. $\underline{A}^{h_{\infty}}a\in Lf_{\infty}$ or, which is the same, $\underline{A}^{h_{\infty}}a\in CA_{\infty}$ iff $c_{0}a=I$. A slight modification of the direct limit construction gives the following direct description of $A^{\infty}a$ (cf. [4]): We start with the set $\{x \in A: x \leq p \text{ a for some } p \in \text{Fin } \alpha$, $\Delta x \subseteq p \} = \{x \in A: x \leq {}^{\Delta x}a \}$ and introduce the following equivalence on it: $$x \equiv_{\mathbf{a}} y$$ iff $p_{\mathbf{a} \cdot \mathbf{x}} = p_{\mathbf{a} \cdot \mathbf{y}}$ for some $\mathbf{p} \in \mathbf{Fin} \, d$, $\Delta \mathbf{x} \subseteq \mathbf{p}$, $\Delta \mathbf{y} \subseteq \mathbf{p}$ iff $\Delta \mathbf{x} \cup \Delta \mathbf{y}_{\mathbf{a} \cdot \mathbf{x}} = \Delta \mathbf{x} \cup \Delta \mathbf{y}_{\mathbf{a} \cdot \mathbf{y}}$. Let $[x]_{a} = [x]$ denote the block of equivalence of the element x in \equiv_{a} . We introduce the cylindric algebra operations on the set $\{x \in A: x \in {}^{\Delta x}_{a}\}/\equiv_{a}$ as follows: $$[x] + [y] = [\Delta^{(x+y)}a \cdot (x + y)], \quad [x] \cdot [y] = [x \cdot y],$$ $$-[x] = [\Delta^{x}a - x], \quad 0 = [0], \quad I = [I],$$ $$c_{i}[x] = [\Delta^{x}a \cdot c_{i}x], \quad d_{i,j} = [\{i,j\}_{a \cdot d_{i,j}}].$$ Now, we would like to have a result on transitivity of uniform relativizations. Let us start with a lemma. Lemma 1. Let $\underline{A} \in Lf_{\alpha}$, $a,b \in A$, $a \geqslant b$, $\Delta a \subseteq \{0\}$, $\Delta b \subseteq \{0\}$. Then in \underline{A}^{h-a} holds $$\Delta[b] \subseteq \{0\}$$ and $p[b] = [pb]$. Moreover, if $c_0b = I$ (hence, also $c_0a = I$), then $c_0[b] = I$ in $A^{n-1}a$, as well. Proof. The first and the last conditions can be verified immediately. To prove the second one it is enough to show that for $i \in A \sim \{0\}$ holds $s_i^{\oplus}[b] = [s_i^{0}b]$. A simple computation gives $$s_{i}^{0}[b] = e_{0}[{0,i}_{a\cdot d_{0i}\cdot b}] = [{0,i}_{a\cdot e_{0}(s_{i}^{0}a\cdot d_{0i}\cdot b)}]$$ $$= [{0,i}_{a\cdot s_{i}^{0}b}] = [s_{i}^{0}b].$$ Theorem 4. Let \underline{A} , a, b be as in Lemma 1. Then there is a natural isomorphism Moreover, $\underline{A}^{b-1}b \in Lf_{a_0}$ iff $c_0b = I$ iff $c_0a = I$ and $a \le c_0b$. Proof. The isomorphism is given by $$[[x]_a]_{[b]} \mapsto [x]_b$$. The completion of the proof on the base of Lemma I and the transitivity result for relativisations of cylindric algebras [6, Theorem 2.2.15] applied to the $\underline{\text{Mr}}_{p}\underline{\text{A}}$'s, p_{a} 's and p_{b} 's is left to the reader. Now, we are able to express the notion of relative interpretation between two first order theories (see e.g. Shoenfield [12]) on the language of locally finite cylindric algebras. Let \underline{A} , $\underline{B} \in Lf_{\alpha}$. A pair $\langle f,b \rangle$ where $b \in B$, $\Delta b \subseteq \{0\}$ and $f = \langle f_p \colon p \in Fin \alpha \rangle$ is a system of mappings $f_p \colon Nr_p\underline{A} \longrightarrow Nr_p\underline{B}$ is called a uniform relative homomorphism from \underline{A} to \underline{B} if there is a system $h = \langle h_p \colon p \in Fin \alpha \rangle$ of homomorphisms of p-dimensional cylindric algebras $h_p \colon \underline{Nr_p\underline{A}} \longrightarrow \underline{Nr_p\underline{B}}$ such that for all $p \subseteq q \in Fin \alpha$ and each $x \in Nr_p\underline{A}$ holds $$f_q x = q_{b \cdot h_p} x$$. It fellows immediately that given any uniform relative homomorphism $\langle f,b \rangle : \underline{A} \longrightarrow \underline{B}$ induced by a system of homomorphisms h, every $f_p : \underline{Nr}_p \underline{A} \longrightarrow \underline{Nr}_p \underline{B}$ $(p \in Fin \not\sim)$ becomes a relative homomorphism induced by the homomorphism h_p and $f_p I = p$ (particularly, $b = f_{\{0\}} I$) and for all $p \in q \in Fin \not\sim$ the following diagram commutes: As easily seen, these conditions could be used to obtain an equivalent definition of the notion of uniform relative homomorphism. Some useful and interesting preservational properties are the fellowing: <u>Lemma 2</u>. Let $\langle f,b \rangle$: $\underline{A} \longrightarrow \underline{B}$ be a uniform relative homomorphism of Lf_{α} 's. - (i) If $p,q \in Fin_{\alpha}$, $x,y \in A$, $\Delta x \subseteq p$, $\Delta y \subseteq q$ then $f_{p \cup q}(x \cdot y) = f_{p}x \cdot f_{q}y$. - (ii) If $a \in A$, $\Delta a \subseteq \{0\}$, $i \in \alpha$ and $p \in Fin \alpha$ then - (a) $f_{\{i\}} s_i^0 a = s_i^0 f_{\{0\}} a$, - (b) $f_p(p_a) = p(f_{\{0\}}a)$. Proof. (i) Let us compute $$f_{p \cup q}(x \cdot y) = f_{p \cup q} x \cdot f_{p \cup q} y = {}^{p \cup q} b \cdot h_{p} x \cdot h_{q} y$$ $$= {}^{p} b \cdot h_{p} x \cdot {}^{q} b \cdot h_{q} y = f_{p} x \cdot f_{q} y$$ where h is the system of homomosphisms inducing f. (ii) To prove (a), it is enough to show that both sides of the equality give the same result under the one-one map (it has left inverse) $\{i\} \{0,i\} : B_i^{\{i\}}b \longrightarrow B_i^{\{0,i\}}b$. We suppose that $i \neq 0$, the case i = 0 being trivial. Let us compute $$\{0,i\}_{b:f_{\{i\}}} s_{i}^{0} a = f_{\{0,i\}} s_{i}^{0} a = \{0,i\}_{b:h_{\{0,i\}}} s_{i}^{0} a$$ $$= \{0,i\}_{b:s_{i}^{0}h_{\{0,i\}}} a$$ $$= \{0,i\}_{b:s_{i}^{0}(\{0,i\}_{b:h_{\{0\}}}a)}$$ $$= \{0,i\}_{b:s_{i}^{0}(b:h_{\{0\}}a)} = \{0,i\}_{b:s_{i}^{0}f_{\{0\}}a}.$$ (b) is a direct consequence of (i) and (a). If $\langle f,b \rangle : \underline{A} \longrightarrow \underline{B}$, $\langle g,c \rangle : \underline{B} \longrightarrow \underline{C}$ are two uniform relative homomorphisms of Lf_{d} 's, their composition is defined componentwise $$\langle g,c \rangle \circ \langle f,b \rangle = \langle \langle g_p \circ f_p : p \in Fin \alpha \rangle, g_{\{0\}}b \rangle$$. Now, we can state an analogue of Theorem 2. Theorem 5. (i) For every homomorphism h: $\underline{\mathbb{A}} \longrightarrow \underline{\mathbb{B}}$ of Lf_{\alpha}'s $\langle \langle h | \text{Nr}_{p} \underline{\mathbb{A}} : p \in \text{Fin } \alpha \rangle$, I) is a uniform relative homomorphism $\langle f, b \rangle : \underline{\mathbb{A}} \longrightarrow \underline{\mathbb{B}}$ has the above form for some homomorphism h iff b = I. (ii) Let $\underline{A} \in Lf_{\alpha}$, $a \in A$, $\Delta a \subseteq \{0\}$. Then the pair $\langle rl, a \rangle$ = $\langle\langle r|_{p_a} : p \in Fin \Leftrightarrow\rangle$, a \rangle is a uniform relative endomorphism of \underline{A} . (iii) If $\langle f, b \rangle : \underline{A} \longrightarrow \underline{B}$, $\langle g, c \rangle : \underline{B} \longrightarrow \underline{C}$ are uniform relative homomorphisms of Lf_{cl} 's then $\langle g, c \rangle \circ \langle f, b \rangle : \underline{A} \longrightarrow \underline{C}$ is a uniform relative homomorphism, as well. Proof. (i) The first assertion is trivial. The second one reduces to its following corollary contributing to the results of §1. Corollary. Let \underline{G} , \underline{H} be heterogeneous cylindric algebras of dimension α . A system of mappings $h = \langle h_p : p \in Fin \alpha \rangle$ where every $h_p : \underline{G}_p \longrightarrow \underline{H}_p$ is a homomorphism of CA_p 's, is a homomorphism of HCA_{α} 's iff for all $p \subseteq q \in Fin \alpha$ holds $$\vec{pq} \circ h_p = h_q \circ \vec{pq}$$. Proof. The only if part is trivial. We will show that the preservation of the pq's is a consequence of the preservation of the cylindrifications and the pq's. Let us compute for $p \in q \in Fin \propto$ $$\begin{aligned} \mathbf{h}_{p} \circ \stackrel{\bullet}{p} \mathbf{q} &= \stackrel{\bullet}{p} \mathbf{q} \circ \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{h}_{p} \circ \stackrel{\bullet}{p} \mathbf{q} &= \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{h}_{q} \circ \stackrel{\bullet}{p} \mathbf{q} \circ \stackrel{\bullet}{p} \mathbf{q} \\ &= \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{h}_{q} \circ \mathbf{c}_{(\mathbf{q} \sim \mathbf{p})} &= \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{c}_{(\mathbf{q} \sim \mathbf{p})} \circ \mathbf{h}_{q} \\ &= \stackrel{\bullet}{p} \mathbf{q} \circ \stackrel{\bullet}{p} \mathbf{q} \circ \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{h}_{q} &= \stackrel{\bullet}{p} \mathbf{q} \circ \mathbf{h}_{q} \end{aligned}$$ Continuation of the proof of Theorem 5. (ii) is a direct consequence of the definition of uniform relative homomorphism. (iii) The inclusion $\Delta z_{\{0\}} b \subseteq \{0\}$ is trivial. Let h, k be the systems of homomorphisms inducing f, g, respectively. A simple computation using Lemma 2 gives for every p ⊆ q ∈ Fin ≠, x & Nr A $$(g_q \circ f_q) x = g_q({}^q b \cdot h_p x) = g_q({}^q b) \cdot {}^q c \cdot k_p h_p x$$ $$= {}^q (g_{\{0\}} b) \cdot (k_p \circ h_p) x .$$ Every uniform relative homomorphism $(f,b): \underline{A} \longrightarrow \underline{B}$ of Lf_{at}'s raises to a mapping $[f]_b: A \longrightarrow B^{a}$ given by $$[f]_b x = [f_{\Delta x} x]_b = [f_{\Delta x} x] \quad (x \in A)$$. Then $\langle f,b \rangle$ can be quite successfully identified with $[f]_b$. Working with the relative interpretations between first order theories this is really the case. In the particular case of (ii) of Theorem 5 $[r1]_a$ works as follows $$[rl]_{a}^{x} = [^{\Delta x}a \cdot x]_{a} = [^{\Delta x}a \cdot x] \quad (x \in A)$$. From the metalogical point of view only the uniform relative homomorphisms $\langle f,b \rangle$ with $c_0b=I$ are of importance. According to Theorems 3 and 5 they seem to be the right subject algebraizing the notion of relative interpretation between first order theories. Unfortunately, this special class of uniform relative homomorphisms is not closed under composition. The translation of the results of §2 for the case $\ll = \omega$ into the more elegant language of HCA_{ω} stated at the end of §1 is left to the reader. #### References [1] H. ANDRÉKA, T. GERGELY, I. NÉMETI, I. SAIN, Theory morphisms, Stepwise refinement of program specification, Representation of knowledge, and Cylindric algebras, preprint 1980. - [2] H. ANDRÉKA, I. MÉMETI, Dimension complemented and locally finite cylindric algebras are elementarily equivalent, Algebra Universalis 13(1981), 157-163. - [3] G. BIRKHOFF, J.D. LIPSON, Heterogeneous algebras, J. Comb. Theory 8(1970), 115-133. - [4] G. GRATZER, Universal Algebra, Springer, Berlin 1979. - [5] L. HENKIN, Relativisation with respect to formulas and its use in proofs of independence, Compositio Math. 20(1968), 88-106. - [6] L. HENKIN, J.D. MONK, A. TARSKI, Cylindric Algebras, Part I, North-Holland, Amsterdam 1971. - [7] L. HEMKIN, J.D. MONK, A. TARSKI, H. ANDRÉKA, I. MÉMETI, Cylindric Set Algebras, Lecture Notes in Math. 883, Springer, Berlin 1981. - [8] S. MAC LANE, Categories for the Working Mathematician, Springer, Berlin 1971. - [9] I. NÉMETI, Some constructions of cylindric algebra theory applied to dynamic algebras of programs, Computation. Linguistics and Computer Languages 14(1980), 43-65. - [10] I. NÉMETI, Personal communication. - [11] A. PRELLER, On the relationship between the classical and the categorical direct product of algebras, Indag. Math. 30(1968), 512-516. - [12] J. SHOENFIELD, Mathematical Logic, Addison-Wesley, Reading, Mass. 1967. - [13] W. TAYLOR, Characterising Marcev conditions, Algebra Universalis, 3(1973), 351-397. - [14] P. ZLATOS, On conceptual completeness of syntactic-semantical systems, preprint 1983. KATČ MFF UK Mlynská delina 842 15 Bratislava Czechoslovakia (Oblatum 7.11. 1983)