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Abstract: UWe consider the problem: Given a Banach space X,a
closed convex subset K € X with nonempty interior and a Cg semi-
group Ty (& = 0) on X with generator A,find necessary and suffi-
cient conditions for A so that T4K & K for every t = 0.To obtain
a characterization of such generators we introduce tuo boundary
principles which are generalizations of the minimum principles
used in [1],L3],[8] to characterize the generators of positive C,
samigroups on some ordered Banach spaces.

Ka% words: Convex set,tangent functional,linear operator,
dissipative operator, C, semigroup,order unit space,positive semi-
group.

Classification: 47844,47855,47005,47H20.

I.Introduction. When given a C_ semigroup T, (t =0) on a
Banach space X,an important problem is to connect the properties
of It with thcse of its generator A.It is well-known,for example,
that Tt is a contraction semigroup iff A is dissipative.When X is
real and partially ordered by a proper wedge K,an interesting ques-
tion is under what conditions on A the semigroup Tt is positive
(i.a. T,K €K Ffor every t & 0) and also when T, is a positive con-
traction semigroup.This problem originates from the probability
theory uwhere positive contraction semigroups on function spaces

are called Markov semigroups.Their generators were characterized
by Feller ( [(91,see also Oynkin L7], 2.20 ). In L13] Phillips

studied positive contraction semigroups on B8anach lattices and in-
troduced the class of the so-called dispersive operators as genera-
tors of such semigroups.They were defined in terms of an appropri=-
ate seminorr conmected with the. positive cone.Iln this setting a
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detailed further investigation was done in the papers [10] ,[15] .

During the last ten years,other papers appeared,this time desling
with positive Cy; semigroups on a* algebras (see [8] ,[4] ,0[3] ).
Some characterizations of their generators were obtained by means
of positive tamgent functionais.

In the two recent papers [17 , (5], the authors give a mors gene-
Tal treatement of the subject,considering positive semigroups on
real Banach spacss,partially ordered by a cone with nonempty inte-
rior.

Houever,it seems that the most natural formulation of the prob~-
lem is this: Given a real Banach space X,a closed convex subset
K &€ X and a Co semigroup Ft (t 2 0) on X with generator A,under
what conditions (necessary and sufficient) on A does that semigro~-
up leave K invariant? )

When K is a convex wedge,we obtain the case of positive semigro-
ups and when K is the unit ball we obtain the case of contractiom
semigroups.

Hare we consider this question when K has a nonempty interior
and give a characterization of A in terms of tangent functionals
to K.This leads to a natural generalization of ths classical maxi-
mum principle (used in the potential theory).We alsoc introduce the
weak and strong boundary principles which generalize the minimum
principles used in £11,[(3], (8] .,

I1. Notations. Throughout X stands for a normed real line-
ar space with dual X'.For a convex subset C & X we denote by dC
its boundary,by IntC its interior and by C=C UudC its closure.lf x
belongs to dC,we denote by T(x,C) the set of tangent functiomals
to C at x:

(1) T(x,C)=frexr':rdo, £(C) 2 f(x)}.
When the interior of C is nonempty, for every x & dC the set T(x,C)
is nomempty according to lemma 7.2 and theorem 7.2 in £12],ch.II .
For xe X we also denote:

(2) d(x,C)= inf fUx-yf : yecC}.

We shall consider a fixed convex set K & X with IntkKf # and al-
80 a fixed element selnt K. We denote by g the support functiom
of K-e .For the properties of q we reffer to [12),ch.II,lemma 7.1
We also consider the sat:
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(3) P= fPex': f(k-e)2 -1F.

Note that as ecInt K, 0&Int(K-e) and hence q is continuous.
There exists r > 0 such that gq(x) £ rlixl (xe& X).It follows that
P is a bounded subset of X':

If x € X, q(x/(xfhxl)) £ 1,80 if f € P, -F(x) £ r Ix) .Taking al-
so -x, we obtain P(x)} £ r Ixll .Hence [Ff(x)l € cixl , AFHE ¥ .

Therefore, according to Alaoglu‘'s theorem (ses [6] ,v.4.1.),ths

a3t P is compact in the topology of pointwise convergence of nets.

Throughout we demote by A a linsar operator with domain D(AR) & X'
such that e €D(A}.We put:

(4) c=c(A,K,e)= sup { P(Re): f & P §

I1I.The boundary principles.

Definition 1. We say that the operator A satisfies the wseak
boundar rinciple (w.b.p. with respect to K,iff for every x in
D(A)ndK there exists f & T(x,K) such that f(Ax) 2 0 .

Now we provs:
Theorem 1. The following conditions are equivalent:

(5) The operator A satisfies the w.b.p. with respect to K ;
(6) For every x € D(A), x € K=K UdK, there exists f & P with
f(e-x)=q(x-a) and f(Ax) +(g(x-e)-1)F(Re) Z 0 ;
(?7) There exists w Z c(A,K,e) such that for every xé& D(A),
x & K,there is a fe&P with Ff(e-x)=q(x-e) and
f(Ax) + (q(x-e)-1)wv Z 0 ;
(8) 1f t >0, tc(A,K,8) < 1, x & D(A) and x-tAx € K,then x & K;
(9) There exists w Z c(A,K,e) such that if t >0, tw< 1,xe D(A)
amnd x~-tAx € R, then x € K 3

Proof: (5) —> (6): Lat x € D(R)n (X\ K).Then x-8 € K-e
and hence q(x-e) > 1.Put a=g(x-s). As q((x-e)/a)=1, (x=-e)/a is
in d(K-e)= dk-e and y=(x-g)/a+e ¢ dK.According to (5) there
exists f & T(y,K), F(Ay) = 0,i.e. f(Ax) + (a=-1)f(Aa) = 0. For
f uwe also have: f(K) 2 f(e) + f(x-e)/a . As & ¢ Int K, we see
that f(e-x) > 0.Multiplying f by a positive number,we can assu-
me that f(e-x)=a.Hence f(Kk-e)Z -1, f & P. (6) = (7) and (8)—
(9) are direct, putting w=c(A,K,e).
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Nou (7) — (9): Let x & D(A),t > 0,tw< 1 (w -~ as in (7)) and
x-tAx € K.Suppose x € K and let f be as in (7).We have:
f(x-tAx-e) 2 =1,hence =tf(Ax})Z -1 + f(a-x)= a-1 (a=q(x-8) > 1).
From (7): -tf(Ax) £ (a-1)tw, so tw 2 1 - a contradiction.In the
same way (6) implies (8), as f(Ae) £ c(A,K,s) (fe& P).

It ramains to prove (9) — (5).First we fix t >0, twu< 1 (w -
as in (9)).Let x & D(A) N dK.Then x-e ¢ d(K-e) and q(x-e)=1.
For svery s > 1, s(x-e) € K-a as q(s(x-e)) > t.Hence s(x-a)+ e
is not in K and (9) implies that Vg = s(x-a) - stA(x-e) - tRe
is not in K-e . According to lemma 7.2 in [12],ch.II,or theorem
0.2.4. in [11] ,there exists a nonzero 's & X' separating K-a
and y_.For f_ we have fs(i-e) 2 fs(ys) and as 0 € Int(K-e),ue
obtain rs(ys) < 0.We can assume that fs(ys)- -1 and so f_ € P.
As P is compact in the topology of pointwise convergence of nsts,
the net f_ with s in the downwards directed set (1, *°©) has a
convergent subnet with limit ft € P.For convenience we assume
that fs-) Ft poinuwise as s —> 1+. We have Yg x=-a=-tAx (8 — 1+)
and therefore:

ft(i-e) 2 -1= ft(x-e)-tft(Ax) = ft(l—() > ft(x)—tf’t(Ax) and as x€K,

ft(Ax) Z0.

Now we let t -» 0+ (in the downwards directed set of positive real
numbers ) and assume as above that ft—-v f & P.We obtain:

f(K) = f(x), f(x-e)==1,hence Ff# 0,f € T(x,K).From above we also
obtain f(Ax) 2 0. The proof is completed.

We shall introduce also a strong boundary principle ﬁ.b.g.].
Definition 2. We say that A satisfies the strong boundary
principle with respect to K,iff for every x € dknD(A) and every
féT(x,K) we have f(Ax) = O.
As Int Kg @B, T(x,K)£ f for every x € dk and hence the s.b. p.
"implies" the w.b.p..We have also the following criteria:

Lemma ‘1. The following are equivalent:

(10) A satisfies the s.b.p. with respect to K;
(11) For every x € D(A)A(X\K) and every f € P with
f(e-x)=q(x-e) we have f(Ax) + (q(x-e)-1)f(ARe)Z 0 .
Proof: (10) — (11): Let x&D(A)A(X\K) and fe P,f(e=x)=
q(x-e)=a > 1. Then y=(x-e)/a+e € dKkND(A) and from f(K-e) 2 -1
we obtain f(K) 2 f(e)-1=f(e)-q((x-e)/a)=f(y). Hence f & T(y,K).
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According o0 (10) we have f(Ay) Z 0,i.e. P(Ax}+(a=1)f(Re) = 0 .
Mow (11) = (10): Let x e dKN D(A) and f e& T(x,K) .Then x-e

is in d(K-e),hance gq(x-e)=1.For s > 1,q(s(x-e))> 1,80 s(x-s) is
not in K-e and y=s(x-e)+e € (XNK)}N D(A).Let Fe& P,P(a=-x)=q(x-8)=1
be as in (11).Then f(K) = P(a)-f(a-x)=Ff(x),hence f& T(x,K)}.From
(11) we also have f(Ay)+(s-1)f(Ae) = O,uhich implies f(Ax)= 0 .

Lemma 2, Let X be complete and K be closed.Then A satisfies
tha s.b.p. with respect to K if and only if:
(12) lim d(x+tAx,K)/t =0 for every x e dkND(A)} .

t> 0+
This is a straightforward corollary from lemma 7.3,ch.VI inL12].

See also [17]. (Note that our definition of tangent functionals
dirfe‘s from that on p.53 in[12] in the direction of the inequa-
lity.We want f&T(x,K) to be positive when K is a cons.)

Iv. C. semigroups leaving K invariant. In this section we
assume that X is complete and K is closed.lLet Tt(téln be a Co

semigroup of operators on X (see L6] ,VIII.1.)} and let A be its in-
finitesimal generator.In this case D(A) is dense in X and as Int K
# B ,the assumption e &€D(A)NInt K is no loss of generality.Remind
that the resolvent (I-tA)~! exists as a bounded opserator on X and
maps it onto D(A) for all sufficiently small positive t .

In[177 Martin considered %ha condition (5) and proved that it
(and hence (10),(12)) implies the invariance of K for (X-t.A)-1 (for
all t >0 sufficiently small) and hence for Tt (t20).He proved this
for general evolution systems. In the case of Co semigroups we com-
plement his result in the following theorem.

Theorem 2. The conditions (5),(6),(7),(10),(11),(12) and (13),
(14) (see below) are equivalent

(13) (I-tA)_1KéK for all t >0 sufficiently small ;
(14) T,KEK for all tZ 0 .

If the condition:

(15) For every xe D(A) N dKk there exists fe T(x,K) with f(Ax) > O
holds, then we have:

(18) the Int K for all t Z 0 and all xe Int K such that Tsx is
in 0(A) when s > 0 .

In particular:
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(17) Tt(D(A)/] Int K) € D(A)NInt K for all t 20 .

Finally,if (5) holds and A(e)=0,then:

(18) TiKg €K, for every t Z0,where 0<£s =<1 and Ks-sK+(1-s)e .

Proof. Having in mind theorem 1 and lemmas 1 and 2,we sae
that for the first part of the theorem we nesed only shou (13)~>
(14) = (10) . According to the well-known representation:

Tyx=  lim (1-(t/n)A) ™ for every xeX and t = 0,(13) implies
n=>

(14) . Suppose now that x € D(A) N dK and fé T(x,K).If (14) holds,
Tyx €K (t = 0) and therefore f(Ttx)4§ f(x) which implies:
fF(Ax)=f( lim (Ttx-x)/t) Z0 .
t-> 0+

Let now (15) hold and x € Int K be such that Tsxe-D(A) for all
s > 0.Suppose Ttxe dK for some t >0 .We may assume that t is the
smallest positive number with this property (i.m. Tsx € Int K
when 0£s < t ).lLet fe T(Ttx,K) with f(ATtx) > 0.For the diffe-
rentiable real function h(s)=F(Tsx) (0£s = t) we have h(s) > h(t)
when 0£s < t.Hance h'(t)=F(ATtx) £ 0 - a contradiction.
Finally,let A satisfy the w.b.p. with respect to K and A(e)}=0.
Then it is easy to see that A satisfies the w.b.p. with respect
to Ks for svery s betuween 0 and 1.Really,let s > 0O,s <« 1 and let
x € dK = sdK+(1-8)e.Then yss(x-(1—s)e)/s & dK and thers axists
feT(ys,K) with f(Ays)?-_U (when x € D(A); then yseD(A) too as D(A)
is a linear subspacs).lt follouws that fe'f(x,Ks) and f(Ax) = 0O
as AxaAys/s.
The proof is completed.
Remark. If (15) holds,then obviously 0 € dK.When 0 € dK condi-
tions (15) and (16) can be modified so that the implication (15}
—» (16) to hold again.Considerations ars left to the reader.

V. Dissipative opsrators. Let X be real and normed,let K be
the unit ball in X: K={ xe X : Ixl £ 15 and let e=0.Then for eve-
ry x € X, q(x)=/4x1l .The condition (6) takes ths form:

(6') For every x D(A) with | xi > 1 there exists f& X' such that
F(K) 2 =1,f(x)= = | xIl (hence Ifll =1) and f(Ax) = 0.

As A is linear,the condition Mx” > 1 can be replaced by just

x£0 and taking =x instead of x ws obtain the above condition in
the form:
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(6'') For every x € D(A),x#0 there exists fe&X' with (fy =1,
f(x)= llxil and f(Ax) £ 0 .

This is the well-known definition of dissipative operators.With
x,f as in (6'') wa have:

(21) Nxn =f(x) = F(x)-tf(Ax)=F(x-tAx) £ I x-tAx Il for every t = 0.

Conversely, (21) implies (6'') according to theorem 9.5,ch.V in
L61 or theorem 5.1,ch.Il in [12] .
In this case theorem 2 represents tne well-known result (see
161, ch.VIII,coroliary 1.14) that a C_ semigroup T, (t 2 0) ona
real Banach space is a contracticn semigroup iff its generator A
is dissipative.

VI. The case of order unit space. In this section we use

the terminology of [11].The setting is similar to that in [1],[S].

Let X be a partially ordered real linear space with proper cone
K of positive elements.Let e be an order unit and ll.!l - the order
unit seminorm.We assume that I|.) is a norm {this is so,iff the
ordering is almost Archimedean - see [11],p.12 and p. 116) and
that K is lineally closed (this is so0,iff the ordering is Archime-
dean - see [111,1.1.4,p.13). In tnis case e e€lInt K.As usual,we
urite x 2 y (or y £ x) iff x-y € K. The set P (see (3)) consists
of all positive linear functionals f on X with f(e)<1 (proof: as
K is a cone,if féeP , tf(K)Z -1+f(e) for every t >0,hence f is
positive and as 0€K, f(e) £ 1;every positive functional is boun-
ded - see theorem 3.7.2,p.118,L11],80 the converse follous).

The support function q of K-e is given by:

(22) q(x)=inf{t >0: tetx 20§ (x € X).
And x Z 0 iff q(x)=0.

t is easy to see that if x e dK,the set T(x,K) consists of all
positive linear functionals f # O with f(x)=0: If f&T(x,K),us
have f(K) = f(x)/t for every t > 0 ,hence f is positive,as x and
0 ate in K, 0 2 f(x) =z O,hence f(x)=0.The converse is trivial.Note
also that if feP,f#0,then | fll =f(e)#0 (see 3.7.2.,p.118,L11]).1t
follouws easily that dK consists of all xé&K for which there exists
feP,fé0,with f(x)=0.

Ve denote for every x & X:

(23} p(x)= inf{t &€ R: te=x Z 03 (R - the reals) .
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In this setting from theorem 1 we obtain:

Corollary 1. For the operator A the following conditions
are squivalent:

(24) 1f x€D(A)NdK,there exists f & P,ff0,fF(x)=0 and F(Ax) = 0;

(25) 1f xeD(A) and p{x) > O there exists f & P,f(a)=1,f(x)=p(x)
and fF(Ax) £ f(Ae)p(x) ;

(26) If xeD(A) and q(x) > 0O,there exists f € P, f(e)=1,
f(x)= -q(x) and f(Ax)+q(x)f(Ae) = 0;

(27) There exists w Z c(A,K,8) such that if x € D(A),q(x) > O,
there exists f € P,f(e)=1,f(x)= -q(x) and f(Ax)+q(x)uw = O;

(28) 1f t >0,tc(A,K,8) < 1,x € D(A) and x-tAx = O,then x = 0 ;

(29) There exists w = c(A,K,e) such that if t > 0,tw < 1,x € D(A)
and x-tAx Z 0O,then x Z 0 .

Proof. First we show that the condition (6) of theorem 1
takes the form (26).Let (26) hold and let x €D(A), x EK=K.Then
g(x) > O.Let f be as in (26).From f(x)= -q(x) and f(e)=1 we ob-
tain f(e-x)=q(x-e) > 1 as g(x-e)=q(x)+1 (a direct verification)
and (6) follows.Conversely,lat (6) hold and let x € D(A),q(x)> 0.
Then g(x-a)=q(x)+1=a > 1 and hence x & K.Let f be as in (6).Then
P € P and f(e-x)=q(x-8)=a.We have (x-e)/a+te € dK and as f is tan-
gent to K at that point (straightforward),f((x-e)/a+e)=0.Hence
f(x)+q(x)f(e)=0.As f#£0,f(e) > 0O and dividing f by f(a) we obtain
the necessary functional.

It remains to show that (25) and (26) are squivalent.This fol-
louws from the observation that if p(x) > 0,then p(x)=qf=x) and if
q(x) > 0,then q(x)=p(-x).The proof is completed.

We included (25) in the above set of conditions with a defini-
te aim.It is a direct generalization of the well-known weak maxi-
mum principle,upun which we shall comment in the next section.

Sometimes it is convenient to consider another conditions
equivalent to those in corollary 1.

Proposition 1. The conditions (24) - (29) are equivalent
to (cf. £S]):

(30) q(x-tAx) = (1-tc)q(x) for every x«D(A) and svery t > O,
tc < 1 (c=c(A,K,e));
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(31) There exists w = c{A,K,a) such that:
q(x-tAx) Z (1-tw)q(x) for every x&D(A),t > 0,tw< 1 .

Proof: Let x € D(A) and t > O,tc < 1.Let q(x) > 0 and f be
as in (26) (if q(x)=0, (30) holds).Then:
t(P(Ax)+q(x)c)=f(tAx-x+(1-tc)x) = 0.We also have -f(y) = q(y)
(as q(y)ety = 0) for every y & X.With ysx-tAx (30) follows.
In the same way (31) follows from (27).Conversely, (30) and
(31) obviously imply (28) and (29) respectively.

Let a=max(c,0) or a=max(w,0) (w - as in (31)).Then for t >0,
ta < 1 wa put s=t/(1-ta) and (30),(31) take the form:

(32) q(x-s(A-al)x) = q(x) for every xe D(A) and every s = 0;
which means that A-al is g-dissipative (cf.L[1] ).

Coxollary 2. Let X be complete and let T, (t=0) be a C, se-
migroup of operators on X with generator A.Then each of the con-
ditions (24) - (32) implies the positivity of T, and vice-versa.

The form of the strong boundary principle,the form of thes con-
ditions (11) and (12} in this case and other details are left to
the readsr.

VII. The maximum principles. Let C(M) be the real Banach
space (with the "sup" norm) of all real continuous functions on
a compact topological space M. Let A (D(A) € C(M)) be a linear
operator. Consider the condition:

(33} For every ué&M and esvery x € D(A) such that:
x(u)=sup {x(v): ve m] = 0,ue have Ax(u) £ 0.

If A satisfies (33),then its resolvent (I-tA)-‘l is defined on
(1-tA)D(A) and is a positive contraction operator there (with
respect to the usual order: x 2 0 when x(u) 2 0 for ue M) for
every t > 0.If A is the generator of a Co semigroup Tt(t Z 0) on
C(Mm),the same follows for T, and vice-versa (see Dynkin L 71,2.20).
It was noticed that this is true also when A satisfies:

(34) For every x €D(A) such that l=sup {x(v): veM3 > 0 there
exists ue M with x(u)=1 and Ax(u) £ 0.

These conditions can be considered when M is locally compact
and D(A) < c°(n) (the bounded real continuous functions on M with
the "sup" norm,which are zero at infinity),as is done in the po-
tential theory,where (33) is knoun as the (strong) maximum prin-
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ciple and (34) as the weak maximum principle (see [14] ,[21] ).

In [4] the strong maximum principle was generalized for operators
on non-unital B‘-algebras and in [ 3] the weak maximum principle
was generalized for operators on B';algabras with a unit.

In the case of operators on ordered linear spaces,the condition
(25) in the preceding section may be considered as a generalizati-
on of (34).Further generalizations are (6),(7) and (11).

¥IIIl. Some additional remarks. Let X be complete and let A
(D(A)< X) be a single-valued non-linear dissipative operator (with
values in X) in the sense of [ 2] ,ch.II,§ 3,such that:

0(R) € (1-tA)D(A) for every t > O.Then the limit:

Syx= lim (1-(t/m)A) x exists for every x¢D(A) and t > O,
Ar> o

and is a contraction semigroup on D(A) (in the sense of [2],ch.III,
1.1 3see also theorem 1.3 on p. 104 there) .

Proposition 2. Let K be a closed convex subset of D(A) with
a non-empty interior and let e € D(A) N Int K.Then each of the con-
ditioms (6),(7),(11) implies S4K € K for all t = 0.

The proof follows from the observation that (6) implies (8} (or
(7) implies (9)) in theorem 1 without using the linearity of A.

The conditioms (6),(7),(11) can be modified for multilinear cps-
rators and the above proposition can be generalized for such ope-
rators in an obvious way (via theorem 1.3 on p.104 in[21).

If X,K,e ara as in section VI, 5?;)=X and X is complete,the con-
dition (26) (or (27)) in corollary 1 implies the positivity of S
(t Z 0),and if A is odd (i.e. A(=-x)=-Ax for x & D(A)),the same fol-
lows from (25).

The question whem a closed set K is invariant for a given (non=-
linear) semigroup (evolution system,flow) was studied by many au-
thors.The most often used conditiom for the generator which impli-
es the invariance is (12) (with the necessary modifications for
flows).This condition originates from Nagumo [19] .The progress in
this subject can be traced inL[121] ,ch.VI;[16],8§5; and also [ 177,
L18l],l20],[22],L23] .See also the references thera.
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