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A NOTE ON CONTINUITY PRIN(;IPLE IN POTENTIAL THEORY
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Abstract: In this note a proof is given of a continuity
property of Evans-Vasilesco type for general potentials of
signed measures.
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Let X be a locally compact Hausdorff topological space
and let K be a continuous function-kernel on X , i.e. an exten-
ded-real-valued positive continuous (in the wide sense) function
on X x X which is finite off the diagonal A = {[ x,x]; x€x)
and strictly positive on A . Given a Radon measure [’} & 0 on X
we denote by

Kp : x> .xfl((x,y)d‘b(y)

its potential. Let us recall that K is termed regular (cf.[ 4])

if it satisfies the following continuity principle:

(C) If 4 & O is a Radon measure with a compact support spt 4
such that the restriction of K& to spt # is finite and con-
tinuous, then KM is necessarily finite and continuous on the
whole space X .

In applications one often has to consider potentials of
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signed measures; given a signed Radon measure ¥ with the
Jordan decomposition ¥ = V* - ¥~ _ then its potential is de-
fined as KY = K¥' - Ky~ provided the difference is meaning-
ful everywhere on X . Because of possible "cancellation of dis~
continuities” it may happen that KV is finite and continuous
even though K¥' , K¥~ are discontinuous (éf.[ 1J,[101). Thus
the classical Evans-Vasilesco theorem does not permit the con-
clusion that a Newtonian potential of a signed measure Y must
be continuous everywhere provided its restriction to spt VY is
continuous. In a discussion on the occasion of the conference

" 5.Tagung uber Probleme und Methoden der Mathematischen Physik "
(held in Karl-Marx-Stadt in May 1973) B. W. Schulze raised the
question of validity of the extended Evans-Vasilesco theorem for
Newtonian potentials of signed measures. Using refined tools of
abstract potential theory 1I. Netuka was able to supply in [10]
& proof of the corresponding result valid for potentials on har-
monic spaces satisfying the strong domination axiom (cf.[ 5] ).
It is the purpose of this note to give an elementary proof of a
related continuity property of signed potentials for kernels K

obeying the following domination principle:

(D) If ‘uli 0 and &> * 0 are compactly supported Radon
measures with finite potentials such that K‘ltl‘ K(LZ on spt [(1 ’

then K,LI‘ K(tz on the whole space X .

& =-n
Remark. The classical Riesz kernmel [x,y 1> |x-yl

on the Fuclidean space X = R® satisfies (D) provided
0<« % 2 <n (ceff11],[7] and Theorem 1.29 in[9]).
The reader is referred to[ 6] ,[7] ,[12] for general inves-

tigation of potential kernels on locally compact spaces.
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The following result was presented by the author in the Analy-
sis Semipar (held in Prague in October 1975; the proof has been

included in[81, p. 245).

Theorem 1. Let K be a strictly positive continuous function-
kernel satisfying (D) and suppose that VY is a compactly supported

signed Radon measure with a finite potential K VY. If the restrict-
ion of KV¥ to spt ¥ is upper semicontinuous, them KY¥ is upper
semicontinuous on the whole space.

The proof is based on the following two known simple lemmas.

Lemma 1. Any continuous function-kernel K enjoying (D) is
regular.

Proof. Cf. [7], Corol2ary 1.3.10 and proof of Proposition
1.3.8.

Lemma 2. If K is regular and # is a compactly supported
Radon measure such that Kau is finite on spt & , then there
exists an increasing sequence of Radon measures & . € A such
that the potentials Kgu, are finite and continuous on X and
converge pointwise (a8 nfe0 ) to K 4 on X.

Proof. Cf. Proposition 4 in Chap. II in [ 3]or Lemma 1.2.4
in[7].

Proof of Theorem 1, If V' ia trivial, then Kv = -KV~
is upper semicontinuous on X . Assume yh@m>o , fix ze X
and £> O . Lemma 2 guarantees the existence of an increasing
sequence of Radon measures M . & y* with finite continuous poten-

tials such that
(1) ockpu b xv*' e nteo

as well as the existence of a Radon measure 2 with a continuous
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potential such that
(2) “é VT, KO -m)(z) <EKpq(2) .

Consequently,

(3) K(Y+p-p )} KOV~ -p) ¢ 0< € Kpey

and upper semicontinuity of the restriction of KVY to spty
implies that also the restrictions of K(qu-ﬂn) to spt ¥V are

upper semicontinuous. In view of (3), for n large enough

K(V+p-p )€ £ KA, onspt ¥ or , which is the same,

(4) KO +p) £Exp, + Kpy +EKV
Noting that spt (¥' + 4 ) & spt ¥y we conclude by (D) that (4)
holds everywhere on X . We have by (2),(1)
- Ku(z)< CKgy(z) - KV (z) ,
K (z) € Kv'(2) .

Hence we get for f = &Kcll - Kg + K
f(z) <Ky (z) + 28K M, (2) &

Since f is continuous, there is a neighbourhood V of 2z such

that
xeV =) f(x) <Ky(z)+ 2EKp (2)
which together with (4) gives
xeV = KV (x) €Ky(z) + 2£Ky (2)
and the upper semicontinuity of KV at 2z is established.

Remark, The above theorem may fail to hold for regular
kernels not fulfilling (D) (cf. example 9 in [8], pp.246-248).
R. Wittmann (cf. [13] ) has racently proposed & new approach
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to continuity properties of signed potentials which avoids kernels
and works in the framework of cones of functions. His scheme may be
desribed as follows:

Let’ X be a locally compact Hausdorff topological space and
P a convex cone of non-negative continuous functions on X contai-
ning a strictly positive function. Denote by S the convex cone of
all (finite) functions which are pointwise limits of increasing
sequences in P . Let Q< X be a compact set and suppose th;t

PQC P is a convex cone posessing the following property:

(DQ) (pqu. qeP , p £q on Q) =» p£gq on X.

(Clearly, (DQ) implies the same property with any g€ S.) Denote
by Pa the linear space of all functions f on X for which there

exist sequences {pn} ’ (qn} in PQ and an 8€S. such that

(i) Ipn-qn|£a (neN),

ii 1i - = f X .
(ii) n:z (pp-qy) (x) (x) , x€

Then the following Wittmann’s theorem holds:

Theorem 2, Any fe Pa is already continuous throughout X
if only its restriction to Q is continuous.

This theorem can be used to get the following corollary of
Theorem 1:

If Ky is a finite non-trivial compactly supported signed po-
tential whose restriction to spt ¥ = Q 1is continuous, then KY
is continuous on the whole space.

We denote by P the cone of all finite continuous potentials
K@L of compactly supported Radon measures &4 2 O and by PQ the
cone of all Ku&P with spt 4 < Q . Clearly, (D) implies (DQ).
By Lemma 2 there are sequences pn‘Pa,’ qneP with Pn A Ky ’
q, ? Xv™ , so that Ipp- ay | &€ X(v' + V7)€ S . Theorem 2 then

- 153 =



implies continuity of KV on X.

R.Wittmann’s proof of Theorem 2 is based on an application
of the Hahn-Banach theorem as employed by H.Bauer in [z ]. It
is perhaps of interest to note that the airect approximation tech-
nique used for the proof of Theorem 1 above may also be used to
provide the following alternative of the proof of Wittmann’s

theorem.

Proof, Let f be given by (ii), where Pp » Q€ PQ en joy
(i) for suitable se€sS 3 we may clearly suppose that e is strict-
ly positive on X . Let us equip the space of continuous functions
g€ on Q with the norm

Nglly = dinf [?\!0 ; lgl £ Xson Q } o

The resulting normed spacecs(Q) has dual C:(Q) which is represen-
ted by those signed Radon measures Y= V' -y~ on Q , for which
p is WP +y7) - integpabte over Q . The conditions (i), (ii)
mean that the sequence {pﬁ - qn}rﬁl converges weakly to f in
CB(Q) « Consequently, there is a sequence {ug ;:1 formed by finite
convex combinations of the elements (pn-qn) which converges to f
in C4(Q); we may thus assume that llu} - £l, < 273 (neN). apply-

ing the same reasoning to the sequence

=]
(5) {Pn - ) mx
s k o
we get for any ke N a sequence {un} n=1 of convex combinations

of elements of (5) which converges to f in CS(Q) and satisfies
(6) ok - 1, < 2782 pey .

o0

Put u, = ul , neN . The sequence {“n}nsl

converges to f
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pointwise on X , because u, is a convex combination of ele-
ments of (5) and (ii) holds. It follows from (6) that
< 9‘1’1-1

lu - “n+1|e whence, in view of the definition of the

norm ...l

(M u -2Rgtr ,u

5 + 20 gy f (nkeo)

n
on Q . Since u, = pi- a¥ for suitable p: . Q:GPQ » (D)
implies that the sequence {un— 2'“s} is nondecreasing on X
and the sequence {“n * 2'“3} is nonincreasing on X , so that

(7) holds on X . Note that, for any pe PQ and 0 € £ the fol-

lowing implication is true:

(8) f £ 0-p on Q=f €0 -p on X .

Indeed, the inequality wu - 2 Mg <6 - p can be rewritten in the
form p: + p< O+ 2% + q) which, according to (Dg)s holds
on X whenever it holds on Q . Using (7) one gets (8). Let
now z be an arbitrarily fixed point of X . We have by (7)

u (z) < f(z) + 270%1g(34) ,

whence we conclude by continuity of u, that for suitable neigh-

bourhood Vn of z

(9) xeV, = u(x) < fz)+ 2™ s(2) .

There is & sequence r, €P such that r ts (kt0). Note that

£ Cuy + 2 0tlg
on Q by (7). Since the restriction of f to Q is continuous, for

sufficiently large kn

-n+l
f<url + 2 rkn

on 3, whence by (6)
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£ & u + 2 T, on X.

We have thus by (9)

xeV, = 0% £(2) + 2e(2) + 2 1y (),

limsup f(x) & f£(z) + 27 1g(z) + 2701 r, (2) %
X—> 2z L

& £(z) + 270%25(3)

for any n€N . This proves that f is upper semicontinuous

at

Remark, Note that local compactness of X was not needed

in the above proof.
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