

Werk

Label: Article **Jahr:** 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,1 (1984)

A NOTE ON CONTINUITY PRINCIPLE IN POTENTIAL THEORY

<u>Abstract:</u> In this note a proof is given of a continuity property of Evans-Vasilesco type for general potentials of signed measures.

<u>Key words:</u> potentials of signed measures, continuity principle, domination principle

Classification: 31 C 99, 31 D 05

Let X be a locally compact Hausdorff topological space and let K be a continuous function-kernel on X , i.e. an extended-real-valued positive continuous (in the wide sense) function on X x X which is finite off the diagonal $\Delta = \{[x,x]; x \in X\}$ and strictly positive on Δ . Given a Radon measure $\mu = 0$ on X we denote by

 $K\mu : x \mapsto \int_X K(x,y) d\mu(y)$

its potential. Let us recall that K is termed regular (cf. [4]) if it satisfies the following continuity principle:

(C) If $\mu \geq 0$ is a Radon measure with a compact support spt μ such that the restriction of K μ to spt μ is finite and continuous, then K μ is necessarily finite and continuous on the whole space X .

In applications one often has to consider potentials of

signed measures; given a signed Radon measure y with the Jordan decomposition $y = y^+ - y^-$, then its potential is defined as Ky = Ky - Ky provided the difference is meaningful everywhere on X . Because of possible "cancellation of discontinuities" it may happen that KV is finite and continuous even though Ky , Ky are discontinuous (ef.[1],[10]). Thus the classical Evans-Vasilesco theorem does not permit the conclusion that a Newtonian potential of a signed measure y must be continuous everywhere provided its restriction to spt Y is continuous. In a discussion on the occasion of the conference " 5. Tagung über Probleme und Methoden der Mathematischen Physik " (held in Karl-Marx-Stadt in May 1973) B. W. Schulze raised the question of validity of the extended Evans-Vasilesco theorem for Newtonian potentials of signed measures. Using refined tools of abstract potential theory I. Netuka was able to supply in [10] a proof of the corresponding result valid for potentials on harmonic spaces satisfying the strong domination axiom (cf. [5]). It is the purpose of this note to give an elementary proof of a related continuity property of signed potentials for kernels K obeying the following domination principle:

(D) If $\mu_1 \ge 0$ and $\mu_2 \ge 0$ are compactly supported Radon measures with finite potentials such that $K\mu_1 \le K\mu_2$ on spt μ_1 , then $K\mu_1 \le K\mu_2$ on the whole space X.

Remark. The classical Riesz kernel $[x,y] \mapsto |x-y|^{\infty-n}$ on the Euclidean space $X = \mathbb{R}^n$ satisfies (D) provided $0 < \infty \le 2 \le n (cf.[11],[7])$ and Theorem 1.29 in [9]).

The reader is referred to [6], [7], [12] for general investigation of potential kernels on locally compact spaces.

The following result was presented by the author in the Analysis Seminar (held in Prague in October 1975; the proof has been included in [8], p. 245).

Theorem 1. Let K be a strictly positive continuous functionkernel satisfying (D) and suppose that Y is a compactly supported signed Radon measure with a finite potential KY. If the restriction of KY to spt Y is upper semicontinuous, then KY is upper semicontinuous on the whole space.

The proof is based on the following two known simple lemmas.

Lemma 1. Any continuous function-kernel K enjoying (D) is regular.

Proof. Cf. [7], Corollary 1.3.10 and proof of Proposition 1.3.8.

Lemma 2. If K is regular and μ is a compactly supported Radon measure such that K μ is finite on spt μ , then there exists an increasing sequence of Radon measures $\mu_n = \mu$ such that the potentials K μ_n are finite and continuous on X and converge pointwise (as n $\uparrow \infty$) to K μ on X.

Proof. Cf. Proposition 4 in Chap. II in [3 lor Lemma 1.2.4 in [7].

<u>Proof of Theorem 1.</u> If y^+ is trivial, then $Ky = -Ky^-$ is upper semicontinuous on X. Assume $y^+(X) > 0$, fix $z \in X$ and $\varepsilon > 0$. Lemma 2 guarantees the existence of an increasing sequence of Radon measures $\mu_n = y^+$ with finite continuous potentials such that

(1)
$$0 < K \mu_n \uparrow K y^+ \text{ as } n \uparrow \infty$$

as well as the existence of a Radon measure μ with a continuous

potential such that

Consequently,

(3)
$$K(y + \mu - \mu_n) + -K(y^- - \mu) \le 0 < \varepsilon K\mu_1$$

and upper semicontinuity of the restriction of KV to spt γ implies that also the restrictions of $K(Y+\mu-\mu_n)$ to spt γ are upper semicontinuous. In view of (3), for n large enough $K(\gamma+\mu-\mu_n)^{\frac{1}{2}}\in K\mu_1$ on spt γ or , which is the same,

(4)
$$K(y^+ + \mu) \leq \mathcal{E} K \mu_1 + K \mu_n + K y^-$$
.

Noting that spt $(y^+ + \mu \nu) \in \text{spt } y$ we conclude by (D) that (4) holds everywhere on X . We have by (2),(1)

$$- K \mu(z) < \mathcal{E} K \mu_1(z) - K y^{-}(z) ,$$

$$K \mu_n(z) \leq K y^{+}(z) .$$

Hence we get for
$$f = \mathcal{E} K \mu_1 - K \mu + K \mu_n$$

$$f(z) < K y(z) + 2 \mathcal{E} K \mu_1(z) .$$

Since f is continuous, there is a neighbourhood V of z such that

$$x \in V \implies f(x) < Ky(z) + 2 \mathcal{E}K_{\ell_1}(z)$$

which together with (4) gives

and the upper semicontinuity of KV at z is established.

Remark. The above theorem may fail to hold for regular kernels not fulfilling (D) (cf. example 9 in [8], pp.246-248).

R. Wittmann (cf. [13]) has recently proposed a new approach

to continuity properties of signed potentials which avoids kernels and works in the framework of cones of functions. His scheme may be desribed as follows:

Let X be a locally compact Hausdorff topological space and P a convex cone of non-negative continuous functions on X containing a strictly positive function. Denote by S the convex cone of all (finite) functions which are pointwise limits of increasing sequences in P. Let Q \leq X be a compact set and suppose that $P_Q \subset P$ is a convex cone posessing the following property:

- $\begin{array}{lll} (\mathbb{D}_{\mathbb{Q}}) & (p \in \mathbb{P}_{\mathbb{Q}} \ , \ q \in \mathbb{P} \ , \ p \ \leq \ q \ \ \text{on} \ \ \mathbb{Q}) \ \Longrightarrow \ p \ \leq \ q \ \ \text{on} \ \ X \ . \end{array}$ $(\text{Clearly, } (\mathbb{D}_{\mathbb{Q}}) \text{ implies the same property with any } \ q \in \mathbb{S}.) \text{ Denote}$ by $\mathbb{P}_{\mathbb{Q}}^{\#}$ the linear space of all functions f on X for which there exist sequences $\left\{p_n\right\}$, $\left\{q_n\right\}$ in $\mathbb{P}_{\mathbb{Q}}$ and an se \mathbb{S} . such that
- (i) $|p_n q_n| \le s \quad (n \in \mathbb{N}),$
- (ii) $\lim_{n\to\infty} (p_n-q_n)(x) = f(x) , \quad x \in X .$

Then the following Wittmann's theorem holds:

Theorem 2. Any $f \in \mathbb{P}_{\mathbb{Q}}^{*}$ is already continuous throughout X if only its restriction to Q is continuous.

This theorem can be used to get the following corollary of Theorem 1:

If K y is a finite non-trivial compactly supported signed potential whose restriction to spt y = Q is continuous, then K y is continuous on the whole space.

We denote by P the cone of all finite continuous potentials K μ of compactly supported Radon measures $\mu \geq 0$ and by P_Q the cone of all K $\mu \in P$ with spt $\mu \in Q$. Clearly, (D) implies (D_Q) . By Lemma 2 there are sequences $p_n \in P_Q$, $q_n \in P_Q$ with $p_n \uparrow K \gamma^+$, $q_n \uparrow K \gamma^-$, so that $|p_n - q_n| \neq K (\gamma^+ + \gamma^-) \in S$. Theorem 2 then

implies continuity of Ky on X.

R.Wittmann's proof of Theorem 2 is based on an application of the Hahn-Banach theorem as employed by H.Bauer in [2]. It is perhaps of interest to note that the direct approximation technique used for the proof of Theorem 1 above may also be used to provide the following alternative of the proof of Wittmann's theorem.

<u>Proof.</u> Let f be given by (ii), where p_n , $q_n \in P_Q$ enjoy (i) for suitable $s \in S$; we may clearly suppose that s is strictly positive on X. Let us equip the space of continuous functions g on Q with the norm

$$\|g\|_{S} = \inf \{\lambda \ge 0; |g| \le \lambda \text{son } Q \}.$$

The resulting normed space $C_8(Q)$ has dual $C_8^*(Q)$ which is represented by those signed Radon measures $y=y^+-y^-$ on Q, for which p is (y^++y^-) - integrable over Q. The conditions (i), (ii) mean that the sequence $\left\{p_n-q_n\right\}_{n=1}^\infty$ converges weakly to p in $C_8(Q)$. Consequently, there is a sequence $\left\{u_n^1\right\}_{n=1}^\infty$ formed by finite convex combinations of the elements (p_n-q_n) which converges to p in p

$$\left\{\mathbf{p}_{\mathbf{n}}-\mathbf{q}_{\mathbf{n}}\right\}_{\mathbf{n}=\mathbf{k}}^{\infty}$$

we get for any $k\in N$ a sequence $\left\{u_n^k\right\}_{n=1}^\infty$ of convex combinations of elements of (5) which converges to f in $C_s(Q)$ and satisfies

(6)
$$\|\mathbf{u}_{n}^{k} - \mathbf{f}\|_{s} < 2^{-k-2}$$
 , $n \in \mathbb{N}$.

Put $u_n = u_n^n$, $n \in \mathbb{N}$. The sequence $\left\{u_n^{}\right\}_{n=1}^{\infty}$ converges to f

pointwise on X , because u_k is a convex combination of elements of (5) and (ii) holds. It follows from (6) that $\|u_n-u_{n+1}\|_8 < 2^{-n-1} \text{ whence, in view of the definition of the norm }\|\dots\|_8$,

(7)
$$u_n - 2^{-n} s \nmid f, u_n + 2^{-n} s \nmid f (n \nmid \infty)$$

on Q. Since $u_n = p_n^* - q_n^*$ for suitable p_n^* , $q_n^* \in P_Q$, (D_Q) implies that the sequence $\left\{u_n - 2^{-n}s\right\}$ is nondecreasing on X and the sequence $\left\{u_n + 2^{-n}s\right\}$ is nonincreasing on X, so that (7) holds on X. Note that, for any $p \in P_Q$ and $\sigma \in S$ the following implication is true:

(8)
$$f \in \sigma - p$$
 on $Q \Rightarrow f \in \sigma - p$ on X .

Indeed, the inequality $u_n - 2^{-n}s \le \sigma - p$ can be rewritten in the form $p_n^* + p \le \sigma + 2^{-n}s + q_n^*$ which, according to (p_Q) , holds on X whenever it holds on Q. Using (7) one gets (8). Let now z be an arbitrarily fixed point of X. We have by (7)

$$u_n(z) < f(z) + 2^{-n+1}s(z)$$
,

whence we conclude by continuity of $\,u_n^{}\,$ that for suitable neighbourhood $\,V_n^{}\,$ of $\,z\,$

(9)
$$x \in V_n \implies u_n(x) \le f(z) + 2^{-n+1}s(z)$$
.

There is a sequence $r_k \in P$ such that $r_k \uparrow s \ (k \uparrow \infty)$. Note that

$$f < u_n + 2^{-n+1}s$$

on Q by (7). Since the restriction of f to Q is continuous, for sufficiently large ${\bf k}_{\rm n}$

$$f < u_n + 2^{-n+1}r_{k_n}$$

on 2, whence by (8)

$$f \leq u_n + 2^{-n+1} r_{k_n}$$
 on X .

We have thus by (9)

$$x \in V_n \longrightarrow f(x) \le f(z) + 2^{-n+1}s(z) + 2^{-n+1} r_{k_n}(x)$$
,

$$\lim \sup_{z \to z} f(x) \le f(z) + 2^{-n+1}s(z) + 2^{-n+1} r_{k_n}(z) \le f(z) + 2^{-n+2}s(z)$$

for any $n \in \mathbb{N}$. This proves that f is upper semicontinuous at z .

Remark. Note that local compactness of X was not needed in the above proof.

REFERENCES

- M. G. Arsove: Functions representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327-365.
- [2] H. Bauer: Šilovscher Rand und Dirichletsches Problem, Ann.Inst. Fourier 11 (1961), 89-136.
- [3] M. Brelot: Lectures on potential theory, Tata Inst. of Fundamental Research, Bombay 1960.
- [4] G. Choquet: Les noyaux réguliers en théorie du potentiel, C. R. Acad. Sci. Paris 243 (1956), 635-638.
- [5] C. Constantinescu, A. Cornea: Potential theory on harmonic spaces, Springer-Verlag 1972.
- B. Fuglede: On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215.

- [7] M. Kishi: Selected topics from potential theory, chap. I:

 Lower semicontinuous function kernels, Kobenhavns Universitets Matematisk Inst. Publicationsseries 1978, N° 5.
- [8] J. Král, I. Netuka, J. Veselý: Teorie potenciálu IV (mimeographed lecture notes in Czech), SPN Praha 1977.
- [9] N. S. Landkof: Osnovy sovremennoj teorii potenciala, Moskva 1966.
- [10] I. Netuka: Continuity and maximum principle for potentials of signed measures, Czechoslovak Math. J. 25 (1975), 309-316.
- [11] N. Ninomiya: Sur un principe du maximum pour le potentiel de Riesz-Frostman, J. Math. Osaka City Univ. 13 (1962), 57-62.
- [12] M. Ohtsuka: On the potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser.A-I, 25 (1961), 135-352.
- [13] R. Wittmann: A general continuity principle, Comment. Math. Univ. Carolinae 25(1984), 141-147.

Matematický ústav ČSAV Žitná 25 115 67 Praha 1

(Oblatum 8.12. 1983)

