

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,1 (1984)

ON REGULAR RING-SEMIGROUPS AND SEMIRINGS J. ZELEZNIKOW

Abstract: Regular and orthodox ring-semigroups and semirings are characterized, as well as ring-semigroups with chain conditions on idempotents and principal ideals. Congruences on additively regular semirings are also considered.

Key words: Ring-semigroup, additively inverse semiring, orthodox semigroup, congruence, Green's relations.

Classification: Primary 16A78
Secondary 20M75, 16A30

1. Introduction: In a semigroup (S, \cdot) we put $E = \{e \in S: e^2 = e\}$ and $V(x) = \{a \in S: x \cdot a \cdot x = x \text{ and } a \cdot x = a\}$ for all $x \in S$. If $V(x) \Rightarrow il$, then the element x is said to be <u>regular</u>. If each element of S is regular, then the semigroup S is said to be regular. If S is a regular semigroup, and E is a subsemigroup of S, then S will be said to be an <u>orthodox</u> semigroup. A regular semigroup in which $e \cdot f = f \cdot e$ for all $e, f \in E$, is said to be an <u>inverse</u> semigroup.

We use the definitions and notation of [1].

A semigroup (S, \cdot) is a <u>ring-semigroup</u> if there exists a binary operation $+: S \times S \longrightarrow S$ such that $(S, +, \cdot)$ is a ring.

In [12], the structure of orthodox ring-semigroups was considered. Such semigroups are inverse. In the proof of this theorem, the concept of an additively inverse semiring is required.

<u>Definition 1</u>: A triple (S,+,.) is a <u>semiring</u> if S is a set, and +,. are binary operations satisfying

- (i) (S,+) is a semigroup.
- (ii) (S,*) is a semigroup,
- (iii) $a \cdot (b + c) = a \cdot b + a \cdot c$, $(a + b) \cdot c = a \cdot c + b \cdot c$, for all $a,b,c \in S$.

Definition 2: A semiring (S,+,.) is said to be an additively inverse semiring if (S,+) is an inverse semigroup.

The following theorem of Karvellas allows us to prove many results for additively inverse semirings.

Result 3: ([7] Theorem 7.)

In an additively inverse semiring $(S,+,\cdot)$, if as as $\cap S$ a for all as $\cap S$, then S is additively commutative (and hence a semilattice of groups).

In a semiring $(S,+,\cdot)$ we put $E^{[+]} = \{x \in S: x + x = x\}$ and $E^{[\cdot]} = \{e \in S: e \cdot e = e\}$.

2. Regular ring-semigroups: We can now prove:

Result 4: ([12] Theorem 9.)

Let (S,+,.) be any additively inverse semiring in which (S,.) is regular. Then the following conditions are equivalent:

- (i) $\forall e, f \in E^{[\cdot]}, (e \cdot f = 0 \Rightarrow f \cdot e = 0).$
- (ii) $\forall e \in E^{f \cdot l}$, $\forall x \in S$, $(e \cdot x = 0 \Rightarrow x \cdot e = 0)$.
- (iii). $\forall n \in \mathbb{N}$, $\forall x \in S$, $(x^n = 0 \Rightarrow x = 0)$.
- (iv) $\forall x \in S$, $(x^2 = 0 \Rightarrow x = 0)$.
- (v) $\forall x,y \in S, (x \cdot y = 0 \Rightarrow y \cdot x = 0).$

Further, each is implied by

(vi) (S,.) is orthodox.

Example 5: In an arbitrary regular semigroup (S, \cdot) , condition (i) of Theorem 4 does not imply condition (ii), and (S, \cdot) being orthodox does not imply condition (ii). To see this we may take any Brandt semigroup $S = \mathcal{M}^{O}(G, I, I, \Delta)$ in which $|I| \ge 2$.

Thus this semigroup cannot be the multiplicative semigroup of an additively inverse semiring.

Result 6: ([12] Theorem 13.)

In a regular ring-semigroup (S,.) the following conditions are equivalent:

- (i) (S, ·) is orthodox.
- (ii) $\forall e, f \in E, (e \cdot f = 0 \Rightarrow f \cdot e = 0).$
- (iii) $\forall e \in E, \forall x \in S, (e \cdot x = 0 \Rightarrow x \cdot e = 0).$
- (iv) $\forall r \in \mathbb{N}$, $\forall x \in S$, $(x^r = 0 \Rightarrow x = 0)$.
- (v) $\forall x \in S$, $(x^2 = 0 \Rightarrow x = 0)$.
- (vi) $\forall x,y \in S$, $(x \cdot y = 0 \Rightarrow y \cdot x = 0)$.
- (vii) (S,.) is inverse.

Example 7: (i) Take $(R,+,\cdot)$ to be a regular ring in which (R,\cdot) is not orthodox. Set $S = R \cup \{a\}$ where $a \notin R$ and define r + a = a + r = r, $a + a = a = r \cdot a = a \cdot r$ for all $r \in R$. Then $(S,+,\cdot)$ is a semiring in which (S,\cdot) is regular and a is the additive and multiplicative zero of S. Hence $(S,+,\cdot)$ satisfies condition (v) of Result 6, but is not orthodox.

(ii) Let (S,+) be a semilattice with $|S| \ge 2$ and define $x \cdot y = x$ for all $x,y \in S$. Then $(S,+,\cdot)$ is an additively inverse semiring in which the multiplicative semigroup is orthodox but not inverse.

Lallement ([8] Theorem 4.6) has proved that a primitive regular ring-semigroup is a group with zero adjoined. In particular, a completely-0-simple ring-semigroup is a group with zero adjoined.

Define a partial order on the set of idempotents E of a semigroup S by: $f \le e$ if and only if $f = e \cdot f \cdot e$. A nonzero idempotent e is <u>primitive</u> in S if for $f \in E$, $0 \ne f \le e$ implies f = e. The semigroup S satisfies Min - E if the minimum condition holds for E under the specified order; Max - E is defined dually. If $x \in S$ let

 $J(x) = \{x\} \cup xS \cup Sx \cup SxS$

denote the principal (two-sided) ideal generated by x, and $I(x) = \{ y \in J(x) : J(y) \subseteq J(x) \}$

the set of nongenerators of J(x). Then S is called <u>completely</u> <u>semisimple</u> if for each nonzero $x \in S$, the Rees quotient <u>semi-group</u> J(x)/I(x) contains a primitive idempotent, in which case every nonzero idempotent of J(x)/I(x) is primitive. We let Min - J signify the minimum condition on the set of principal ideals of S; Max - J is its dual.

A ring is <u>semiprime</u> if it contains no nonzero nilpotent (one-sided) ideals, and <u>artinian</u> if it satisfies the minimum condition on right ideals. A ring is <u>atomic</u> if it is a (direct) sum of minimal right ideals.

As a generalization of Lallement's theorem we have the following result.

Result 8: ([5] Theorem 4.)

For a semigroup S, the following conditions are equivalent:

- (i) S is completely semisimple and satisfies Min J.
- (ii) S is completely semisimple and satisfies Min E.
- (iii) S is regular and satisfies Min E.

Furthermore, if S is a ring-semigroup, then (i),(ii) and (iii) are equivalent to each of the following conditions:

- (iv) (S,+, ·) is a semiprime atomic ring.
- (v) (S,+,·) is a direct sum of dense rings of finite-rank linear transformations of vector spaces over division rings.

Example 9: Whilst the equivalent conditions (1),(11),(111) of Result 8 imply that S is regular with Min - J, the converse does not hold, even for rings with identity. To see this, consider the full ring of linear transformations of an infinite-dimensional vector space. This ring is regular ([9], Theorem 7.3) with Min - J ([10], Theorem 1.4.2) hut does not satisfy Min - E, since the projections onto an infinite descending chain of subspaces give rise to an infinite descending chain of idempotents.

Result 10: ([5] Theorem 5.)

For a semigroup S, each of the following conditions implies the next.

- (i) S is completely semisimple and satisfies Max J.
- (ii) S is completely semisimple and satisfies Max E.
- (iii) S is regular and satisfies Max E.

Furthermore, if S is a ring-semigroup, then conditions (1),

- (ii) and (iii) are equivalent to each other and to the condition:
- (iv) (S,+,.) is a semiprime artinian ring i.e. a finite direct sum of full matrix rings over division rings.

Example 11: (i) The bicyclic semigroup $\beta(p,q) = (p,q;pq = 1 + qp)$ is regular and satisfies Max - E but not Min - E ([1] Theorem 2.53). Moreover it is not completely semisimple. Thus in Theorem 10, condition (iii) does not imply condition (ii) for non-ring-semigroups.

(ii) Let C_n be the chain of length n, $n \ge 2$. Suppose these chains have a common zero element 0. Take E to be the 0-direct union of C_n , $n \ge 2$. Then E is a semilattice satisfying Max - E and

Min - E. The Munn semigroup, T_R of E ([6] Section V.4) is an inverse semigroup with B as its semilattice of idempotents (and thus is completely semisimple by Theorem 8) but does not satisfy Max - J.

Thus in Theorem 10, (ii) \Longrightarrow (i) is not valid for non-ring-semigroups.

- (iii) [2] Examples (a),(b) page 805 give examples of regular ring-semigroups which:
- (a) have only two principal ideals but do not satisfyMax E or Min E,
- (b) are completely semisimple but do not satisfy Max J,Min J, Max E or Min E.
- 3. Congruences on regular semirings: Semirings in which the additive semigroup is inverse and the multiplicative semigroup is regular (and hence the additive semigroup is a semilattice of abelian groups) are considered in [11],[13]. These papers also consider the case in which the multiplicative semigroup is simple or 0-simple.

Result 12: ([4])

In a semiring $(S,+,\cdot)$ the additive Green s relations $\mathcal{L}, \mathcal{R}, \mathcal{K}, \mathfrak{D}, \mathcal{T}$ are congruences on the multiplicative semigroup (S,\cdot) .

A semigroup (S, \cdot) is said to be <u>congruence-free</u> if the only congruence relations on S are $\mathbf{1}_S$ and $S \times S$. Thus a congruence-free semigroup is simple or 0-simple, since if I is an ideal of S, ϕ_I defined by $\phi_I = (I \times I) \cup \mathbf{1}_S$, is a congruence relation on S.

A band (S, \cdot) is <u>left</u> (\underline{right}) regular if axa = ax (axa = xa) for all a,x \in S.

Lemma 13: Take (S,*) to be a regular semigroup on which $\mathfrak{X}(\mathbb{R})$ is trivial. Then S is a right (left) regular band i.e. a semilattice of left [right] zero semigroups.

<u>Proof</u>: Take x,a \in S and a \in V(a). Then a \mathcal{L} a and thus a = a'a. Hence $a^2 = a(a'a) = a$. Now $S^1 axa \subseteq S^1 xa = S^1 xaxa \subseteq G$ \subseteq S¹ axa and so $S^1 axa = S^1 xa$ i.e. $axa \mathcal{L} xa$. Thus axa = xa for all $a,x \in S$. \square

Corollary 14: Take (S,*) to be a regular semigroup on which

3 is trivial. Then (S,*) is a semilattice.

<u>Proof:</u> Since $\mathcal{L} = \mathcal{R} = \mathbf{1}_S$, S is both a left and right regular band and hence a semilattice. \square

A semiring (S,+,.) is said to be <u>completely simple</u> if the additive semigroup is completely simple and the multiplicative semigroup is either completely simple or completely 0-simple.

Theorem 15: ([13] Theorem 24). Take (S,+,*) to be a completely simple semiring.

- (1) If the multiplicative semigroup is completely 0-simple, then the semiring is a division ring.
- (ii) If the multiplicative semigroup is completely simple, then the additive semigroup is a rectangular band and the multiplicative semigroup is a product of two completely simple semigroups $S = I \times \Lambda$ and the operations on the semiring S are given by

$$(1,\lambda) + (j,\mu) = (1,\mu)$$

 $(1,\lambda) \cdot (j,\mu) = (1 \cdot j,\lambda \cdot \mu)$

for all i, j \in I, λ , $\mu \in \Lambda$.

Theorem 16: Take (S,+,*) to be a semiring in which the additive semigroup is regular and the multiplicative semigroup is

congruence-free. Then the additive semigroup is either a group, a semilattice, a left zero band or a right zero band.

<u>Proof:</u> By [3] Lema 2 (i), the set $E^{[+]}$ is an ideal of (S, \cdot) . Since (S, \cdot) is simple or 0-simple, $E^{[+]} = \{0\}$ or $E^{[+]} = S$. Since (S, +) is a regular semigroup, it is either a group or a band.

Because $\mathcal T$ is a congruence on the multiplicative semigroup (S,.), $\mathcal T=\mathbf 1_S$ or $\mathcal T=S\times S$.

- (i) In the case $\mathcal{T}=\mathbf{1}_S$, then (S,+) is a semilattice by Corollary 14, since $\mathfrak{I}\subseteq\mathcal{T}$.
 - (ii) When $\mathcal{T} = S \times S$, (S,+) is a simple semigroup.
 - (a) X = L = R = D = 1_S.

Then (S,+) is a simple semilattice and thus the trivial group.

- (b) X = L = 1_S, R = D = S × S.
- Then (S,+) is right simple and a band. Thus, by [1] Theorem 1.27, S is the direct product of a group and a right zero band and thus is a right zero band since $\mathcal{K}=\mathbf{1}_{S}$.
 - (c) K=R= 1_S, L=D=S×S.

By symmetry, (S,+) is a left zero semigroup.

(d) 3 = S × S.

In this case (S,+) is a group.

Example 17: We provide examples of semirings in which the additive semigroup is regular and the multiplicative semigroup is congruence-free, as in Theorem 16.

- (i) Take (S,+,.) to be the two element field. Then (S,.) is congruence-free. Here (S,+) is a group.
- (ii) The two-element chain has as its multiplicative semigroup a congruence-free semigroup. Here (S,+) is a semilattice.

(iii) Take (S, \cdot) to be any congruence-free semigroup. Define the binary operation $+:S\times S\to S$ by x+y=x for all $x,y\in S$. Then $(S,+,\cdot)$ is a semiring in which the additive semigroup is a left-zero band.

Theorem 18: Take (S,+,.) to be a semiring in which (S,+) is a regular semigroup and (S,.) has a unique non-trivial congruence. Then the additive semigroup is either a group, a semilattice of groups, a semilattice of left zero bands, a semilattice of right zero bands, a left group or a right group.

<u>Proof:</u> Denote by \wp the non-trivial congruence on (S, \cdot) . Since $\mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{D} \subseteq \mathcal{T}$ and $\mathcal{K} \subseteq \mathcal{R} \subseteq \mathcal{D} \subseteq \mathcal{T}$, we have that either $\mathcal{L} \subseteq \mathcal{R}$ or $\mathcal{R} \subseteq \mathcal{L}$. We shall only consider the cases in which $\mathcal{L} \subseteq \mathcal{R}$, since the results for $\mathcal{R} \subseteq \mathcal{L}$ will follow by symmetry.

- (i) $\mathfrak{X} = \mathfrak{R} = \mathfrak{D} = 1_{S}$. By Corollary 14, (S,+) is a semilattice.
- (ii) $\mathcal{K}=\mathcal{L}=\mathcal{R}=\mathfrak{D}=\mathcal{T}$. Clearly, a regular semigroup in which $\mathcal{L}=\mathcal{R}$ is a semilattice of groups.
- (iii) $\mathcal{K} = \mathcal{L} = \mathcal{R} = \mathfrak{D} = \rho \subset \mathcal{T} = S \times S$. In this case, (S,+) is a semilattice of groups and also simple since $\mathcal{T} = S \times S$. Hence (S,+) is a group.

We now consider the case in which $\mathcal{L}\subset\mathcal{R}$.

Since & is trivial, by Lemma 13, S is a right regular band, i.e. a semilattice of right zero semigroups.

The other cases were considered in Theorem 16 or follow by symmetry.

References

- [1] A.H. CLIFFORD and G.B. PRESTON (1961), The algebraic theory of semigroups, Vol. 1 (American Mathematical Society. Mathematical Surveys 7).
- [2] K.R. GOODEARL and D. HANDELMAN (1975), Simple self-injective rings, Comm. Algebra 3(9), 797-834.
- [3] M.O.P. GRILLET (1970), Subdivision rings of a semiring, Fund. Math, 67, 67-74.
- [4] M.O.P. GRILLET (1975), Semirings with a completely simple additive semigroup, J. Austral. Math. Soc. 20, 257-267.
- [5] J. HANNAH, J.S. RICHARDSON and J. ZELEZNIKOW (1980), Completely semisimple ring-semigroups, J. Austral. Math. Soc. 30, 150-156.
- [6] J.M. HOWIE (1976), An introduction to semigroup theory, Academic Press, Inc., London.
- [7] P.H. KARVELLAS (1974), Inversive semirings, J. Austral. Math. Soc. 18, 277-287.
- [8] G. LALLEMENT (1967), Demi-groups reguliers, Annali mat. pura. appl. 77, 47-130.
- [9] N.H. McCOY (1964), The theory of rings (Macmillan, New York).
- [10] M. PETRICH (1974), Rings and semigroups (Lecture Notes in Mathematics 380, Springer-Verlag, Berlin, Heidelberg, New York).
- [11] H.J. WEINERT (1983), On O-simple semirings, semigroup semirings and two kinds of division semirings (to appear).
- [12] J. ZELEZNIKOW (1980), Orthodox semirings and rings, J. Austral. Math. Soc. 30, 50-54.
- [13] J. ZELEZNIKOW (1981), Regular semirings, Semigroup forum 23, 119-136.

Department of Mathematics Michigan State University East Langing, Michigan 48824 United States of America

(Oblatum 17.11. 1983)

