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Abstract: Regular and orthodox ring-semigroups and semi-
rings are characterized, as well as ring-semigroups with chain
conditions on idempotents and principal ideals, Congruences
on additively reguler semirings are also considered.
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1, Introduction: In a semigroup (S,.) we put E = {eeS:
16° = e} and V(x) = {a€Six+a.x = x and a.x & = a} for all
x6 8. If V(x) = (0 , then the element x is said to be regular.
If each element of S is regular, then the semigroup S is said
to be regular. If S is a regular semigroup, and E is a subse-
migroup of S, then S will be said to be an orthodox semigroup.
A regular semigroup in which e.f = f.e for all e,f&E, is said
to be an inverse semigroup.

We use the definitions and notation of (11,

A semigroup (S,+) is a ring-semigroup if there exists a
binary operation +:Sx S — S such that (S,+,+) is a ring.

In [12], the structure of orthodox ring-semigroups was
congidered. Such semigroups are inverse. In the proof of this

theorem, the concept of an additivelv inverse semiring is re-

quired.
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Definition 1: A triple (S,+,:) is & semiring if S is a

set, and +,+ are binary operations satisfying
(1) (8,+) is a semigroup,
(11) (8,¢) 18 a semigroup,
(111) @a«(b + ¢) = a.b + A+, (& + b)ec = @cc + bec , for

all a,b,c¢ S.

Definition 2: A semiring (S,+,+) is said to be an additi-

vely inverse semiring if (S,+) is an inverse semigroup,

The following theorem of Karvellas allows us to prove many

results for additively inverse semirings.
Result 3: ([7) Theorem 7.)
In an additively inverse semiring (S,+,-), if as asnSa for

all ae S, then S 1s additively commutative (and hence a semilat-
tice of groups).
In a semiring (S,+,+) we put e+l fxeS:x + x = x} and

B! . {ecS:e-e = of.

2. Regular ring-semigroups: We can now prove:

Result 4: ([12] Theorem 9.)

Let (S,+,+) be any additively inverse semiring in which
(8,+) is regular. Then the following conditions are equivalent:

(1) Ve,te EL) » (eef = 0=ptee = 0).

(11) VegEr!? y VxeS, (esx = 0= x.e = 0).

(111) VneWN , Vxes, (x®=0=>x » 0).

(1v) Vxe8, (x2 = 0=> x = 9),

(v) Vx,ye8, (x5 = 0 =5 yex = 0).
Purther, each is implied by
(vi) (S,¢) ie orthodox.
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Example 5: In an arbitrary regular semigroup (S,.), ocondi-
tion (1) of Theorem 4 does not imply condition (ii), amd (S,e)
being orthodox does not imply condition (ii). To see this we may
take any Brandt semigroup S = M°G,I,I,A) in which |I}22,

Thus this semigroup cannot be the multiplicative semigroup
of an additively inverse semiring.

Result 6: ([12] Theorem 13.)

In a regular ring-semigroup (S,.) the following conditiomns

are equivalent:
(i) (8,+) is orthodox.

(ii) Ve,feE, (et = 0=p f.e = 0).

(ii1) VeeE, ¥xeS, (eex = 0= x.e = 0).
(iv) YreWN , Vxes, (xf =0=>x = 0).
(v) Vxes, (x> =0=>x = 0).

(vi) Vx,5e8, (x+y = 0= yex = 0).

(vii) (S,*) is inverse.

Example 7: (i) Take (R,+,+) to be a regular ring in which

(R,~) is not orthodox. Set 5 = Rufal where a § R and cefine

r+a=a+r=r,a8+a8a-=a3=nrea =a2a-r for all reR. Then
(S,+,¢) is e semiring in which (S,+) is regular and a is the ad-
ditive and multiplicative ze-o of 3, Hence (S,+,+) satisfies con-
dition (v) of Result A, but is nct orthodox.

(ii) Let (S,+) be a semilattice with |S|Z 2 and define
£ey = X for all x,ye& S. Then (S,+,+) is an additively inverse se-
miring in which the multiplicative semigroup is orthedox but not
inverse.

Lellement (I8] Theorem 4.6) has rroved that a primitive re-
gular ring-semigroup is & group wi‘th zero adjoined. In particu-
lar, a completely-O-simple ring-semigroup is a group with zero
adjoined.
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Define a partial order on the set of idempotents E of a
semigroup S by: f<e if and only if f = e.f-e. A nonzero idem-
potent e is primitive in S if for f€E, O%+f<e implies f = e.
The semigroup S satisfies Min - E if the minimum condition holds
for E under the specified order; Max - E is defined dually. If
xeS let

J(x) = {x}uxSusxusxs

denote the principal (two-sided) ideal generated by x, and
I(x) = {yed(x):3(y) & J(x)¢

the set of nongenerators of J(x). Then S is called completely
gsemigimple if for each nonzero xe¢S, the Rees quotient semi-
group J(x)/I(x) contains a primitive idempotent, in which case
every nonzero idempotent of J(x)/I(x) is primitive. We let
Min - J signify the minimum condition on the set of principal
ideals of Sy Max - J is its dual,

A ring is gemiprime if it conteinas no nonzero nilpotent
(one-sided) ideals, end grtinjen if it satisfies the minimum
condition on right ideals. A ring is atomic if it ims a (direct)
sum of minimal right ideals.

As a generalization of Lallement ‘s theorem we have the fol-

lowing result.

Result 8: ([5] Theorem 4.)
For a semigroup S, the following conditions are equivalent:

(i) s is completely semigimple and satisfies Min - J.

(ii) S is completely semisimple and satisfies Min - E,

(ii1) S 1is regular and satisfies Min - E,

Furthermore, if S is a ring-semigroup, then (i),(ii) and
(111) are equivalent to each of the following conditions:

T =132 -



(iv) (S,+,*) is & semiprime atomic ring.
(v) (S,+,°) 1s a direct sum of dense rings of finite-rank

linear transformations of vector spaces over division rings.

Example 9: Whilst the equivalent conditions (1),(11),(iii)
of Result 8 imply that S is regular with Min - J, the converse
does not hold, even for rings with identity. To see this, oonai-
der the full ring of linear transformations of an infinite-di-
mensional vector space. This ring is regular ([9), Theorem 7.3)
with Min - J ({101, Theorem 1.4.2) hut does not satisfy Min - E,
since the projections onto an infinite descending cheain of sub-
spaces give rise to an infinite descending chain of idempotents.

Result 10: ([5) Theorem 5.)
Por a semigroup S, each of the following conditions implies

the next,

(1) S 1is completely semisimple and satisfies Mex - J.
(i1) S is completely semisimple and satisfies Max - E.

(111) S is regular and satisfies Max - E.
Furthermore, if S is & ring-semigroup, then conditions (1),
(i1) and (iii) are equivalent to each other and to the condition:

(iv) (S,+,+) is 2 semiprime artinian ring i.e. a finite

direct sum of full metrix rings over division rings.

Exempie 11: (i) The biecyeclic semigroup  (3(p,q) =
2 {p,q:pq = 1$qp> 1is regular and satisfies Max - E but not
Min - E ([1) Theorem 2.53). Moreover it is not completely semi-
simple. Thus in Theorem 10, condition (iii) does not imply condi-
tion (ii) for non-ring-samigroups.

(i1) Let C, be the chein of length n, n22. Suppose these
cheins have a common zero element O, Take E to be the O-direct

union of Cn, nz 2, Then E is a semilattice satisfying Max - E and
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Min - E, The Munn semigroup, Tg of E ([6] Section V.4) is an in-
verse semigroup with B as its semilattice of idempotents (and
thus is completely semisimple by Theorem 8) but does not satis-
fy Max - J.

Thus in Theorem 10, (ii) =—p (i) is not valid for non-ring-
semigroups.

(1i1) (2] Examples (a),(b) page 805 give examples of regu-
lar ring-semigroups which:

(a) have only two principal ideals but do not satisfy
Max - E or Min - E,

(b) are completely semisimple but do not satisfy Mex - J,
Min - J, Max - E or Min - E,

3. Congruences op regular semirings: Semirings in which
the additive semigroup is inverse and the multiplicative semi-

group is regular (and hence the additive semigroup is a semilat-
tice of abelian groups) are considered in [11],[13]. These pa-
pers also consider the case in which the multiplicative semi-
group is simple or O-simple,

esult 12: ([4])

In a semiring (S,+,+) the additive Green s relations
2£,R,X,D,T are congruences on the multiplicative semigroup
(8,°).

A semigroup (S,+) is said to be congruence-free if the on-

1y congruence relations on S are 43 and S xS. Thus a congru-
ence-free semigroup is simple or O-simple, since if I is an i-
deal of S, @ defined by @ = (IxI)y 1g, is & congruence
relation on S.

A band (S,+) is left (right) regular if axa = ax (axa =

= xa) for all a,xe S.
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Lemma 13: Take (S,-) to_be a regular semigroup on whioh
¥ (R) is trivial, Then S is a right (left) regular band i.e.

a gemilattice of left [right] zero se oups

Proof: Take x,a€S and a’c V(a). Then a£a’a and thus

a = a’s. Hence a2 Taxass'za = s'xaxa ¢

= a(a’a) = a. Now S
cs'axe and so S'axa = S'xa 1.e. axafxa. Thus axa = xa for

all a,xeS. 0O

Corollary 14: Take (S,+) to be a regular s oup on which
D 4is trivial. Then (S,*) is a semilattice.
Proof: Since &= R = 15, S 1s both a left and right re-

gular band and hence a semilattice., (1

A semiring (S,+,-) is said to be completely simple if the
additive semigroup is completely simple and the multiplicative
semigroup ie either completely simple or completely O-simple.

Theorem 15: ([13] Theorem 24), Take (S,+,¢) to be & comple-
tely simple semiring.

(1) If the multiplicative semigroup is completely O-simp-
le, then the semiring is & division ring.

(1i1) If the multiplicative semigroup is completely simple,
then the additive semigroup is a rectangular band and the mul-
tiplicative semigroup is a product of two completely simple se-
migroups S = I x A and the operations on the semiring S are
given by

(1,2) + (J,) = (1, @)
(L, A)+(J, ) = (13, Ae@)
for all i,jeI, A, €A,

Theorem 16: Take (S,+,°) o be a semiring in which the ad-
ditive semigroup is regular and the multiplicative semigroup is
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congruence-free. Then the additive semigroup is either a group,
a semilattice, & left zero band or & right zero band.

Proof: By [3] Lema 2 (1), the set EL*) 1s an ideal of

(8,+). Since (8,*) is simple or O-simple, gf*d . 103} or Y .
= 5. Since (3,+) is a regular semigroup, it is either a group
or a band.
Because J° 1is a congruence on the multiplicative semigroup
(8,4), T = 1g or T'= Sxs.
(1) In the case T'= 15, then (S,+) is a semilattice by
Corollary 14, since I € 7.
(11} When J'= Sx S, (S,+) is & simple semigroup.
(a) Knul=2aR=D = 13.
Then (S,+) is a simple semilattice and thus the trivial group.
(0 K== 15, R=D =s5xs.
Then (S,+) is right simple and a band. Thus, by [1] Theorem
1.27, S is the direct product of a group and a right zero band
and thus is a right zero band since X = 1
(¢) X =Ra= ‘ls, L= = Sxs8.
By symmetry, (S,+) is a left zero semigroup.
{(d) X = S=xS.

g°

In this case (S,+) is & group. 0O

Exemple 17: We provide examples of semirings in which the
additive semigroup is regular and the multiplicative semigroup
i1s congruence-free, as in Theorem 16,

(1) Take (S,+,*) to be the two element field. Then (S,-)
is congruence-free. Here (S,+) is a group.

(ii) The two-elemen* chain has aa its multiplicative ge-
migroup a congruence-free semigroup. Here (S,+) is a semilatti-

ce.
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(1ii) Taxe (S,-) %o be any congruemce-free semigroup.
Define the binary operation +:SxS8 - S byx+y=xXx for all
x,y €S. Then (S,+,*) is a semiring in which the additive se-

migroup is a lefi-zero band.

Theorem 18: Take (S,+,+) to be a semiring in which (s,+)
is a regular semigroup and (S,*) has & unique non-trivial con-
gruence, Then the additive semigroup ig either a group, 2 _s&-
milattice of groups, & semilattice of left zero bands, a semi-

lattice of right zero bands, & left group or a right group.

Proof: Denote by @ the non-trivial congruence on (S,°).
Since XsfscDecT and X R SDcT, we have that eit-
her L €R or R =L . We shall only consider the cases in
which & € R , since the results for R S will follow by
symmetry.

(1) £ =8 =92 = 1g
By Corollary 14, (S,+) is a semilatiice.

(11) K =€ =R =32 = T,

Clearly, & regular semigroup in which £=R 1is a semilatti-
ce of groups.

(111) X =L =R =D =@ecT=38xs.

In this case, (S,+) is a semilattice of groups and also sim-
ple since 9= Sx S, Hence (S,+) is a group.

¥e now consider the case in which £ c R .

(iv) 1g aK=LER = DaT & Sx=s.

Since ) is trivial, by Lemma 13, S is a right regular
band, i.e. a semilattice of right zero semigroups.

The other cases were considered in Theorem 16 or follow

by symmetry.
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