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Abstract: If X is a topological space, demote CR(X) the
completely regular modification of X. The aim of the present
paper is to give an example of two !3-spaces X, Y such that

CR(X > Y) #£CR(X) = CR(Y).
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There is a plenty of papers dealing with the commutativi-
ty of products and & suitable functor from the category of to-
pological spaces into itself. To the author ‘s knowledge, the
functor of completely regular modification has been investiga-
ted from this point of view in [0] and [P). For & topological
spece X, denote CR(X), the completely regular modification of
X, the space whose underlying set is the same as that of X, e-
quipped with the topology, the base of which consists of all
cozero subsets of X. It is easy to show that CR(X) has the lar-
gest completely regular topology contained in the topology of
X. Let us remind the best results concerning the commutativity
of CR and products:

Theorem [0l: Let X be Tychonoff. Then the following are

equivalent:
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(1) X is locally compact,
(11) for each space Y, CR(X=Y) = X<CR(Y).

Theorem [0]: Let X be a topological space and suppose that

CR(X) is not locally compact. Then there exists a Hausdorff spe-
ce Y such that CR(Xx Y)#$ CR(X) »CR(Y).

According to these two theorems, the piocture is pretty olear:
local compactness is the crucial property. Unfortunately, the
proof of the second theorem mentioned above essentially uses the
fact that the space Y is not regular,

We do not know the answer, whether "Hausdorff™ can be re-
placed by "regular®™ in the seocond theorem of S. Oka. Neverthe-
less, we can exhibit the following

Example: There exist regular spaces X and Y such that
CR(X) > CR(Y) $+CR(X < Y).

The idea is fairly simple. Let us start with a completely
regular, non-normel space T, let A,BGT be the two closed dis-
Joint sets which cannot be separated. Run the space T through
the Jones machine. You will obtain the regular space X which
contains a point p and & closed set A° isomorphic to A sueh that
p end A cannot be functionally separated. This implies that
whenever U is a cozero set in X which contains p, then UnA.
is infinite. Consequently, the point (p,p) belongs to the sle-
sure of the set {(x.x):xeloi in the space CR(X)=CR(X). Im or-
der to show that CR(XxX) differs from CR(X)» CR(X), we need to
find a continuous real-valued function on XxX which vanishes
in (p,p) and equals 1 in each (x,x), xoA.

Unfortunately, this does not work in general and we ought
to be a bit more cereful when choosing the starting non-normsl

space - in fact, we shall need two such spaces. In spite of
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this, the idea has just been fully described and the rest are

mere technical complications.

A, The modified Tychonoff plank. Let T4 2% be a cardinal
number, let F={E :10c ¢ T} be an arbitrary family of infini-

te subsets of ow.

The modified Tychonoff plank T(%F ) is defined as follows:
The underlying set is (Tt + 1)x (w+ 1) - {(x,w)}, every point
(e« ,n) (for «« €T, n < @ ) is isolated, the neighborhood base
of a point (¥ ,n) (for n < w ) is the collection
£4(c,m¥ui(cc,n): €7 - Ch1C e [‘r]s“},the neighborhood ba-
se of a point («¢,w) (for « < ¥ ) is the collection
{{(c,)} ud(x,n)ine? - PhPelwl““L Sometimes 1t will
be convenient to emphasize by a subscript (oC 'n)3’ that the pair
(%,n) belongs to T(F).

Now, the space T(3 ) is completely regular Hausdorff O-di-
mensional, It is normal if and only if |%| £ @ , because the
sets AS = {gix® and By = % » {w} cannot be separated iff
T> W.

The forthcoming lemma shows one important property of con-
tinuoue functions on T(F ).

Por ¥ s [wl®, denote '}(3’) ={X 6 [w1¥:|{P e F:
IPAXl =0l 03,

Lemms 1, Let ¥ g lcwl®, = 1Fl>w, let i(F)—>R
be continuous, ¢ > 0. Then

(1) it lixe T :|lt((x,w))]lzetls w, then fnecaw:
:[2((e,m))| > e’;le'}(?’), and almost conversely

(11) it fnew:|f((w,n)) |z e} e }(F), then i € T3
(@) l>edlew.

Proof. Since f is continuous, then for each n,k ¢ @ the
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set S, y ={k67:|t((x,n) - 2((,0)) |2 %}ia countable,
et 8 = U J 8,4, Z=7-85. Then for xc Zandn¢ ®
£((¢ yn)) = 2(( ,n)).

(1) Denote M =fnew :|2((7,m))|>et . I £ & Z is
such that \lnl" | = @ , then the continuity of f implies
12((,w))| = int {12((ec ,n)) lsne R n M= inf {l2((7 ,n))]:
ine¥ A M} 2 € . Therefore {k € T :|¥, NMle wicfxer:
t|2((ec,w))l 2 €} v 8. Since both sets on the right-hand side
are at most countable, M ¢ (%), which was to be proved.

(11) Denote N = {new :|2((w,n))l=2€el . If x ¢ Z is
such that |E, A N | < @ , then |2((x,@))| & wup §12((ec,n))|2
ing®, - N} = sup {i2((v,n))l:ne? - ¥N}{< € . Thus
fxev:ltf((x,@))|>etc{x6r:IF n¥|=wiws.

Since N ¢ }(3'), the set{xecz:|2, NN | = wlis at most count-
able, hence the set fx € T:1|f((x,w))] > e} 1s at most ocoun-
table, too. 0O

B, Jones machine., A well-kmown consiruction, the final

form of which is due to P.B. Jones, goes as follows [J): Let T
be a non-normal space, denote A,BGQT the closed, disjoint sets
which cannot be separated. Let Z = (T x ) v ip}, where p¢Tx w.
The topology on Z is the usual product topology in all points
other than p, the basic neighborhood of p is {p} U(Tx(w~- k)),
where k ¢ @ . Define an equivalence relation ~s on Z by
(x,n) ~v (y,m) iff either xeA, y=xand n =2k + 1, m = 2k + 2,
or x&B, y = x and n = 2k, m = 2k + 1. The space J(T) is the
quotient space Z modulo ~v .

The basic properties of J(T) are the following: If T is re-
gular (resp. Hausdorff, resp. T;), then J(T) is, but J(T) is not
completely regular., because the point p cannot be functionally
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separated from the closed set Ax {03,

Por the modified non-normal Tychonoff plank T(Z%), denote
A= {(¢,n)in e @t , Ba=f(x,w): &« &¥i and consider the
space J(T(F)) = J(F). (If necessary, we shall again denote
the points of J(F) es pp and ((oc,n),k)z .) Then the follow-
ing holds.

Lemma 2. Let ¥ ¢ [ w]“be uncounteble, let £:3(F)— K
be continuous, f(pg) = 0, € > 0. Then
fnew :£(((x,n),0) | >eie J(F).

Proof. There is some k 6 & such that for ell x e{p} v
V(T ) (w=Xk))/~, I£(x)) < €/2, Hence there is some even
32k such that |f(x)| < ©/2 for all x¢ Bx{ji.

Choose o' > 0, d" < ©/2.j. Since for each xe Bx{jt,
1£(x)\ < €/2, by Lemma 1,(1), the set {n 6 @ : |£(((%,n),J))|>
> €% € J(F ). Since A x it was identified with Ax{j - 1},
the set {n ¢ @ 1 12(((«,n),3-1))| > /21 velongs to F(F),too.
Thus {n e w :12(((w,n),3-1)) | = €/2 + I’} e }(F), by Lemma 1,
(1I), the set { & T :12(((ec,@),3-1))] > &2 + 0"§ 18 at most
countable., By the identification, {ct € T : I£(((ec,w),3=2))] >
> /2 + &'t 1is countable, too, and the same holds for{«C € 7 :
1 12((Coc ), 3=2))) = ©/2 + 2d'¢ . Proceeding further, we ob-
tain finally that {n e @ :|£(((7v,n),00)| > %2 + §.0' e F(F),
which was to be proved, as €/2 + 3.’ < €., O

C. How to do it. The forthooming lemma is fully proved in

[si.
Lemma 3., There is an infinite maximal almost disjoint fa-
mily M s [w1® which admits a disjoint partition M = Fu G

such that (M) = F(F) = }G).
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Notice that both the collections ¥ , G must be uncount-
able. Suppose the contrary, let ¥ ={Ptne w§ . Choose a
countably infinite subset 9' = g- and enumerate it as {an
:n € @{ in such a way that for each G & G’ , the set fnew 3
G = Gn} is infinite. Then pick up inductively 56 Gn -;CJO !1,
k,>Xk, q. Now the set K = {k :new} belongs to F(F), tor
KNP 1is finite for each P ¢ ¥ ., On the other hand, the set
{MAK:M € M and IMAK| =w? is an infinite maximal almost
disjoint family on K, hence it cannot be countable. Thus
K¢ }(%), K ¢ J(M), which contradicts the lemma,

The spaces we promised to construct, are X = J(F), Y =
= J(G), where ¥ and G ere as in Lemma 3. Let v = |¥], 4=
= |G| ; using the notation as before, denote

A= {(((x ,n),O)g. ’ ((y.n),O)q’):n e Wk,

First, we shall prove that the point (pg"l’g,) is a cluster
point of A in CR(X)x CR(Y).

Indeed, choose arbitrarily a cozero set U with prs Ula
€J(%), and a cozero set V with pqe V$J(G ). By Lemma 2, K =
={new:(v,n);¢U}{eF(F)eand L ={new =((a.n)9¢- Ve
€ 3(G). By Lemma 3, }(3’) = 3(G) = F(M), and clearly
}(’m) is a proper ideal on w , thus @ - Kul is infinite.
Clearly, for né w - Kul, (((‘r_',n).o)s- . (((u,n).o)q,)s UxV.
Thus each neighborhood of & point (p,; ,p(') in CR(X)x CR(Y) meets
A , which was to be proved.

Second, we shall separate the point (pg, .pg') from A in
the space CR(X»nY).

Define a function f:XxY¥-— IR as follows: £((x,y)) =1
provided that there aren € W ,X € T + 1 and 3€ & + 1 such
that x = ((oc,n),o)s, » ¥ = (3 'n)'°)g. , otherwise £((x,y)) = O.
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Clearly, £ A = 1, f((pg. ,p‘.* )) = 0, thus it remains to check
that £ is continuous.
Pick up (x,y)e Xx Y. Then there are only four non-trivial
cases:
1. x = ((e¢,w),0)y for & <,
y= (((3.6)),0)Q for 3 < &
Let U = {x¥u {((e,n),i); :nef - G, i¢£0,1%%,
v -{y}u{((ﬂ,n),i)q in€Gy - B , 1e10,1}3.
Since 71l was assumed to be almost disjoint, (B, - Gf‘ )n
NGy - Ty ) = g, thus £ FUxVs= O.
2, x= ((£,w),0) for «« < ¥,
y=((3,n,0) for B & 4 ,n< @.
Let U = §xt v {((<,m),i):me? -1{ini, 1ef0,1%%,
Veiytuv{((y,0),0: < i
Then £t UxV = 0.
3, x = ((%,n),0) for « ¥ , n < @
y=((p,w),0) for B < .
This case is gymmetrical to the previous one.
4, x = ((ctyn),0) for t &« T , n < @&,
y=((3,m),C) for B £ @ ,m < -
Let U = {x}vu {((d')n),0): F < ¥},
Vefybu{((y,m,0):q < &?-
Then if f(x,y) = O, which takes place if n<%m, we have
fPUxV=0, and if n = m, then £ PUxV =1,

In any case other than these just mentiened, the existence
of neighborhoods U, V with £ UxV= 0, is obvious.
Thus f is a continuous function which separates (pr,p )

and & . "

Remark. The spaces we have constructed, are regular. One

- 127 =



can want, moreover, that both X, Y have a base consisting of

interiors of zero sets. It suffices to start with T(F) and

’1‘((5,) as before, but then adopt the construction described in

[W) instead of Jones mechine.

[B]

[J]

[o]

@3]

[s)

[wl
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