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This paper is a lose continuation of the paper [61. There
we have proved the equivalence of complete regularity and uni-
formizebility in locales and indicated a role of diameters. A
system D of diameters gives rise to a uniformity (or, to a
weak uniformity, according to how strong conditions are impos-
ed on the diameters) (D). We have seen, in particular, that
if a locale is uniformizable at all, it is uniformizable by a
WU(D). The main aim of this paper is to prove metrization
theorems for pointless uniformities, i.e. to show that, in fact,
each uniformity on a locele is a U(D), and thet it is induc-
ed by a single diameter function whenever it has a countable
basis. This goal is achieved by modifying the standard metri-
zation argument (see, e.g., [5]) and, perhaps, yields also a
better insight into what is going on there.

The first, and larger, part of the article (Sections 1-3)
is devoted to a discussion of various conditions one can impe-

se on dlameter functions. Sectica 1 contains the basic defi-
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nitions and relations between the conditions. In Section 2 it
is shown that in the spatial case, the metris diameters are in
a natural one-one correspondence with the pseudometrics. Secti-
on 3 deals with eonstructions allowing to obtain stronger pro-
perties of diameters. In the lest, fourth, section the indused
uniformities are discussed and metrization theorems are proved.

The terminology follows the standard usage (as, e.g., in
[4],[1]1), 1im special definitions the notation and convention
of [6] are preserved (with the exception of the condition (M)
which now contains sutomatically the condition (4)).

1.- Diameters

1.1. We may that a subset of a locale L is connected if
Va,bes 3 81sec0s8 € S such that &; = &, a = b and
aA a1+1+o for i = 1,...,n-1.
We say that it is strongly connected if
a,beS =p aAb 0.
The system of all connected subsets of L will be denoted by
conn(L),
that of the strongly connected ones by
P,

1.2, A pre-diameter on & locale L is @ funotion
a:L—MN,
(R, 1is the set of the non-negative reals) such that
(1) da(o) = o,
(11) a4b =% d(a) £d(b),
(111) ¥e > 0, fald(a)< e} 1is a cover of L.
It 18 seid to be continuous if, moreover,

(C) for each monoton- ! = linearly ordered by £) ScL,
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a(\/8) = sup {d(a)|aesSt.

1.3. A pre-diameter d is said to be
- & weak diameter if
(¥): for a, b such that aAbo0,
d(avb) £2 max (d(a),d(b)):
- an additive diameter if
(A)s for a,b such that aA b0,
d(evb)4d(a)+a(b);
~ a star diameter if
(x)s for S e S(L)
d(\/8)« 2 sup {d(a)|aesi;
- 8 gtar-additive diameter if
(x¥A): for 3¢ (L),
a(V' 8) £ sup {d(a)+d(b)la,bec 3, afDbi;
~ & strong digmeter if
(8): for Se comn (L),
a( Vv 8)& sup{inf{&g{ d(si)laic S, ay=a, & =b, a,A8, 4

+0%|la,b&sS, agbdi,
- a pmetric diameter if
(e (A) ana
VxeL VeE>0 3u,v, uAx$0$vax&d(u),d(v)<e & d(uy v)>
>d(x) - & .
1.4. Remdrk: The following implications are obvious
3 =p (kA4) = (x)

(R) = (W).
In [6y Lemma 5.1] we have seen that (M) => (x). In fact, as
we will shortly see, (M) is the strongest of all the mention-

ed requirements (and, moreover, implies continuity). In the
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next section we will show that the metrioc diameters correspond
in the spatial case exactly to the pseudometrics. Thus, they
can be understood as a natural modification of the notion of
distance for the purposes of general locales.

The reamn why we 1list the other mentioned conditions on
pre-diameters (and no further ones used elsewhere, e.g. in [2])
is, of course, given by the aims of the article. The condition
(W) is the weaskest one one needs to induce at least weak unifor-
mities; (A) is very natural and, besides, it is a part of (M);
(x A) is also very natural, probably the most intuitive of all,
and 1t will play a technical role: a star-additive diameter can
be very satisfactorily approximated by a metric one: (S) is an
extension of (% A) and will appear as a consequence of (M). The
condition (% ) is about the minimum one needs for gensrating
uniformities; besides, star-diameters will also play a techni-
cal role.

1.5. Theorem: A metric diameter is a continuous strong
diameter.

Proof: (C): Let Sc L be monotone. Take an € > 0 and
choose u, v such that d(u),d(v)<e , u AV S$*0%v A VS and
d(uvv)>d(\V/S) - & . We have x,y& S such that xAu4OHyAv.
If, say, y2x, we have also uAy=0. Thus,

d(uvv)4ad(yvuvy) cd(yvu) + £ <d(y) + 2¢
so that

a(y) >a(Vvs) - 3¢ .

Hence, sup {d(y)lyeStzd( S). On the other hand, obviously
sup d(y)&d( \/8).

(S): Let this not hold. Then, we have an S¢ conn (L) and

en m > 0 such tr-*
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m
a(V8)> sup {int 14 day)la 68, a) = a, 8, = b,
ajAey 1 +0%le,beS, apbi+ 7 -
Take an ¢ > O such that s<-16'rl and choose u, v such that

d(u),d(v) <& , u ANV/S*04v A VS and d(uvv)>d(\Vs) -e.
Consider a,be S with uAna$O04vAb,
I. Let a%b. Then we have, in particular,
AUVH>1at 4 T dlsy)le 65, ay = a, a_ = b,
84N 81 #03 +
and hence there are ay = 84855000 ,8, = b, ayn ‘1+1*‘° such that

(1) Vs >Zaa) +37 .

By 1.2(1i1) we can choose u; €L such that
d(uy)< e and L L R
We obtain
d(uvuﬂéd(uv%)é d(ey) + ¢,
a(uyvuy) 4d(ey),

Wy o vy ) 4d(e ),
aw _1vv)&d(a vy) £d(a) + €.
Using repeatedly (A) we obtain
uveyveeova vVéd(uvyy) + d(ugvw) +...+
+dwy qvv) s Xda(ay) +2¢
80 that
AUVS)<duvy) + ¢ £ as) +3e < T &) + 3

in contradiction with (1).
II. Let a = b, Choose an arbitrary c€ S, cfa (obviously
S has to have at least two elements). We have

av S)>inf{.‘§1 d(ai)la1 =8, 8 =c, 84 ai+1¢oi+1L
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s0 that, again, there are 8) = 8, 8,,..0,8, =0 such that

n
a8 > % a(ay) +%1z.

We obtain a contradiction
d(Vs)<d(uvy) + € Kd(uvavy) +& £d(a) + 3e &
&= d(a) +3e < Ed(sy) +xq<a(VS). 0O

2. Spatial ocege: metric diameters and pseudometriocs

2.1, In this section, a topological space X = (X,L) is
given, L is the locale of its open sets. To keep the netatden
in accord with that of the general case, we will denete the open
sets in X by lower ocase Roman letters. The points of X will be
denoted by <, 3 , 4 and d'. If @ is a pseudometric on X we
write

.Qg,(oc;p) = {flep(,B) <€}
2.2, Let ® be @ bounded pseudometric on the set X. We
construct
&L —> R +
by putting
(2) a(x) = sup {e(w, ) |, 36 xi.

2.3. Proposition: Let the topology of (I,so) be weaker
than that of X, Then 4 defined by (2) is a metrioc diameter.
Proof is a matter of easy checking., Since the sets

.Q.§> (e3+) are open, we can take for u, v in (M) suitable
Qgize), Q(BsFe). O
2.4, Let d:L ——9R+ be a metric diameter, define

® IxX—R,
by putting

(3)  @E(x,p) =infdd(x) | fo, picxi.

- 110 -



2,5. Proposition: The function Sb is a pseudometric on
the set X,

Proof: The triangle inequality follows easily from (A),
ga(oc y&) = O from 1,2(iii). Obviously, @, B) =@(3,0). 0

2.6, Lemma: Let (® be constructed from d by (3). Then
_Q.@(ecse) =Vi{xlxel, £€ x, d(x)<e3.

Consequently, the topoiogy of (X, ;o) is weaker than L.
Eroof: We have

ga(cg,(s)<e iff 3x 54{x, 33, x€L, such that d(x)<e. O

2.7. Theorem: The formulae (2) and (3) constitute a one-
one correspondence between the set of all bounded metric dieme-
ters d on L and the set of all bounded pseudometrics {0 on X
such that the topology of (x,(a) is weaker than L.

Proof: I, Start with a diameter 4, constructeby (3) and
a new diameter 4’ fiom @ by (2). Obviously,

a’ (x)#da(x).

Let there be an x and an & > O such that d(x) >d’(x) + 3¢ .
Take u, v such that uAx#$04vAax, d(u),d(v)< €& and d(uvv) >
>d(x) - € (and, hence, d(uvv)>d’(x) + 26 ). Choose x € unx,
PevVAx. Consider an arbitrary we L such that {«,{3}C w. We have

d(uvv)zcd(wvuvv)ed(w) + 2 ¢
and hence

d(w)z d(uvvy) - 2e > a°(x)
80 that

elx,flzaluvy) - 2¢ > a”(x)
in contradiction with the definition of 4 (x).

II, Start with a pseudometric ¢ , comsiruct d by (2) and
then & new pseudometric S°' by (3). We obviously have

9'(0(,,[3) zela,B).
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Yot @'(ot,3)> plct,(3) + 3& . Consider u = Q(eoi5 € ),

v -Q({h%e )e Thus, d(u),d(v)< e . Take F & u, de v. We

have

ey, soly,«) +elc,B ) +e(B,d)<pl«,3) + 28

and 1t y ,d e uor 7,d e v obviously @E(y,0)<2e. Thus
d(uvv)‘p(ec,p) +2e < P’(oc,ﬁ) -€

in contradiotion with the definition of ©’. O

2.8, Proposition: (Notation from [6).) Let d be & metric
dismeter on L, let @ be obtained by (3). Then

w ;,- open in (x,sa) ire uel,
where U is the u-basis {{ald(a) < e}l €>o0%.

Preof: Let u be open in (X,SD). By 2.6, ue L. Let oc be
an arbitrary point of u, Take an ¢ > O such that f(«c32€ )c u.
Put v = Q (3 &) and consider A ={ald(a)< &% . We have

Av£u and hence v 2 .

Since o« was arbitrary, u = V{xlx %4 uk.

On the other hand, let u = V4{ x|x % u. Take an o6 6 u.
There is an x, x% u such that oC € x and there has to be an
€ > 0 such that, for A ={ald(a)< e}, Ax4u. Obviously,
Q(xjel)sax. OO

3. Pabricating diameters with stronger properties

3.1, Por a star diameter d on a locale L put
d(x) = %n,to supfd(uvv)luax+0+vax, d(u),d(v)<e}a
3.2, Lemma: PFor any x,y6L we have
dxvy)z dlxvy) - d(x) - d(y).
Proof: If x =0 or y = O, the right hand side is zero.
Thus, we can assume that x0%y.
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Let J(xvy)<d(xvy) - d(x) - d(y). Then we have an €4>0
such that, for €< o0
o = sup{duvv)iua(zvy)=+0%xva(xvy), d(u),d(v)< e} <
<d(xvy) - d(x) - a(y).
Choose u, v such that uaAx#0+4+vAy and d(u),d(v) < € . We have
dxvy)£d(zvyvuvv)=d(uvy) + d(x) + a(y)
and we obtain a contradiction

o« zd(uvv)Zzd(zvy) - d(x) - d(y) > <. O
3.3. Lemma: We have
2d(x) £ I(x) £ a(x).

Proof: If uAax30%vAax and d(u),d(v)<e , we have
d(uvv)ed(xvuvv)<d(x) + 2¢ .
Hence, J'(x)<d(x).
Now, let us have, for some x€L and 1 > O,
J(x)< ya(x) = 7 -
Thus, we have an € > O such that
sup fd(uvv)luax$0%vax, d(u),d(v)< el< %(d(x) -7).
Teke the system S =fuelLld(u) <€ , uax+0% and choose a fixed
v,€S. Thus, x£V4{iuvvilue 3% and we obtain, by (x),
d(x) <2 sup fd(uvv)lucsi<d(x) -
which is & contradiction. O

3.4. Theorem: For any star-additive diameter d there is
& metric diameter J° such that
M < J <
Proof: According to 3.3 it suffices to prove that the J”
from 3.1 is a metric diameter. Obviously, it is a prediameter
(1.2(11) 1is streightforward and 1.2(i) and (i1ii) follow from
3.3).
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(A)s Let it not hold. Hence, we have some a,bsL, aAb+0,
and sn 7 > O such that
d(avd)>d(a) + I(b) + 7 .
Thus, for a sufficiently small ¢ > 0,
d'(avb)>mp {d(uyvv)lyaex0%v, ae, d(uy),a(vy) < €3 +
+ sup {d(uzvvz)lu.‘,/\b*o*vzl\b. d(wy),d(v,)< €} +%7
Choose u, v, un(avb)d Osva{avd), d(u),d(v) <€ such that
J(avb)<d(uvv) - %"’L
so that
d(uvv)>sup {d(uyv v)l..3+ sup fda(u,v vyl de
Thus, neither uaa+0+vAa nor uAbO+vAb and we can assume
uAa$30%vADb, Choose a weL such that d(w)< € and wa (aAbd) %=
#*0. We obtain a contradiction
d(uvv)>d(uvw) + dlwvv)zé(uvvyw.
The metric property: By 3.2 we obtain
(4) d"(x)é%gro sup {d (uvv) + 2| uax+0+vax, d(u),d(v)<
<€3.
Let J be not metric. Then we have an €,> 0 such that for all
u, v such that d’(u), J(v) < €, and UAX+04 VA X necessarily
(5) dluvy) < J(x) - €.
Choose an ¢ < % €,- By (4) and 3.3 we have
J(x)<mp {F(uvv) +2e |l .o.y, F(0),d(v)<e}
end hence, using (5), we obtain a contradiction
Fx)&ad(x) - e, +2e < Jd(x). O
3.5, Let f be a pre-diameter. For Secona (L) and a,be S
put M.(a,b,5) = inf -{&‘g,‘ t(ay)la) = a,a, = b,a;na, %0,
858 St.
Further, put
“e(S) = sup { @ (e,b,5)e,besd.
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3.6. Cbservation: 1., Let byA b4 0. Then
«(a,c,s) < @(a,b,,8) + @w(by,e,8).
2, Let 34c 82. Then
(h(a,b,s1) z ¢~(a,b.82).
3.7. Por xel put
dg(x) = inf { @,(8)|Seconn (L), x <V's},
Obviously,
dféf.

3.8, Thecrem: The function df is e star-additive diameter.
Proof: Obviously, d, is a pre-diameter. Let 1% not be star-
additive, Thus, we have an S € (L) and an € > 0 such that
(6) df( V's)>sup {d(a) + d(b)la,beS, axbdi+ 3¢ .
For each ac S choose en S € conn (L) such that
VSgzea and M, (S)<de(a) +© .
Thus, by (6), we have
for any a,beS, a#%b,
A(V8) > w(s,) + m(sy) +%.
Put T = U{S, la&S% Obviously, Te conn (L) and VT zVS m
that @ (T)zd(\/ S) and hence, by (7),

(n

(1) > w(8,) + w(Sy) + &
Thus, there exist u,veT such thati
(8)  (@(u,v,T} > @(sy) + @ (Sy).
We cannot have u,ve Sy for an a, since then we would have (see
3.6.2) @ (u,v,T) < ‘u,(u,v,Sa) < @(Sa). Thus, there are a, b,
a+b, ue sa and chb. Choose an x¢ Sa and a yssb such that
XA y40. Now, (8) and 3.6 yield a contradistion
& (u,v,T) > {.‘.(u,x,sa) + (u.(y,v,sb) z wm(u,x,T) +
+ @ly,v,T) z CA.(u,v,T). m}
3.5. We will formulate one more condition concerning pre-

dismeters f:
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(3¥): for a,b,ec such that aA bOkba s,
f(avbdbve)< 2 max (£(a),2(b),f(s)).
Lemma: Let f satisfy (3W). Let xy,...,x be such that
A x1+14=o for 1 = 1,...,n=1. Then

m ~m
2N\, x)a2, 2, f(x).
Proof by induction on n. Por n = 1, f(xi)é Zt(xi). Let the
+4
inequality hold for n, comsider Xj,...,Xj, . Put « 'é:a £(x)

and take the first k such that 4_24 !(xi)z%ec « Then

-4 1 nﬁ‘l
gy BEder sy L
and hence, by the induction hypothesis,

2(x)4 5%

-1 m+A 2
Y xg) <%, 2NV x)La .
Since also f(xk).é o« we obtain, using (3W),
m+d meA
(N, X2 =2 2 2(xy). O
3.10. Lemma: Let f be a star diameter satisfying (3W), let
(*¢ be the function from 3.5. Then for any S< conn (L)
1(V 8)£ 4 wm,(S).

Proof: Fix a u € S and an ¢ > 0. For each ue S choose a

sequence X, (u),...,xn(u)e S such that u, = x, (uw), u-= x, (v,
x; (WA x4 (u)+0 end
= f(xi(“)) < (u.f(uo,u,s) + € .
Put s(u) = \/xi(u). Evidently, s(u)As(v)Zuo+O and u £s(u)
so that
(9) Vis(wlues¥=\VSs and {s(uw)luecsiecd(L).
By 3.9 we have
2(s(u))<2 Z £(x ()< 2 wol(uy,u,8) +2e £ 2« (s) +2&
and hence, by (%) and (9),
t(V8)£2 sup {£(8(u))luesis4 &, (s) + 4e . O
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3.11, Theorem For each star diameter f satisfying (3W)
there is a metric diameter 4 such that

BE(x) £ a(x) & £().
Eroof: Consider first the function d, from 3.7. Let S be
in conn (L), x £\V/S. By 3.10
2 £1(V )< 4 @ ()
and hence do(x) = inf { w,(S) | VSzx3}2 {-t(x).
By 3.8, d, 1s star additive so that our statement now follows
from 3.4, O

4. (Dia)metrization of uniformities

4.1, A u-basis (resp. wu-basis) A such that A = U (see
[63 3.3, 3.5]) will be referred to as & basis of the uniformity
(resp. weak uniformity) U .
It is said to be meet-closed if
ABs A=»3CehA ,C<AAB,
Obviously, if A 1is meet-closed then
AelU iff 3BeR , B<A.
4.2, Por a u-basis (wu-basis) A put
mA = {AA ceo Al A € At.
By [63 3.4) we see that mA is a u-basis (wu-basis) again.
Obviously it is meet-closed. Thus, we make an
Observation: If U has & countable basis, it has a ecount-

able meet-closed basis. O

4.3. Lemma: Let a uniformity (resp. a weak uniformity) U
have & countable basis. Then it has a meet closed basis A =
= -iAo,A1,...,An,...’s such that A = {e} and, for each n,
(2)(2)
K= 4y (rempe AR)D2 ),
Proof: Take a meet-closed basis 3 = {B, Bogees ,Bn,...}
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of U . Put A = {e}, A, = Bye Let A ,...,A, be already defined
8o that

(«£) ‘;:1 < 4, (resp. 452(2)4 A,) for k<n,

(B) A e for k<n,

() A < B, for ken.

There is & B, such that B}‘,"{ A, resp. Bﬁa)(2)4 A, and a
Bg< BpAB . Put A, =B, O

4.4. Proposition: FPor each uniformity (resp. weak uniformi-
ty) U there is a system (U;116J) of uniformities (resp. weak
uniformities) with countable bases such that

AsU 122 31 A € 'ui.

Proof: Por an A € U choose inductively Ay ,Az,...,%....
s0 that A = Ay, K34 < A, (resp. A AN Pt T U, A, -
=i0L = 1,203, U, - ﬁ". o

4.5. For a weak diameter d put

U(d) ={A13 >0, {ald(a) < €} < A3,

More generally, let & be a system of wesk diameters. Put
U(D) = A where A={{iald(a)c e} | deD , €> 0%
(using A has been hecessary to ensure the meet property; in the

case of one d this is automatio).

Obviously, U(d), U(D) are weak uniformities. If A resp.
ell the members of 9 ere star diameters, MU(d) resp. U(D) ie
& uniformity.

4.6, Theorem: U is a uniformity with a countable basis iff
there is a metric diameter such that U= U(d).
(Note that this fact provides the formal definition of metrisa-
bility in (3) with a more concrete contents,)
Proof: Consider the basis LO,A1....,An.... from 4.3 and
define f£:L — R + by putting
£(x) = inf {2"%|x <a for some a6 Ajt.
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Obviously, £ is a pre-diameter. Now, let S be as in (L) and
let a(a)22 (™) £or 11 aeS. Thus, we have for each aeS a
b(a) € A, , such that b(a)Z s, Hence, VS e.V{b(a)laesieA:Hc
cAZ¥, < A, s0 that \/S<£D for some beA, . Thus,

2(8) £27(®*1) £or a11 ac'S implies £(\/ 8)5 2™
and hence £(\/ S)4«2 sup {f(a)|lacS% so that £ is a star diame-
ter,

Now, let x,y,s be such that xAy*O0+yaz. If £(x),2(y),
2(2)£27(%*") | we have a,b,0c A_,, such tmat x<a, y<b, s<e.
Hence, avbe L‘(jz and av bvoeﬁ(ﬁ%(z) c L::; ~< A, hence
2(xvyvz)£ 2" and we conclude that also (3W) is satisfied.
Thus, by 3.11 there is a metric diameter d such that

3 tast,

We check easily that U= U(f) and that U(f) = U(d).
On the other hand, obviously every U (d) hag the countab-
le basis {{ald(a)< 13ln = 1,2,...3. O

4.7. Theorem: For every uniformity U there is a set of
metric diameters &) such that U = U(D).
Proof: <follows easily from 4.4 and 4.6, O

4.8, Remark: The constructions of Section 3 have gerved

the purpose of crossing the gap between the star diameters and
the metric ones (of course, this has to be done if we wish to
have a generalization of the well-known metrization theorems -
see Section 2). To prove just that
U is & uniformity with a countable bamis iff there is a
star diameter d such that U = U(d)
(and a similar weaker analogon of 4.7) one needs the first half
of the proof of 4.6 only, without any reference to Section 3.
Similarly, one immediately obtains that

- 119



WU 1s & weak uniformity with a countable basis iff there
is a weak diameter d such that U = U(d),
end that
Por every weak uniformity U there is a set of weak dia-
meters J such that U = U (D).
There seems to be a problem of some interest as to whether the
weak diameters in these statements can be replaced by additive

ones.
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