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POINTLESS UNIFORMITIES I. COMPLETE REGULARITY
A. PULTR

Abstract: The oguivalenco of complete regularity and unifor-
mizabIII¥y Is shown for general locales. Also, a characterisa~
tion of complete regularity by means of the behavior of diame-
ters is presented.
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The definition of uniformity in the form of a system of
covers oan be extended in an obvious way to locales (see also
[5]). In this paper we prove the fact one could expect, namely
that, also in locales, uniformisability coinoides with comple~
te regularity.

More explicitly: A system of covers A of a locale L glives
naturally rise to a subset Lyc L (see Section 2), A locale is
shown to be completely regular 1ff there is a uniformity A
such that I‘A = L, (By the way, it is regular iff there is a sy~
stem of covers A such that Ly = L.) Moreover, another charao-
terization of complete regularity by means of separation by di-
ameter functions is presented.

The paper is divided into five sections. The first one
contains the necessary definitions and basic faots. Seetiom 2
deals with the sublocales induced by systems of covers. In
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Section 3 the notions of uniformity and weak uniformity are
introduced, Section 4 deals with diameters. The characteriza-
tion theorem is proved in the last, fifth section.

1. Preliminaries

1.1. A locale (see, e.g. [6]) is a complete lattice L sa-
tisfying the distribution law x AVVA = VixAa|aeA}. The bot-
tom resp. top of L will be denoted by

0 resp. e,
the pseudocomplement of xe L by
.
An element x is said to be complemented if Xvx = e,
1.2, One writes xd y if there is a z such that
xAZ = 0 and yvz = e
(or, equivalently, if Evy = e).

Fote that x4 x 1ff x is complemented. Consequently, y< x
with non-ocomplemented x implies y=hx.

1.3, A locale is said to be regular iff

x = V{zls a x} for each x6 L
(see, e.g.,[1],031).
1.4, One writes
x4l y
if there is a family Xy of elements of L such that

1 = 0,1,000,y k = 0,1,...,2%, x

00 = X1 o1 = 7>

) Xg k410 and finally Xy, = Xy .4 ,2k°
A locale is said to be completely regular iff
x = \V{z|z <ag x} for each x
(see e.g. L11, cf. [31,[2]).
1,5, Lemma; Let R be a binary relation on L such that
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(1) xRy =>x4ay, and (2) xRy =p 3 z, xRzRy. Then
IRy = x I y.

Proof: Put o =X X = y. Let us have xij defined for

ol
all i<n end all k = 0,1,...,21 8o that x, Rx, L. .. Put
’

In,2k * Tn-1,k

and choose X, o, ,q Such that X, o\ RX) op 1 RX) 5(yx41)- O
1.6. A cover of a locale L is a subset AcL such that
VA =L
The system of all covers of L will be denoted by
€(L).
Por A,B e €(L) we write
A<B
if for each agA there is a be B such that a<hb,
Por A,B € €(L) set
AAB = {anblagA,bs B3,
(Obviously, AAB ¢ €(L).)
Pinally, teke an A e €(L). Put
A - f{avble,peh,anb+0},
A¥ = {VBIBcA, (a,beB =5 anb40%;
for xe L put i
Ax =\/{alacA,aAnx$0%.

1.7. Proposition. 1« A< B = Ax&Bx.
2. (AAB)x<AxABX.

3. A aa®x,

Proof is straightforward, O

1.8, Proposition: ILet there be an A & €(L) such that
Ax<y, Then x 4 y.

Proof: Put z = V{alagA,aAx = 0}, We have zAx = 0
and zvy2zvAx = VA =e O
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2, Systems of covers, induced sublocales and a characteri-
sation of regularity
2.1, Let A be a subset of ¥(L). We write
xSy
1ff there i1s an A ¢ A such that Ax<y.
2,2, By 1.8 we immediately obtain

Proposition: x é y=>xagy O
2.3. Also the following statement is obvious:

Proposition: Let R € 3. Then

x ﬁ y=>x g y. O
2.4. Ve set
Ly = {xeLlx = Viyly & x31
2.5, From 2,3 we immediately obtain
Propositiont Ac B = 1L,c Ip. O

2,6, Lemma; Let A c (L) be such that

ABe A=>AnB e A.

A
Then u é x&v 3 y—ru/\vé XAY.

Proof: We have A,B € A such that
Au<x and Bv<y,
Thus, by 1.7.1, (AAB)(uAv)<(AAB)u<Au <x,
(AAB)(uAv) < (AAB)v <Bvey,
and hence (AAB)(uav)exay. O

2.7. Theorem: Let A c €(L) be non-void and such that
AB 6 A=3AAB e A
Then L A 1s a sublocale of L.
Proof: Obviously,0,e¢ I‘JL‘ Now, let x,ye¢ I’Jt' By the dis-
tributivity and by 2.6 we have
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Ay = ViuluZ xt AaVivivd vi = Viuaviu & x&vﬁy} <
éV&uAvluAvé X/\y}év{wlwé XAy i€ XAy,
Let z, = Viul g x;} for 1€ J. Then we have
xy £ Viulu 4 Vix, i
for all j and hence
V< Viuh % Vgt <V, a

2,8, Theorem: A locale L is regular iff there is a sy 8-
tem of covers A such that L = L, -

Proof: If L = L, , L is regular by 2.2, On the other hand,
let L be regular. Put

A = {iX,73\ x,y¢L, xayh
We have {X,y}x<y so that now
XJIy=>X é Yy

and hence Lo =L. a

3. Uniformities and uniformizability

3.1, A non-void system WUc¥(L) is said to be & unifor-
mity on the locale L if

(1) A cUKA<XB=>Bec U,

(11) A€ UKBeU =AAB e U,

(111%) for each A ¢ % there is a B ¢ % such that

B¥< A (cf. [5]).

A non-void U 1is said to be a weak uniformity on L if there
hold (1),(ii) and

(i112) for each A € U there is a B ¢ % such that

3(2)2 4,
3¢2. A non-void system U c<¥(L) is said to be & unifor-

mity basis (resp. a_weak uniformity basis; briefly, u-basis
Tesp. wu-basis) if it satisfies (iiix) resp., (i1i2).

——
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3.3. For A c€(L) put
A aia 138,000 € &y LA Al < AL
3.4. Lemma; We have
(AqAeee Aﬁ)(2)< Agz)/\ ...ALl(‘z),
(AJA Al )¥ < ATAL AT
Proof: Obviously, it suffices to prove the statement for

n=2,

I. Let a;,b;€A;, 85,b,6& A, be such that (Q1Aa.2)/\
A(b1/\b2)=|-0. Then a;Ab,+0+8a,ADb, and hence a;vb,¢ Aga)
(i = 1,2). We have

(844 85) v (byAD) < (agv by) A8y vby)e
II. Let Cc A1AA2 be such that
8jA8y, DiADCC = (ayney) A(byAby)#0.
Define C, (1= 1,2) as follows:

c, u{a1sA1 |1 3 as €A, a.lAazsc},

C, =m{a,eay | Ja,64, 8;A8,6CH
Obviously, a,,b;G Cy =» a;A by# 0 80 that

VCy AV CyeATA AT,
We have, however, obviously VC < \/C, and hence VC < VCiA

3.5. Theorem: If U is a u-basis, ﬂ is a uniformity. If
U 1is a wu-basgis, ’iz is a weak uniformity.

Proof: The conditions (1) and (ii) are obviously satis-
fied. (11ix) resp. (11i2): Let AqjA...AA <A, Ay ¢ U .
Choose By U such that Bf< A; resp. 3{?)<X 4. Put B = Bya...
«seABy. By 3.4 we have B* < A resp. 22 0O

3.6. A locale L is said to be uniformizable (resp. weak-
iy uniformizable) if there is a uniformity (resp. weak unifor-
mity) on L such that L% =L (cf. 15)).
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3.7. Remark; According to 2.5 and 3.6 we see that for umni-
formizability (resp. weak uniformigability) it suffices to have
a u-basis (resp. a wu-basis) U on L such that Ly = L.

3.8, For a complemented xe L and an A & ¥(L) put
Aox = fanxlacalu{anZlacal.
It Uc%(L), define U° as
{Aox|A ¢ U , x complemented}.

3.9. Proposition: If U is e u-basis (resp. wu-basis), U°
is a u-basis (resp. wu-basis).

Proof: It suffices to realize that it B*< A resp. B(2)<
~< A, we have also (Box)*< Aox resp. (Bo x)(2)4 Aox, O

4. Diameter functions and separation
4.1, As usuel, R, is the set of non-negative real numbers.

A mapping
L — R,
is said to be a weak diemeter on L if it satisfies the following

three conditions:

(I) d is non-decreasing and d4(0) = O,

(II) for each ¢ > 0, {ald(a) < &} is a cover,

(W) 1if d(a),d(b) £« and a Ab#0 then d(avb)&2cC .

A mapping d:L — R 1is said to be a metric diameter if it
satisfies (I),(II),

(A) 1if aAb %0 then d(avb)<d(a)+ d(b), and

(M) for every a#0 and each € > O there are x, y such
that d(x),d(y)< € , xAa404yAa and d(xvy)>d(a) - € .

4,2, Remark: The role of the diameters in general locales

is to simulate the distance functions in the spatial ones. In
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our context the two definitions are, roughly speaking, the we-
akest and the strongest among the suitable ones (in the spati-
al ocase, the metric diameters are already exactly those given
by d(a) = sup {e(x,y)Ix,yca} with @ & pseudometric). In the
literature one encounters diameter functions defined for other
purposes and hence subjected to other kind of conditions {see,
e.g., [4]).

4.3. Constructlon: Let D be a dense subset of the unit
interval I, let it contain O and 1. Let us have a family
(u loc € D) of elements of L such that
u =v, (3<1 = ug<u, uy = e and

o
< < 3 =u_ < u’3 .
Por xe€L put
d,(x) = inf{a|ix2u$,
d_{(x) = sup{ecl xAu, = 0.
Pinally define
a(o0) = 0, and

d(x) = d,{x) - d_(x) for x#0.

4.4. Lemma: If x=+0, we have d_(x)<d, (d).

Proof: Let d,(x)<d_{(x). Then there is an o € D such
that d+(x) < o« <d_(x) and such that x<u_ . Since oc<d_(x),
we have & (3 with o« < (3 < d_(x) such that xAug = 0, Thus,

X = XAU < XAuy =0, jm}

4.5. Lemma: ¢, ,(avbd) = max (d (a),d (b)),
d_(avb) = min (d_(a),d_(b)).
Proof: Obviously o = mex (d,(a),d,(P))<d, (avb), Now
let (3€ D be such that (3> , Then a<u; , b£u; and hence
avb&u, . Hence, d (avd) < 3.

Obviously o = min (d_(a),d_(b))>d_(avb). Let (B €D ve
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such that (3 <o , Then 8Auy = 0 and bAuﬂ- 0 and hence
(avb)Auy = 0 s0 that d_(avb)z 3. O

4.6. Theorem: The function d is a metric diameter,

Proof: (I) is obvious.

(II): Let € > 0 be given. Choose ;€D 8o that
0= ¢°<061<...<&k = 1 and oCi+2 - c61< € for all i,

Since u_ < u s We have zieL such that

L R S PR
u_ Az, =0and u Vz, = e,
o 1 L4y L
Put bo =V =1, and, for 1>0, bi = udi”A Zy_q+ We have
-1
b, = e,
Yol1

-1
(Indeed, let us prove by induction that i\_/o by = u .: This ia
- J

3 i1
obvious for j=i. Now, »L\=/o bi = 4.'3/01)1\/1'::j = “oCJV(uchHAzJ-T)g

- (u°‘3+1A udd)v(n 1Azj-1) = u A(uo‘ )

“5w x5+ 3
Obviously, d+(v) = 0 and hence d(bo) = d(v) = 0. Further,

vzj_1) = u°‘;j+1'

>
byA U <2y 4 /\uaci_1 = 0 go that d_(bi) Z oty 4.

far P
4
by < Uiy ™ that 4, (b;) < oc,

snd hence d(byj)£ ey 4 = o6 4 < &«

(A): If aAnb#0 we have, by 4.4,
) d (a)<d_(anb)sd, (and)<d . (b)
end similarly d_(b)< d (e).
Using 4.5 we obtain
d(a) + d(b) = d,(a)-d_(a)+d, (b)-d_(b) = max(4,(a),d, (b))~
- min(d_(a),d_(b)) + min(d,(a),d, (b)) - max(d_(a),d_(b)) =
= d(avd) + (a,(x)-d_(y))

and the secoud summand is non-negative by (1).
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(M) : We can assume d,(a)>0 and d_(a)<1 since otherwise
we could put x=y=a,

Choose o€y, 5, ¢ € D so that
a,(a) - % € <X <x,<d,.(a) £ oc<d (a) + % €

and néuw-

Since uo‘< “ocz there is a £ such that u Az -Oa.ndud Ve = e,
1 1 2

Putx-u“/\l.

If we had aAz = O we would have a = AA(ua: Vz) = aAu_,
2

2
i.e. a.‘.-uogz contradicting the cholce of oe Thus, a As 0 and
hence
BAX = (GI\\!“)/\Z = aAzF0,
Since xAu.‘1 = 0 and x4u , we have
o 44d_(x)&d (x) = <
and hence

Ax) £ ¢ = g < € o

Now choose a (3 & D such that
d4_(a)< 3<4d_(a) +% € .

It da_(a) >0, choose, moreover, [31, ﬁaen such that
a_(a) -%s < 3, < fB,<d_(a)

and a w&L such that wAu = 0 and wvu',!:2 = e, Put

B34
up 1f d_(a) =0,
B up/\w otherwise.
In the first case we have obviously yAa $0. In the second one,
wAR = (w/\a)v(uﬁ/\a) = (wvuﬂ)/\a = a so that also here
JAB =up AwWAR = Uz A a0,
In the first case obviously
d(y) =0, a,(y) < B )

in the second one we have yaug = 0 and ys<£ uF so that
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Bi4d (<, (y) =B
and hence
)< p- < e
Finally, by 4.5,
d(xvy) = max(d, (x),d,(y)) - min(d_(x),d_(y)) z« - 3> d,(a)-
-fe-(a(e) +3e) =a(a)-e- D
4.7. We say that a function d:L —> WR_ separates v from u
ir
(a) d(v) =0 and

(b) whenever xAv=+0 and d(x)<1 then x<u.

4.8, Proposition: If v <t3 u in L there exisis a metrie

diameter aseparating v from u.
Proof: Consider a system x:‘_'1 from the definition of <3< and

put

u:j z‘i = x1J with the exception of u = e,
*

The function d from 4.3 separates v from u. (]
4.9, Proposition: Let U be a wu-basis. If x%y, there
is a z such that xg z%y.
Proof: Take an A @ U such that Ax<y and choose a B %U
such that B(z)—< A, Put z = Bx. Thus, xg z. Now Bz = B(Bx) &
u
<B3®)x 2ax by 1.7 so that elso z <y, LI
4,10, Propositions 4.9, 2.2 and 1.5 immediately yield
Corollary: If U is a wu-basis then
xg Yy =>Xx<3AaYy.

4.11, Theorem: The following statements are equivalent:

(i) v is separated from u by a metric diameter,
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(11) v is separated from u by a weak diameter,

(111) vS u for some wu-basis U ,

(1v) voa u.

Proof: Trivially, (1) = (ii).

(11) =5 (ii1): Let d be a weak diameter function separa-
ting v from u. Put U= {{ald(a)<etle>0 . It is a wu-basis
since {ald(a)< %E}(Z)C {ald(a)< €3 . Consider the A = {ald(a)<
<1}. Por ac A and aAv+0 we have a<u so that Av<u and hen-

ce Vg U.

(1i1) = (iv) is contained in 4.10 and (iv) = (i) in 4.8.0

5. Characterizations of complete regularity

5.1, Lemma: A metric diemeter function d has the follow-
ing property:
If SCL is such that a,be S = anb40, then
d(\V/S)4«2 sup {d(a)leeSt.
Proof: Let d(V S)>2 sup d(a) + 3€ . Consider some x, y

such that x AVVS%0+y AVS, d(x),d(y) < € and
d(xvy)>d(VsS) -¢.

Choose a,be¢S 80 that aAx$0%bAy. Thus,

(2) a(xvy)>d(a) + d(b) + 2¢ .
On the other hand,

(3) d(xvy)ed(avbvxyy)<dlavbvx) + € <d(avb)+ 2 .
From (2) and (3) we obtain

d(avbd)>d(a) + d(b)

and hence aAb = 0, O

5.2. Proposition: Put
U = {iald(a)< e}l€e >0, d a metric diameter on L},

Then U is & u-basis and
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vag uiff v g u.
Iyoof: Teke an A = {ald(a)< &} and put B = {ald(e) <
<} ¢} . By 5.1, ¥ c A. Hence % is a u-basis and, by 4.10,

vgn-yv“u.

Now, let v <3 u. By 4.8 there is a metric diameter d separat-
ing v from u. Take A = {ald(a)<13. If aAv=0 and d(a)<i we
have agu so that Av<u. Thus, v 2 u, O

5.3. Theorgm: Let L be a locale. Then the following sta-

tements are equivalent:

(1) L is completely regular,

(11) each x €L is covered by the elements y £x separated
from x by weak diameters,

(11i1) eaoh xGL is covered by the elements y<x separat-
ed from x by metrie diameters,

(iv) there is a u-basis U such that Ly,=1L,

(v) L is uniformizable,

(vi) +there is a wu-basis U such that Ly= 1y

(vii) L is weakly uniformizable.

Ergofs (1) = (11) —p (111) Wy 4.11,

(111) = (iv)s Take the u-basis U from 5.2.

(1v) &= (v) by 3.5 and 2.5.

(1v) => (vi) trivielly.

(vi)e=> (vii) By 3.5 and 2.5.

(vii)=> (1): Let ue L. We have a uniformity 2/ suoh that
L, = L, Thus, for en arbitrary uel, by 4.10,

u = V{v\v% wie Vivivag uieuw, O
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