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1. Introduction. It turns out that the proper tool to l1link
the study of noncompact sets of probability measures with the
"compact Choquet’s theory" is the concept of Radon measure (see
[12] by H. von Weizsacker or [13] and [14]). In comparison
with the Weizsacker s method we resort to the possibility to em-
bed the space of Radon probability measures into the unit sphe-
re of C*¥*(X) as a face defined by means of Baire measurable af-
fine functions on C¥(X) rather than to the possibility "to com-
pactify" the space X, firast. We prefer the method to get a re-
Presentation theorem with Borel and Radon representing measures
loosing of course to some extent the generality of the Weizsac-
ker s results. The present paper provides at the same time both

& discussion on the uniqueness of representing measures and an
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application to the theory of invariant and ergodic measures,

2, Pair sets, All topological spaces treated here are sup-

posed to be Hausdorff. For such a space X denote by §XX)
(:Bo(x)) the G'-algebra of Borel (Baire) sets, by B(X) (Bo(x))

the space of bounded Borel (Baire) measurable functions on X,

A probability measure (p,m.) on B(X) (Borel probability measure)
is called a Radon measure if it is inner regular w.r.t, the pa-
ving of compact sets in X. The space of Radon p.m.s' on X will
be denoted by M (t,1,X). Let M be a bounded convex set in a
locally convex vector topological space E. Denote by A(M) the
set of bounded affine and continuous functions on M and remark
that (B* denotes the dual space to E).

(1) E*/McA(M), hence the space A(M) separates the points of M,

Having a Borel p.m. P on the set M it follows from (1) that the-
re is at most one point me M such that
(2) a(m) = P(a) (= [ & dP) holds for each ag A(m).

If this 1s the case for some m and F, we write m = b(P), call
the element me M the barycenter of P and say thet the p.m. P
has its barycenter in M.

The following theorem suggests a simplificaticn in the de-
finition of the barycenter.

Theorem 1, Let M be a relatively ccmpact convex set in
a8 locally convex space E. Then mgM is the barycenter of a Radon

Pem. P on M if and only if

(3) e(m) = P(a) for each a6 EY¥/M.

Proof, We have to verify that (3) implies (2). Put Y = W

and define a Radon p.m. Q on the compact convex set Y by
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As the set E*/Y + R is uniformly dense in A(Y) ([7], p.31), it
follows from (3) that

(4) b(Q) = m.

Now, consider a& A(M) and denote by a¥:Y —>R (a™i¥ —» R) the
lower (upper) regularization of the function a (see [8], p.98).
A simple computation shows that aV (aT) 15 & bounded convex low-
we semicortinuous (concave upper semicontinuous) extension of &
from M to Y. Thus,it follows from (4) and assertion (a) in 5],
Pe 274 that

a(m) = a¥(m)< Q(a ) = P(a) = Q(aT) <at(m) = a(m)
for each ac¢ A(M), hence m = b(P), Q.E.D.

Our main interest in this section centers around bounded
convex sets M in locally convex spaces F which have the property
that each point in M is the barycenter of a Radon p.m. on M sup-
ported by the set of the extreme points of M, the set which will
be denoted by ex(M).

The difficulty in finding measures supported by the extreme
points stems, even in the case of a compact set M, from the fact
that the set ex(M) need not be a Baire set. Having a noncompact
set M we must, moreover, avoid the situations when ex(M) is an
empty set. We consult the classical Choquet-Bighop-de Leeuw the-
orem and suggest to pursue "the compact theory" in the following
vay: Denote EX(M) = {P ¢ M(t,1,M):P(F) = C for sach G set

Pc M-ex(M)%.

Definition, A bounded convex set McE will be said to be

2elinition
fair (respectively, sirongly fair) if for each me M there is a
Reasure (respectively, a unique measure) Pe EX(M) such that
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Note that each compact set M is fair by Choquet-Bishop~de
Leeuw theorem or more precisely by Lemma 4.1 in [7], p. 25
(which states that each element of M may be represented by a
maximal Radon p.m. on M) and by Theorem 32,[5], p. 289 (which
presents the maximal representing measure as a measure that be-
longs to EX(M)). Moreover, each compact strongly fair set is a
simplex (i.e. compact convex set, each point of which is repre-
sented by & unique maximal Radon p.m.) again by Theorem 32 im
[5]. On the other hand, an example by Mokobodzky ({71, p. 72)
shows that there is & compact simplex which is not strongly fair,
Considering the category of bounded convex sets in loocally con=-
vex spaces, we call its two elements M and Y to be isomorphio
if there is an affine homeomorphic bijection (isomorphism)
i:M~—> Y, If the set M is isomorphic with & subset of Y via an
isomorphism i, we shall write Kf-j-'-r‘l and call the set M to be
a face in Y if, moreover,

xyy = (1 ~t)y,s1(M), x e(0,1), Y1092 6 Y =p 79,7, €1(M).

Now, we collect some obvious properties of fair sets.

Theorem 2. Consider McE a fair set. Then

(a) for each meM there is a Radon pP.ms P on M such that
m=b(P) and P(B) = O for each B M-ex(M) a Baire set

(b) M40 =p ex(M)% ¢

(¢) 1if a bounded convex set M’ is isomorphic with M then
M° is & faeir set

(d) 1if the set M is closed in E then M=o ex(M) (the clo-

sed convex hull in E),

Proof. (a) implies (b), directly. Use (1) and the gepars-
tion theorem to derive (d) from (a). Statement (a) is a conse-

quence to the following simple
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Lemma, Every Baire p.m. on an arbitrary topological space
is inner reguler w.r.t. the paving of Eaire Gy sets. (See [1],
p. 195-199.)
Our rather complicated way to express that a representing p.m.
is supported by the exireme points may be sometimes simplified
in the fashion of Proposition 1.3 in [T1, p. 7.

Theorem 3. Let M be a bounded metrizable convex set. As-

sume that there is a compact convex set Y such that
Mclh Y and ¥ 16 & face in Y.

Then ex(M) is & Gy set in M and we have

EX(M) = {Pe M(t,1,M):P(ex(M)) = 1}.
In particular, the set M is fair (respectively, strongly fair)
if and only if for every me M there is a Radon p.m. P on M
(respectively, there is a unique Radon p.m. P on M) such that
b(P) = m and P(ex (M)) = 1,

Proof. Without lose of generality sssume that McY and
let & metric 4 to topologize M. Then

M-ex(M)= (:.13 T, !‘n-n{ne M mm2™! (y+z), d(y,z).n'1, y.zeMi.

It is sufficient to show that the Pn ‘s are closed in M: Let
L rn be & net tending to some mg M. Then
m = 2'1(y¢ +z ), d(y“,z&)z n"‘, Y, 0%, €M

Owing to the compactness of Y the nets {y“i ’ {le have cluster
points yeY, z¢ Y, respectively, such that m=2""! (y+z). Since
M is a face in Y, we may see that y and z are elements of M
such that d(y,z)2 n'1. Hence, meP, and set ex(M) 1s a Gy set
in M. The rest readily follows by Theorem 2(a), given the fact
that in the metrizable space M the Baire 6 -algebra (the smal-

lest rendering the continuous function measurable) coincides
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with the Borel 6-algebra. Q.E.D.

A family of noncompact fair sets rich enough to include
closed convex sets in the space M(t,1,X) (for X metrizable)
is provided by the following construction:

Denote first
Y(X) ={yeY:oupik(y),k € Kt = 1%

for & set Y and a class of functions X from Y into [0,1].

Theorem 4, Let Y be a compact convex set in a locally
convex space E, Consider & class J{ of Baire measurable affine
and semicontinuous functions k:Y —[0,1]. Then each convex clo-
sed set Mc Y(X) 1is fair.

Proof. As

M= WX/ and B (M > B (VAK,
where M denotes the closure of M in Y, w2 maey assume without
loss of generality that
(5) M= Y(X).

Pirst, we claim that
(6) 1f Q is & Radon p.m. on Y such that b(Q) = me&M, then the-
re exists B ¢ ﬁo(Y), BcM such that Q(B) = 1.
Indeed, by (a) in (51, p. 274 and (5)
(7 1 = gup k;(m) = sup Q(k )= Q(sup k) @1
n n
for some sequence {kni c X since the kn ‘s are semicontinuous and

affine, Thus, putting
B ={yeY:ssup k (y) = 14,

it follows from (5),(7) by assumption K c B,(Y) that the set
B satisfies the requirements of (6).

It is a simple ~nnmecuence of (6) that M is a face in Y, hence
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(8) ex(M) = Mnex(Y).

To conclude the proof we have to consider meM and construect a
meagure P€EX(M) such that m = b(P). By Choquet-Bishop-de Leeuw
theorem there is a Radon p.m. Q on Y such that

(9) m = b(Q) and Q(P) = O whenever Fc Y-ex(Y) is a Gy set,

Putting
P(ANM) = Q(A) for each A e B(Y),
it follows from (6),(9) and Theorem 1 that P is a Radon pP.m, on
M such that m = b(P). It remains to show that PgEX(M). Take &
G set Fc M-ex(M) and write F = F;N M where P, CY is a Gy set
in Y. Purthermore, consider the set B constructed in (6) ana
€ > 0. By the previous lemma there is a set !2cB which is Gy
in Y such that Q(F;)>1 -& holds. It 1s a consequence of (8)
that
F,NnF,CcFyNnBcM-ex(M) c Y~ex(Y).
Hence, 1t follows from (9) that
B(F) = Q(F{nB)<Q(FNP,) + £ = ¢,
since the set P 1'2 is a Gy set In Y disjoint from ex Y. Thus,
P(F) = 0 and Pe EX(M). Q.E.D,

The following theorem is a useful tool to link the concept
of a strongly fair set with the oconcept of a simplex.

Theorem 5. Let M be a fair metrizable convex set. Assume
that there is a compact simplex S such that
Mcly S and M is a face in S,

Then the set M is strongly fair. Moreover, the map m —> Pn from
M to EX(M) that is established by the relation n-b(Pn) has the
following properties:

(1) If ex(S) is closed set then the map m —> P 1is conti-
nuous,

-79 -



(i1) If the topology of M is second countable then the map
m ——»Pm is Borel measurable
provided that the topology of M is the relativized weak topology
of M(t,1,M).

Proof. Without loss of generality we assume that McS. By
Theorem 3 we have

EX(M) = {P € M(t,1,M):P(ex(M)) = 13.

eP(B) = P(BNM) for each B & B(S) and PgEX(M).
Note that for P&EX(M) the Radon p.m. eP is maximel on S by Ce-
rollary 9.8 in [7], p. 70. Indeed, if K cS-ex(S) is a compaot
set then

eP(K) = P(KnM) < P(M-ex(M)) = O,
since the set M is a face in S.

Thus, the map

(10) P —» eP is an injection from EX(M) to the set of maximal
measures on S such that b(eP)=b(P) holds if the measure P has
its barycenter in M.

Hence, the set M is strongly fair by (10) as the set S is simp-
lex. Purthermore, denote by U(M) the space of boundsd functions
on M which are uniformly continuous with respect to the unifor-
mity relativized from S to M. By Theorem 26 in [4], p. 195 and
Tietze extension theorem each f ¢ U(M) may be extended to some
Tec(s). As
Po(f) = eP (¥) for each £¢U(M) and me¢ M
it follows from (10) and Proposition 9.10 in {71, p. 71 that

(11) m ——»Pm(f) is a Borel measurable map for f ¢ U(M),

(12) m —»Pm(f) is a continuous mep for fe€ U(M) provided that

ex(S) is a closed set.
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Now, it follows by Theorem 8.1 in [91, P 41 that the sets

(13) A(Po.f. €) = {PGEX(M): lP(f)-Po(f)l< e,

P &EX(M), € > 0, f€U(N),
form a subbase for the weak topology of EX(M). Thus, if ex(S)
is & closed set, the map m —>» Pm is continuous according to (12),
If the topology of M is second countable, the seme applies for
the weak topology of EX(M) (Theorem 11.2 in {113, p. 49) and the-
refore the Borel 6'-algebra in EX(M) is generated by the subbase
(13). The map m —> P is Borel measurable by (11), Q.E.D.

3. Convex sets of Radon measures. Consider a normal topo-
~O2¥0X Bets ol XHadon measures normal Topo-
logical space X and denote by MUt,X) the vector space of boun-

ded &-additive Borel set functions which have its total varia-
tion inner regular w.r.t. the paving of compact sets in X. Note
that the space MNL(t,X) is locally convex when topologized by
its usual weak topology, i.e., the coarsest topology for which
all maps m — m(f) (= ft dm) from M(%,X) to R are continuous
as f varies in the set C(X) of all bounded continuous functions
on X,

Purthermore, identify the weak* topologized space C¥(X) with the
space of bounded finitely additive regular set functions on the
algebra % (X) generated by the closed sets in X (Riesz theorem,
(21, p. 284). Considering the canonical injection 1: M(t,M) —
—> C*(X) and putting

(14) Y ={meC*(X):m20, m(X) = 1}

it 18 easy to see that

(15) Y is a compact convex set

(Aleoglu theorem, [2], p. 459)
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(16) 1: M(t,1,X)—> Y 18 an isomorphism in the sense of Sec-
tion 2

(Carathéedory theorem and Proposition 1.6.2 in [6], p. 27) and

7 1(M(+,1,X)) = {mée Yisup {m(K), KcX a compact set} = 1.

Now, we are prepared to apply Theorem 4 to get a represen-
tation theorem for the space 7M(t,1,X).

Theorem 6. Let X be a metrizable space. Then each closed
convex set M c M(t,1,X) is fair and it is strongly fair if

(8) 41(M) = 1(M(%,1,X))n S for some compact simplex Sc C¥X).

Proof. Note that each metrizable space is normal and thus

we may employ the setting and notation (14)-(17). Denote by X

the set of all maps m — m(K) from Y into [0,1] where K varies
in the set of all compacts in X. Obviously,
1(M(t,1,X)) = Y(K)

by (17) where 1 denotes the canonical isomorphismm (16). Now,
the closed convex set i(M)c Y(K) would be a fair set if only
the elements of ¥ were affine, upper semicontinuous and Baire
measurable (acoording to Theorem 4). We only need to verify that
KcX, a compact set m=p m —»m(K) is upper semicontinuous
and Baire measurable on Y.
To this end note that m(K) = inf m(fn) for all meY, where 11,%
is a sequence of continuous bounded functions decreasing to
the indicator function of K. Thus the map m —» m(K) being the
infimum of a countable subset of C(Y) is upper semicontinuous
and Baire measurable on Y. The set M is fair by Theorem 2(c).
Pinally, (S) and (17) imply that M is a face in S. Thus,
the set M is strongly fair by Theorem 5. Q.E.D.
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In the special case of the space 7(t,X) we may be a 1it-
tle more specific about the properties of the representation
suggested by the definition of a fair set. Having a set
M c M(t,1,X) we say that a Radon p.m. P on M is a i-Radgn p.m.
it

sup {P(T), T € B(M), T a tight sett = 1.

Recall that a set T ¢ M(t,1,X) is tight 4f
for eacn € > O there is a compact set KcX such that
m(K)>1 - € for meT.
Note that there is a family of topological spaces (called Pro-
horov ‘spaces) for which the compact subsets of 7M(t,1,X) are
tight (see [10]1). Hence, if X is a Prohorov's space then each
Radon p.m. on M(t,1,X) is t-Radon.

Theorem 7. Let X be a normal topological space and
Mc M(t,1,X) a closed convex set. Consider m,6é M and a Radon
Pem. P on M. Then

(8) b(P) = m = m (£) = [, m(£)P(am), tecC(X),

(b) b(P) = m, &=> m (g) = [ m(g)P(dm) for all ge B(X).

(c) P has its barycenter in M if and only if it is t-
Radon.

Proof. The equivalent definition (a) is a simple conse-
quence of Theorem 1 and Theorem 9 in [2], p. 456, applied to
the relatively compact convex set i(M)C Y (see (14),(15),(16)).
The assertion (b) will be proved for a bounded upper semiocon-
tinuous function g, first: We rely on the < -additivity of the
Radon p.m. ‘s m,,mé M, P and the equation

g=1nf {f, teC(X), tzg}
to get the following more géneral version of (b):
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(18) Let m, be a = -additive Borel p.m. on X such that
m,(f) = fl( m(£)P(dm) holds for each fe C(X).

Then
m,(g) = fl m(g)P(dm) for each bounded semicontinuous

function g:iX—> R.

Now, the set of all ge B(X) for which the relation holds is a
linear subspace closed under the sequential bounded convergen-
ce, and includes the indicator functions of closed (open) sets,
hence all of B(X).

To prove (c) assume first that b(P) = m, for some m 6 M
and consider a non-decreasing sequence {g‘} of compact sets suech
that mo(xn) £1. It follows from (b) that

m, (K) = f' m(K,)P(dm), ne¥
and hence m(Kn)‘r1 almost surely on M w,r.t. P, Take € > O,
Applying Egoroff ‘s theorem we obtain a set T ¢ HA(M) such that
P(T)>1 =& and m(K )¢ 1 uniformly for me T. Thus, the set ?
is tight and the measure P t-Radon.

On the other hand, oenmider a t-Radon p.m. P. Using the
T -additivity srgwment in the seme way as in the proof of (b)
one proves that the linear fumetional

t — [, m(£)P(am) (from C(X) to R)
satisfies the requirements of Daniell s theorem (see (61, p.66).
Hence, there is a regular < -additive Borel p.m. m, on X such
that
(19)  m(£) = [, m(£)P(am) holds for feC(X).

We prove that m, is a Radon p.m. . To this end take € > O and
a tight set T € H(M) such that P(T) >1 - € . The tightness of T
implies that there is a compact set KCX such that m(K)>1 - €
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for each m¢T. It follows from (19) and (18) that
m (X-K) = [, m(X-K)P(dm)£2 5.

Thus, m, ie a regular Borel p.m., such that
sup {no(x), EcX, K a compact set} = 1
and therefore a Radon p.m.

Now, as the set M is convex and closed in M(t,X) we sim-
ply epply the separation theorem ([2}, p. 452) to verify that
m,& M. Pinally, it follows from (19) and (&) that b(mo) = P,

Q.E.D.

It is very simple, now, to summarize our preceding results
to get the following representation theorem for a metrizable

space:

Theorem 8. (Compare with Theorem 1 in [12).) Let X be a
meirizable space and M ¢ M(t,1,X) a nonempty closed convex set.
Then

(a) ex(M) is & nonempty Gy set in M such that U=Z ex(M)
(the closed convex hull in MM(t,1,X))

(b) for each re M there is a t-Radon p.m. P, on M such
that

(R)  P.(ex(M)) = 1 and r(g) = [ m(g)P (dm), g6 B(X).
Horeover, if the set M is such that (S) in Theorem 6 holds for
some compact simplex S, then

(e¢) for each r € M there is a unique Radon p.m. Pr on M
satisfying requirements (R) and

(d) the map r—> P, from M into EX(M) established by (c)
is continuous if ex(S) is a closed set and it is Borel measur-

able if X is a separable space.

Proof. (a) follows immediately from Theorem 6 and 2. As
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far as (b),(c),(d) are concerned, let us remark first that the
set M c M(t,1,X) inherits its metrizability (separability) from
the space X, see Theorem 13 in [11] (Theorem 11.2 in [T1, p. 49).
Thus, it follows from (17) and the fact that N(X) = .750(1) that
we may apply Theorems6, 3 and 7 to get a verification of (v).
Obviously, (o) and (d) are simple consequences to Theorems 6

and 5. Q.E.D.

The representation (R) in Theorem 8 suggests to consider
the veotor space M(t,M) endowed with the B(X)-topology of set
wise convergence on the G-algebra 3(X). Recall that the local-
ly convex B(X)-topology is the topology which makes the set of
functionals m —> m(g), g € B(X) to coincide with the space of all
B(X)-continuous functionals on M(t,X) (sece 121, p. 453-456).
Let ¥5,A denote the closed convex hull of a set A in mM(t,X) en-
dowed with the B(X)-topology while &6 A continues to denote the
closed convex hull w.r.t. the weak topology of m(t,x).

Theorem 9. Let X be a metrizable topological space and
M c M(%,1,X) a convex set which is weakly closed. Then M is
B(X)-closed and Sopex(M) = M.

This is an immediate consequence of Theorem 8 (a),(b) and

of the separation theorem applied to the set So,ex(M) in the
B(X)-topologized space M(t,X).

4. Ergodic and invariant measures. Let X be a topological

space, §' a family of continuous maps T:X —» X. Denote by I(T)
the set of all J -inveriant Radon p.m.s on X, by E(T’) the set
of 411 ergodic elements of I(J°). Recall that a p.m. .m is % -in-
yarient if

w(?™'B) = m(B) for B € B(X) and T ¢« T
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and that a J'-invariant p.m. m is ergodie if
m(T"'BAB) =0, T ¢ T=> u(B) =0 or 1, Be AX).

Iheorem 10. (See also [3] and [12].) Let X be a metris-
able space, 7' a set of continmous maps T:X —> X, Then E(7")
is a Gy set in I(T') and to each re I(J) there is a unique
t-Radon v.m, P, on I(7') such that

(20) P (B(T)) =1, x(&) = Jy(pym(a)ar,, geB(D).

Moreover,

I(T)+ A=>EB(T )P, & E(F) = I(T)
and assuning that X is a separable space, then the map r—-)l’r
established by (20) is Borel measurable.

Proof, It is easy to see that I(7’) is a closed convex

set in M(+%,1,X) and hence a fair set aceording to Theorea 6.
To see that it is a strongly fair set we shall verify condition
(S) of the latter theorem. Define mT ¢ C¥(X) for me¢ C*(X) and
Ted by

oT(f) = m(foT), fe&C(X).
Consider a compact convex set (see (14) and (15))

S={mecY:nT =m, Te ST}c C¥IX),
the set for which

(21) 1UI(T)) = 1(M(¢,1,X))n 8

holds according to (17). To see that S is a simplex, consider
the convex cone generated by S, i.e.
¥ ={meC*(X)imz0, nT = m for T¢ ¥t ,
and show that it is a sublagttice of the vector lattice C¥(X).
Indeed, having m,n¢S, T6€ I and 046 C(X) we may write by
3.6.6 Corollary in [81, p. 62 that
(mvn)2(2) 3 supim(f,eT) + n(f,0 1), 0&1t,, f,ec(X),
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I; + 1, = £ = (mvn)(2).

Thus, (mvn)T2mv n and since (mvn)T(1) = myn(1) for the oopr—
stant function 1 we conclude that (evn)? = myan. Hence, the
set S 18 a simplex and set I(J) strongly fair by (21) and The-
orem 6.

The rest of our assertion immediately follows from Theorea
2 and Theorem 8, since ex(I(J’)) = E(T) by Proposition 10.4 in
L73, p. 81. Q.E.D,
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