

Werk

Label: Article Jahr: 1984

PURL: https://resolver.sub.uni-goettingen.de/purl?316342866_0025|log10

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 25,1 (1984)

A NOTE ON H-HIGH SUBGROUPS OF ABELIAN GROUPS Jindřich BEČVÁŘ

Abstract: The purpose of this note is to determine all subgroups H of an abelian group G such that each H-nigh subgroup of G is an intersection of Γ -isotype subgroups of G.

Key words: H-high subgroups; Γ -isotype, isotype and pure subgroups.

Classification: 20K99

for (pag)[p].

All groups in this paper are abelian, we shall follow the notation and terminology of [4]. Let $\mathbb P$ be the set of all primes and $\Gamma = (\infty_p)_{p \in \mathbb P}$ a sequence, where each ∞_p is either an ordinal or the symbol ∞ which is considered to be larger than any ordinal. A subgroup A of a group G is said to be Γ -isotype in G if $p^\beta A = A \cap p^\beta G$ for every prime p and for every ordinal $\beta \neq \infty_p$. About Γ -isotype subgroups see [3] (references). Since $(p^\beta G)_p = p^{\infty}(G_p)$ for each ordinal ∞ and each prime p, we

The concept of an H-high subgroup was introduced into the structure theory of abelian groups by J.M. Irwin and E.A. Walker (see [5],[6]). If H is a subgroup of a group G then each H-high subgroup of G is neat in G though not necessarily pure in G. The subgroup H is said to be a center of purity in G (J.D. Reid [10]) if each H-high subgroup of G is pure in G.

shall write only $p^{\alpha}G_{p}$. It is natural to use the symbol $p^{\alpha}G[p]$

The question of determining all centers of purity (J.M. Irwin, B.A. Walker [5],[6]) was settled by R.S. Pierce [9] (see also [10]). The class of all groups in which every subgroup is a center of purity (i.e. in which each neat subgroup is pure) was described by C. Megibben [8] (see also [10],[11]). The results of R.S. Pierce and C. Megibben were generalized by V.S. Rochlina [11], W. J. Keane [7] and J. Bečvář [1] in three different directions. In the paper [1] there are determined all centers of [-isotypness, i.e. such subgroups H of G for that each H-high subgroup of G is [-isotype in G.

This note is a supplement to my paper [1], its purpose is to determine all subgroups H of an arbitrary group such that all H-high subgroups are intersections of \(\Gamma\)-isotype subgroups. The proof of the main theorem essentially utilizes the result from [2].

A description of such subgroups H of a group G for that each H-high subgroup of G is an intersection of | -isotype subgroups of G is contained already in the following lemma (compare with Proposition 2.1 [10], Lemma [9], Lemma 2 [11], Lemma [1] and Lemma 2.5 [7]).

Lemma: Let G be a group, H a subgroup of G and $\Gamma = (\alpha_p)_{p \in P}$. Then there is an H-high subgroup of G that is not an intersection of Γ -isotype subgroups of G if and only if there are a prime p, an ordinal $\beta < \alpha_p$ and elements $0 \neq h \in H[p]$, $g \in p^{\beta}G$ such that $(g-h), p^{\beta}G[p] > \cap H = 0$.

<u>Proof:</u> Let M be an H-high subgroup of G that is not an intersection of ['-isotype subgroups of G. By Theorem 1 [2], there are a prime p, an ordinal $\beta < \alpha_p$ and an element $g \in p^\beta G \setminus M$ such that $pg \in M$ and $p^\beta G[p] \subseteq M$. Since $pg \in M \cap pG = pM$, there is

an element $m_1 \in M$ such that $p_g = pm_1$. Hence $g-m_1 \in G[p] = M[p] \oplus H[p]$, \therefore , e, $g-m_1 = m_2+h$, where $m_2 \in M[p]$ and $0 \neq h \in H[p]$. Now $\langle g-h$, $p^{\beta}G[p] > \cap H \subseteq M \cap H = 0$.

Conversely suppose that there are a prime p, an ordinal $\beta < \infty_p$ and elements $0 \neq h \in H[p]$, $g \in p^{\beta}G$ such that $(g-h, p^{\beta}G[p]) \cap H = 0$. Let M be an H-high subgroup of G containing $(g-h, p^{\beta}G[p])$. Since $g \in p^{\beta}G \setminus M$, $pg = p(g-h) \in M$ and $p^{\beta}G[p] \subseteq M$, we have that M is not an intersection of Γ -isotype subgroups of G by Theorem 1 [2].

Theorem: Let G be a group, H a subgroup of G and $\Gamma = (\alpha_p)_{p \in \mathbb{P}}$. The following are equivalent:

- (i) Each H-high subgroup of G is an intersection of Γ-isotype subgroups of G.
- (ii) For each prime p, each ordinal $\beta < \infty_p$ and each elements $0 \ddagger h \in H[p]$, $g \in p^{\beta}G$, it is $(g-h, p^{\beta}G[p]) \cap H \ne 0$.
- (iii) For each prime p, one of the following two conditions holds:
- (a) $H_{D} = 0$;
- (b) for each ordinal $\beta < \infty_p$ either $p^\beta G_p$ is elementary and $p^\beta G/H \cap p^\beta G$ is torsion or $H \cap p^\beta G_p \neq 0$.

<u>Proof</u>: The assertions (i) and (ii) are equivalent by the previous lemma.

(ii) \rightarrow (iii). Suppose $H_p \neq 0$ for some prime p and let $\beta < \infty_p$ be an ordinal such that $H \cap p^{\beta} G_p = 0$. If $0 \neq h \in H[p]$ and $g \in p^{\beta} G$ then $(g-h), p^{\beta} G[p] > 0$. H $\neq 0$ by (ii). Hence $n(g-h) + x = \overline{h} \neq 0$, where n is an integer, $x \in p^{\beta} G[p]$ and $\overline{h} \in H$. Consequently $png = \overline{ph} \in H$ and $p^{\beta} G/H \cap p^{\beta} G$ is a torsion group. If $g \in p^{\beta} G_p$ then $png \in H \cap p^{\beta} G_p = 0$; if p|n then $ng + x = \overline{h} \in H \cap P^{\beta} G_p = 0$.

(iii) \rightarrow (ii). Let p be a prime, $\beta < \infty_p$ an ordinal, $0 \neq h \in H[p]$ and $g \in p^{/3}G$. With respect to (iii) we can suppose that $p^{\beta}G_p$ is elementary and $p^{/\beta}G/H \cap p^{/\beta}G$ is torsion (otherwise we are through). If g is of infinite order then there is an integer n such that $ng \in H$ and hence $0 \neq pn(g-h) \in \langle g-h, p/^3G[p] \rangle \cap H$. If g is of finite order then write $g = g_1 + g_2$, where $pg_1 = 0$, $o(g_2) = m$ and (m,p) = 1. How, $0 \neq (m(g_1+g_2-h) - mg_1) \in \langle g-h, p/^3G[p] \rangle \cap H$.

Corollary: Let G be a group and H a subgroup of G. Each H-high subgroup of G is an intersection of isotype subgroups of G if and only if for each prime p one of the following conditions holds:

- (1) $H_p = 0$,
- (ii) for each ordinal β either $p^{\beta}G_p$ is elementary and $p^{\beta}G/H \cap p^{\beta}G$ is torsion or $H \cap p^{\beta}G_p \neq 0$.

<u>Corollary:</u> Let H be a subgroup of a group G. Each H-high subgroup of G is an intersection of pure subgroups of G if and only if one of the following two conditions holds:

- (i) $^G/H$ is torsion and for each prime p, either $H_p=0$ or $H\cap p^nG_p=0$ implies $p^{n+1}G_p=0$ for any natural number n;
- (ii) for each prime p, either $H_p = 0$ or $H \cap p^n G_p \neq 0$ for any natural number n.

Remark: The class of all groups G in which each H-high subgroup is an intersection of \(\Gamma\)-isotype subgroups of G for each subgroup H of G obviously coincides with the class of all groups in which each nest subgroup is an intersection of \(\Gamma\)-isotype subgroups of G. This class has been described in [3], where it is also shown that this class coincides also with the

class of all groups in which each neat subgroup is Γ -isotype (see also Proposition [1]).

References

- [1] J. BEČVÁŘ: Centers of [-isotypity in abelian groups, Rend. Sem. Math.Univ. Padova 65(1981), 271-276.
- [2] J. BECVAR: Intersections of [-isotype subgroups in abelian groups, Proc. Amer. Math. Soc. 86(1982), 199-204.
- [3] J. BEÖVÁŘ: Abelian groups in which every Γ -isotype subgroup is an intersection of Γ' -isotype subgroups, Abelian Group Theory, Proceedings, Honolulu 1982/83, Leoture Notes in Math. 1006, 548-555.
- [4] L. FUCHS: Infinite abelian groups I,II, Acad. Press, 1970, 1973.
- [5] J.M. IRWIN: High subgroups of abelian torsion groups, Pacific J. Math. 11(1961), 1375-1384.
- [6] J.M. IRWIN, E.A. WALKER: On N-high subgroups of abelian groups, Pacific J. Math. 11(1961), 1363-1374.
- [7] W.J. KEANE: Imbedded N-high subgroups of abelian groups, Comment. Math. Univ. St. Pauli 29(1980), 145-155.
- [8] C. MEGIBBEN: Kernels of purity in abelian groups, Publ.
 Math. Debrecen 11(1964), 160-164.
- [9] R.S. PIERCE: Centers of purity in abelian groups, Pacific J. Math. 13(1963), 215-219.
- [10] J.D. REID: On subgroups of an abelian group maximal disjoint from a given subgroup, Pacific J. Math. 13 (1963), 657-664.
- [11] V.S. ROCHLINA: & -centry abelevych grupp, Vest. Moskov. Univ. 1971, 64-68.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia

(Oblatum 20.12. 1983)