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PERMUTABLE AND n-PERMUTABLE VARIETIES
Ilvan CHAJDA and Jaromir DUDA

Abgtract: The present paper is a continuation of the
systeratic study of ccmpatible binery relations. This part
deals with finitely generated compatible relations on uni=-
versal salgebras, their relationship and connections with
permutability and n-permutability (n>1) of congruences. Va-
rious medifications and simplifications of methods frequent-
ly used in the theory of Mal cev conditions, polynocmial con-
ditions etc., are derived.
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The objective or this paper is to give connections among
some recent and old trends in universal algebra from the
point of view of principal congruences. Since various diffe-
rent ways for these investigations are used by many authors
we shall first try to rfind a common base for their results
by means of 3 detailed study of compatible binary relations.
This approach enables us to obtain also some new characteri-

zations of varieties of algebrss.

l. Paraphrases of the Mal cev lerma. Characterizations

of a principal corgruence ©{(a,b) for scme elements a, b of

an algetra (Ll play an important role in universal algebra,
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in particular in the theory of Mal cev conditions, poulyno-
mial conditions etc. In the original Mal cev description
of ©(a,b), see [10), there appears the set-theoretical con-
dition to,(a), # (b} = {2z4,24.9%; however, such conditi-
on is not too convenient for purely algebraic purpocses, na-
mely for deriving identities. Thus, the aim of this section
is to remove the above mentioned set-theoretical equality;
it was first done by G. GrBtze; [2), further possibilities
may be found in [13). Making full use of the connections a-
mong congruences, tolerance and compatible diamgonal relati-
ons we obtain Gratzer's original result and, further, we gi-
ve here a new purely algebraic description of 0O(a,b).

Let UL =(A,F> be an algebra. A bimasry relation C on
is called compatible if it satisfies the Substitution Proper-
ty with respect to all operations from ¢, in other words, C

is a subalgebra of the direct product ¢ =< (L . A binary

relation R on 1is called diagonal relation if caAE-R where
w, = i{{a,ad;ac At. By a tolerance on (4 is meant a compa-

tible diagonal and symmetric binary relation on O . Obvi-
ously, all tolerances as well as all compatible diagonal re-
lations on Ut form complete lattices with respect to the in-
clusion, see e.g. [5]. Consequently, for sny Sc AxA there
exist the least compatible diagonal relation or the least
tolerance on (1l containing S, denote it by R{S) or T(S), res-
pectively. Without risk of confusion we will use R{a,b) to
denote R({<a,b?}) and R(< 81,037,044, <8 ,b7) to dencte
R({< ay,by?44.0, <@, ,b 7} ); analogously for T(a,b) and

T( < 81yb1>yeeey CaL,b 7).
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We begin with the following two lemmas; they will be

useful in the sequel.

Lemma 1. Let . be an algebra and let Xy F98yyece
eees8yby,...,b be elements of UL « Then

(a)  (x,y>cR(<ay,b17,.00, {ap,b,») if and only if
there exists an n-ary algebraic function ¢ over U0 such
that x = @(ay,...,a), y = @ (by,...,b )(briefly: {x,y) =
= (i_pxcq)((al,b:L),..., \’an,bn7));

(b)  {x,y2eT(<a),by>,.0e, {ay,b )) if and only if the-
re exists a 2n-ary algebraic function y over UL such ‘that
x = Ylay,eee,a,b1,000,b), ¥y = Y (byyeeeydpyayyeee ay)
(briefly: {x,y> = (yx y)( (al,b1>,..., {apsby?, \byyay7..
“.,§bnmnﬂ).

For the proof, see [5].

Lemmg 2. Let (/L be an algebra and let a, b be elements
of UL . The following conditions hold:
(a) 0Qf(a,b) =JJ:2)T(a,b)o eeecT(a,b);
n-times

(b) OB(a,p) = U R(a,b)o R(b,a) c ... c Rla,d),
m< (2n-1)~times

where o denotes the relational product.
The proof is straightforward and hence omitted.

Theorep 1. Let €1 be an algebra and let a,b,x,y be ele-
ments of UL . The following conditions are equivalent:

(1) < x,y7 e 8(a,b);

(2) BINARY SCHEME: There exist and integer n=>1 and
binary algebraic functions f3;,..., (3, over (l such that

x = (3,(a,b)
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A4(b,a) = Riepla,d) for 12icn

¥y = Bp(b,a);

(3) GRATZER SCHEME: There exist an integer n>1 and
unary algebraic functions Lgreeey < 2n-p OVver Ol such that

x = o a)

Gy (b) = U 441(b)

} for 0£4i4n -2
e62i*1(a) = ﬁc21¢2(a)

¥ = ey o(b).

Proof. The equivalence (1)& (2) follows directly
from Lemra 1(b) and Lemma 2(a); the equivalence (1) = (3!
(the original Griatzer's result, see [2; p. 342]) is a conge-

quence of Lemmsa 1(a) and Lemma 2(b).

Repark 1. Lemma 2 gives rise to s problem: under which
conditions does T(a,b) = R(a,b) o R(b,a) follow? The subse-
quent Theorem 2 gives a solution for varieties of algebras

in the form of polynomial conditions.

T rem 2. Let V be a variety. The following conditi-
ons are equivalent:

(1) For each (L e V and every two elements a, b of (I
T(a,b) = R(a,b) o R(b,a);

7

(2)  For every pair of n-ary polynomials 8, t and of
(n + 1)-ary polynomials P, q there exists an (n + 2)-ary po-
lynomial r such that: if p(t(xl,...,xn) ,xl,...,xn) =
a q(t(xl,...,xn), X13++e3Xy) then
p(s(xl,...,xn),xl,...,xn) = r(s(xl,...,xn), t(xl,...,xn),

xl,...,xn)
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q(s(xl,...,xn),xl,...,xn) = r(t(x)y0e0yxy),y 8(x),000,x)),
XypeeesXpy)e
Proof. Clearly T(a,b)ES R(a,b) e R(b,a) for every algeb~
ra f, and each a, b of JL . Hence, we shall proceed only to
prove the equivalence of (2) with the converse inclusion:
(1) = (2). Let &% =F (x;,...,x;) be the free algebra

in V with free generators XyseeesX and let a, b be elements

n
of L . Then there exist n-ary polynomials s, t with a =
=8(xy,e00y%y), b =1t(x;,...,x,). Suppose {c,d>€&R(a,bloR(b,a).
By Lemma 1(a), there exist (k +1)-ary polynomials p, q of V
such that

c = p(a,ul,...,uk)

plb,uy,ees,uy) = q(byVyyeeeyvy)

d = q(a,vl,...,vk).
Since 0L =F (x;,...,x,), we can suppose k = n and Vg =y =
= x4y for l€i<4n, i.e. we get

c = p(a(xl,...,xn), xl,...,xn)

p(t(xl,...,xn),xl,...,xn) = q(tlxy,eeeyxp) Xy 5000,x))

d = qlelxyyeee,xp)yXyyeee,xy)e
Further, {c,d”¢ T(a,b) yields (see Lemma 1(b)) the existence
of a binary algebraic function @ over Cf with

¢ =g (ab), d = ¢ (b,a).
Consequently, there exists an (n + 2)-ary polynomial r of V
such that ®(wy,w,) = r(w),Wy,X,000,%,) and, by replacing
a,b,c,d by these polynomials, condition (2) immediately fol-—
lows. - =

(2) =% (1), Let “Ne V, a,b,c,d be elements of (£ and
<e¢,d% ¢ R(a,b)o R(b,a). Then < c,e’e R(a,b) and {e,d)eR(b,a)

for some element e of (f , i.e., by Lemma 1(a), there exist
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polynomials p, q of Ol with
c = p(a,zl,...,zk)

e p(b,zl,..‘,zk) = q(b,vl,...,vm)

d = q(a,vl,...,vm).
By applying the hypothesis, we get an (n + 2)=ary polynomial
r of V such theat n =k + m + 2 and
p(a’zl""”k) = r(a,b,a,b.zl,...,zk,vl,...,vm)
q(a,vl,...,vk) = r(b,e,a,b,zl,...,zk,vl,...,vm).

By Lemma 1(b), we conclude <c,d>&T(a,b).

Regark 2. Although the condition (2) from Theorem 2
looks rather hard to be satisfied, it does hold in every per—
mutable variety. This follows directly from the well-known
fact that congruences, tolerances and compatible diagonal re-
lations coincide on any algebra in a permutable variety, see

(121, [ 4] and also the following Theorem 3.

2, itel energted at d nal relatij nd
n-perputagble varieties. Several important characte=-
rizations of n-permutable varieties (n>1) were derived by
J. Hagemann and A. Mitschke. Making full use of their results,
see [4] or [3]1 , we get the following description of n-per-

mutable varieties in terms of finitely generated relations.

Theorem 3. Let n>1 be an integer. Then for any variety
V the following conditions are equivalent:

(1) V has (n + 1)-permutable congruences;

(2) For every (L € V and each two elements a, b of 1,

B(a,b) = R(a,b)o ... oR(a,b) .
n-times



Proof. (1) =>(2). The inclusion O (a,b)=2R(a,blo ...
..o 0R(a,b) is clear. Prove the converse inclusion. By [4),

-1
(n+1)- tability of V implies R "ZRo ... °R and
n l)-permuta ¥ p ;/ a

n-times
Re...°R <& Rc...cR for every compatible diagonal rela-
LD
(n +1)-times n-times
tion R on (te V., Hence Re ... °R is a congruence relation
n-times
on Ol , In particular, R(a,b) o ... oR(a,b) is a congruence

n-times
on Gl collapsing the pair <a,b) thus ©6(a,b) =

= R(a,b) o ... oR(a,b) and (2) is proved.
S
n-times

(2) =>(1). Let F,(x,y) be the free algebra of V with
free generators x, y. By hypothesis, {x,y> e B(y,x) =

= R(y,x)e ... R(y,x) holds, i.e. there are elements
—— et

n-times
8)yeeer8py € tz(x,y) such that x = a), y = a,,; and

(31,31’1761!(}',:) for 1<1i%4n. So, by Lemma 1(a), there exist
unary algebraic functions @j,..., p over Pz(x,y) satisfying
“1"101) =(gyx G4)(Ky,x?) for 14i<n. Writing this sepa-
rately in each variable, we get

x = ¢4(y)

gy(x) = g, ,(y) for 1€4¢n

¥y = ¢plx).
Since Gj4..+yFp are algebraic functions over F,(x,y), the-
re exist ternsry polynomiasl qj,...,q, of ¥ with gi(t) =
= q;(x,t,y), 141i<n, snd

x = q)(x,y,y)

a3 (x,x,y) = qq,(x,y,5) for 1¢4cn

¥y = qp(x,x,y);
i.e. we have the Mal ‘cev condition for (n + 1)-permutable va-

rieties, see (4] or (3], which completes the proof.
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By a guasiorder on an algebra (I is meant a compatible
diagonal relation on (X which is also transitive. Clearly,
also all quasiorders on (X form a complete lattice with res-
pect to the inclusion, see e.g. [5], thus there exists the
least one quasiorder on UL containing the pair <a,b) of ele-
ments of (7 ; it will be denoted by Q(a,b). Similarly the
symbol Q(<ay,by7,..., {ap,b,?) denotes the least quasiorder
on (I containing the pairs <al,b1>...., <an,bn7. It is easi-

ly seen that Q(a,b) =)LEQJR(a,b)o .o ORﬁf,b) ( = the transi-

n-times
tive hull of R(a,b)) and so, forming the countable disjunc-

tions of equivalent conditions from Theorem 3, we immediate-

ly get:

Corpllar o For a variety V, the following conditions
are equivalent:
(1) V 18 (n + 1)-permutable for some integer n>1;

(2) ©6(a,b) = Q(a,b) for any a,b € UL € V.

Following L6J, an algebra Cf is called Principal Tolergn=-
ce Trivial (briefly: PTT) if 6 (a,b) = T(a,b) for each a, b
of ClL .

A variety V is PTT if each (Ll e V has this property.
Notice that the PTT varieties form a very important class of
varieties because it contains:

(1) all permutable varieties, see [123;

(11) the variety of all distributive lattices, see [7);

(1ii) all varieties of p-algebras, see [97.

The PTT-property is essentially used in the following

CLorollapy 2. Let nZ1l be an integer. Then for any vari-
ety V the following conditions are equivalent:
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(1) V is PIT and (n + 1l)-permutable;
(2) For each (Le V and every a, b of O,
T(a,b) = R(a,b) o ... e R(a,b).
n-times
Proof. (1) =>» (2). By Theorem 3, O(a,b) =

= R(a,b) o .:::_Eﬁp.b).
n-times )
Since V is PIT, we have ©{a,b) = T(a,b) proving (2).

(2) = (1). Take (L = F,(x,y) €V. Since the tolerance
T(y,x) is symmetric, we have <x,y>e T(y,x) and thus, by hy-

pothesis, <{x,y>€ R(y,x) a.... eR(y,x). However, as was shown

n-times
in the proof of Theorem 3, this condition implies the (n + 1)-

permutability of V.
Further, by Theorem 3, the (n +1)-permutability of V im-

plies O(a,b) = R(a,b)e ... oR(a,b) for every a,b e ULeV.

n-times
Combining this equality with (2), we get 8(a,b) = T(a,b),

i.e. V is PTT and the proof is complete.

Remark 3. The Principal Tolerance Triviality and the
n-permutability (nz3) are independent conditions:

(1) As was noted above, the veriety D of distributi-
ve lattices is PTT; however, I is not n-permutable for any
nz2; see, e.g., [ 13, p. 79].

(2) The variety I of implication algebras, see L1],
is 3-permutable; this is shown in [41, [111 or [3; p. 356].
It remains to prove that I is not PTT: Take the free algeb-
ra Fy(a,b) € I with two free generators s, b. Let us recall,
see [ 11, that this algebra is the grupoid
<{1,a,b,ab,ba,(ab)b}, + > with the following operationsl
table:
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. 1 a b ab ba (ab)b
1 1 a b ab ba (ab)b
a 1 1 ab ab 1 1
b 1 ba 1 1 ba 1
ab 1 a (ab)b 1 ba (ab)b
ba 1 (ab)b b ab 1 (ab)b
(ab)b 1 ba ab ab ba 1.

Further, it is well-known, see [1], [11], that eny im-

plication algebra (I, «> e I
semilattice (I, v >

may be expressed as a join

where avb:= (ab)b and, conversely,

ab = (avb);, (= the complement of avb in the principel fil-

ter [b) of <I,v> ). In particular, the following diagram

corresponds to the above mentioned implication algebra

Pz(e,b):
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Now, consider the tolerance T(a,ab) on Pz(a,b). We ha-
ve
{a,k) ¢ T(a,ab) since <a,l> =<{ab,ad {a,a>;
{1,b> & T(a,ab) since {ab,bad = {(ab)b,(ab)b> <ab,a”,
<(ab)b,by = (ab,ba> {b,b> ,
{1,b) =<a,1Y < (ab)b,b).
Suppose T(a,ab) = 8 (a,ab). Then {a,1>, {1,b) € T(a,ad) =
= 8(a,ab) implies {a,b> € B(a,ab), 1.e. we get <a,b) €

€ T(a,ab), a contradiction.

3. Some characterizations of copgruence permutability.
As was noted above, the relational equality ©6(a,b) = T(a,b),
i.e. the PTT property, is a weaker condition than the permu-
tability of congruences in a variety of algebras. Neverthe-
less, for two (and more) generating pairs of elements the

following Theorem holds:

Theorem 4. For a variety V, the following conditions are
equivalent:

(1) V has permutable congruences;

(2) 0(<(a,b?, {b,e)) = T(<a,b), <b,c>) for each UL c V
and every a,b,c of (7;

(3) Qia,b?, <b,e?) = R(a,b>, {b,c?) for each U c V

and every a,b,c of Ul .

Proof. (1)—= (2) and (1) = (3) follow directly from

H. Werner s Theorem, see [12).

(2) = (1). Consider the equality B((x,y), <y,z/) =
= T{x,y), {y,2z7) on the free algebra F3(x,y,z) in V. By the
transitivity of congruences, we get (x,z) ¢ T(x,y/, {¥y,2/)
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and thus, by Lemma 1(b), there is a 4-ary algebraic functi-
on 5 such that (x,z)> = (6x & )Kx,y?, <y,2>, <y,x), {z,y)),
i.e. x = 3(x,y,y,z) and z = 5(y,2,x,y). Since & is an al~-
gebraic function over the free algebra F3(x,y,z), we get a

7-ary polynomial s of V with

x = 8(x,y,¥,2,%,y,2)

z =8(y,z2,X,7,X,¥,2)
But p(x,y,z):= s(x,z,y,y,x,y,z) is the well-known Mal cev
polynomial (x = p(x,z,z), z = p(x,x,z), see [10]), proving
the permutability of congruences.

(3) => (1). Analogously, the equality Q(<x,y), {y,z?) =
= R({x,¥y), <y,2?) on the free algebra F3(x,y,2) yields
{(x,2> ¢ R(Kx,y7,<y,z?), and so <{x,z) = (=~ ¢ ) Kx,y2,<y,2”)
for some binary algebraic function =« over F3(x,y,z). So we

have a 5=ary polynomisl t of V with
t(x,y,x,y,2)

X

tly,z,x,y,2).

[}

z
Putting p(x,y,z):= t(x,z,x,y,2), we again obtain the Mal cev
polynomial and (1) is thus proved.

Remark 4. The original strong Mal ‘cev condition charac-
terizing permutable varieties, see 710, is very simple and
useful for proving purposes if a given variety is permutab-
le. However, if we proceed to prove the contrary, this con-
dition is not too convenient. More suitable conditions for

such a case agre those of the foregoing Theorem 4.
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